互质阵列阵列信号处理

合集下载

阵列信号处理的基本知识分析

阵列信号处理的基本知识分析
l m m
加性噪声。
将整个阵列的输出信号写成矩阵形式为:
x(t ) As(t ) n(t )
A [a( ),, a( )] 为阵列流行矩阵、空间信 号方向矢量、阵列响应矩阵。
1 P
a( ) [1 e
1 P
j 2 d sin /
,, e
j 2 ( M 1 ) d sin /
式中L为阵列最大口径,F和 为信号中心频率 和该频率对应的波长。 远场假设 即辐射源到阵列的距离远大于阵列的最大口 径,从而入射到阵列的信号波前可近似为平 面波前(d ).
L2


入射信号统计特性 空间入射信号平稳且各态历经,可以用时 间平均代替集合平均。一般还假定各入射 信号统计独立。 E{s(t ) s (t )} diag{ ,, } 噪声统计特性 空时白高斯噪声;色噪声环境下需要稳健 的算法。 E{n(t )n (t )} I

阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t ) CAs (t ) n(t )

阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。 阵列模糊 阵元间距大于 / 2 时,影响空间信号到达角 的可辨识性和确定性,需要解决阵列模糊问 题。
H 2 2 s1 sP
H 2

信号数目 属于信号检测问题(AIC,MDL,etc),一般 假定先验已知。
二、阵列信号处理的主要内容

信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。

阵列信号处理原理、方法与新

阵列信号处理原理、方法与新

阵列信号处理原理、方法与新
阵列信号处理是一种利用多个传感器(如麦克风、天线等)获取信号,通过信号处理
算法将其合成为一个复合信号,并在此基础上分离、定位、去除、增强等操作的新型信号
处理技术。

在目前的通信、雷达、声学、医学等领域都有广泛应用。

阵列信号处理的基本原理是通过获取多个传感器采样的信号,根据它们的相对位置和
接收到信号的时间差异,构建一个信号阵列,然后通过信号合成的方法将这些信号合成为
一个复合信号。

根据复合信号的特征,进行后续的信号处理。

阵列信号处理的主要方法包括波束形成、空间滤波、方向估计等。

波束形成的主要目
的是聚焦探测器的接收能力,使其在目标方向上获得更高的灵敏度。

空间滤波的主要目的
是通过利用阵列传感器之间的相对位置和互相之间的传感器响应差异,对信号进行滤波,
达到抑制噪声、增强信号等效果。

方向估计则是通过对信号在阵列中传播的速度和波束方
向的监测,对信号的方向进行估计。

阵列信号处理技术的应用十分广泛,其中最为常见的应用领域是通信、雷达和声学等。

在通信中,利用阵列信号处理技术进行信号增强和去除干扰,并根据信号的传播速度和方
向进行信号定位和跟踪。

在雷达中,利用阵列信号处理技术对雷达信号进行波束形成和目
标方向估计,提高雷达的探测效率和目标定位精度。

在声学中,利用阵列信号处理技术进
行声波信号的定位、分离和降噪等操作,提高语音识别和音频娱乐的质量。

总之,阵列信号处理技术是一种高效、可靠的信号处理方法,可以广泛应用于各个领域,有着十分重要的实际应用价值。

阵列信号处理全.ppt

阵列信号处理全.ppt

▪平面阵
图1.5
▪立体阵
图1.6
b. 参数化数据模型
假设N元阵分布于二维平面上,阵 元位置为:
rl xl , yl ,l 1,2, , N
一平面波与阵面共面,传播方向矢
量为: 1 cos ,sin T
c
y
r
x 图1.7:二维阵列
几何结构
阵元
l 接收信号为:xl
t s rl,t
滤波:增强信噪比 获取信号特征:信号源数目 传输方向(定位)及波形 分辨多个信号源
定义:
➢传感器——能感应空间传播信号并且能以某 种形式传输的功能装置
➢传感器阵列(sensors array)——由一组传感 器分布于空间不同的位置构成
由于空间传播波携带信号是空间位置和时
间的四维函数,所以:
连续:面天线
波动方程的任意解可以分解为无穷多个“单频”
解的迭加(传播方向和频率分量均任意)。
波动方程的单频解可以写成单变量的函数:
sr,t Aexp[ j(t kT r) Aexp[ j t T r ]
式中 k ,其大小等于传播速度的倒数,其方向与 传播方向相同,常称为慢速矢量(slowness vector)。
2. G.Strang,"Linear Algerbra and Its Applications", Academic Press,New York ,1976.(有中译本, 侯自新译,南开大学出版社,1990)
§2.1线性空间和希尔伯特空间
一、符号及定义
1. 符号
以后我们常用字母加低杆表示矢量和矩阵,
实际阵列
空间采样方式 虚拟阵列(合成阵列如SAR)
空时采样示意图如下:

互质极化阵列的DOA估计算法研究

互质极化阵列的DOA估计算法研究
f 为信号频率。三正交偶极子
天线可以接收电磁波极化信息,则第k 个信号沿坐
T
标轴 三 个 方 向 的 极 化 敏 感 向 量 [
ex,k ,
ey,k ,
ez,k ]
可表示为
RXX
X(
t)
XH (
t)]
=E [
信号 矩 阵;Nx (
t)、
Nx (
t)、
Nz (
t)分 别 为 噪 声 矩
阵 N(
t)在x、
nge
f
f
e
c
to
fpo
l
a
r
i
z
eda
r
r
ay apo
l
a
r
i
z
edspa
r
s
ea
l
r
i
t
hm ba
s
edont
hr
e
e
c
r
os
sd
i
l
e
go
po
(
)
c
o
r
imea
r
r
ayi
sp
r
opo
s
edf
o
rd
i
r
e
c
t
i
ono
fa
r
r
i
va
l DOA e
s
t
ima
t
i
on.Av
i
r
t
ua
ll
i
ne
a
ra
r
z 方向上的分量。将阵列接收向
y、
量 X(
t)分解成x、

互质阵doa解模糊

互质阵doa解模糊

互质阵doa解模糊在现代通信领域中,信号处理是一个非常重要的研究方向。

其中,方位角估计(Direction of Arrival, DOA)是一项关键技术,用于确定信号源的方向。

然而,由于信号传播过程中的多径效应和噪声干扰,DOA估计往往会受到模糊的影响。

为了解决这个问题,互质阵(Coprime Array)成为了一种有效的解模糊方法。

互质阵是由两个或多个互质的线性阵列组成的,其间距不相等。

这种阵列结构可以提供更多的信息,从而提高DOA估计的精度。

互质阵的设计基于数论中的互质性概念,即两个数的最大公约数为1。

通过选择互质的间距,可以使得互质阵的输出信号在不同方向上具有不同的相位差,从而实现对信号源方向的准确估计。

互质阵DOA解模糊的基本原理是利用互质阵的输出信号之间的相位差来推断信号源的方向。

假设互质阵由两个线性阵列组成,分别为阵列A和阵列B。

当信号源位于方位角θ处时,阵列A和阵列B的输出信号之间的相位差可以表示为Δφ = k1θ + φ1 - k2θ - φ2,其中k1和k2为互质阵的间距,φ1和φ2为阵列A和阵列B的初始相位。

通过测量相位差Δφ,可以得到信号源的方位角θ的估计值。

互质阵DOA解模糊的关键是如何准确测量相位差Δφ。

一种常用的方法是利用互相关函数来计算相位差。

互相关函数是信号处理中常用的一种工具,用于衡量两个信号之间的相似度。

通过计算阵列A和阵列B的输出信号之间的互相关函数,可以得到相位差Δφ的估计值。

除了互相关函数,还可以利用其他方法来测量相位差。

例如,最小二乘法(Least Squares)可以通过最小化测量误差来估计相位差。

此外,还可以利用波束形成(Beamforming)技术来增强信号源的方向特征,从而提高相位差的测量精度。

互质阵DOA解模糊在实际应用中具有广泛的应用前景。

例如,在无线通信系统中,互质阵可以用于定位移动设备的位置,从而提高定位精度。

在雷达系统中,互质阵可以用于目标检测和跟踪,从而提高雷达系统的性能。

阵列接收信号处理流程

阵列接收信号处理流程

阵列接收信号处理流程一、信号接收阵列接收信号处理的第一步是信号接收。

在阵列中,有多个接收器同时接收信号。

这些接收器可以是天线、传感器或其他接收设备。

每个接收器都可以独立地接收到信号,并将信号传输到后续的信号处理单元。

二、信号预处理接收到的信号可能会受到噪声、干扰或其他不完美因素的影响,因此需要进行信号预处理。

信号预处理的目的是提高信号的质量和准确性。

常见的信号预处理方法包括滤波、增益控制、噪声消除和时序校正等。

滤波是信号预处理的一种常用方法。

通过滤波可以去除信号中的噪声和干扰,提高信号的清晰度和可辨识度。

常见的滤波方法有低通滤波、高通滤波和带通滤波等。

增益控制是调整信号强度的方法。

通过增益控制可以使信号的强度达到最佳状态,避免信号过强或过弱的问题。

噪声消除是去除信号中噪声成分的方法。

噪声是信号中的不完美因素,可能会干扰信号的质量和准确性。

通过噪声消除可以提高信号的清晰度和准确性。

时序校正是调整信号的时序关系的方法。

在多个接收器同时接收信号时,由于信号传输路径的不同,信号到达各个接收器的时间可能存在微小的差异。

通过时序校正可以使信号的时序关系达到一致,提高信号的同步性和准确性。

三、信号合并经过信号预处理后,接收到的信号可以进行合并。

信号合并是将多个接收器接收到的信号进行综合和整合的过程。

通过信号合并可以提高信号的强度和准确性,增加信号的可靠性和鲁棒性。

常见的信号合并方法有加权平均法、最大比例合并法和最大比例合并法等。

加权平均法是将每个接收器接收到的信号按照一定的权重进行加权平均,得到综合的信号。

最大比例合并法是选择接收到信号强度最大的接收器的信号作为综合的信号。

最大比例合并法是根据接收到信号的强度比例进行综合,提高信号的强度和准确性。

四、信号解调和解码信号合并后,接下来需要进行信号的解调和解码。

信号解调是将调制信号转化为原始信号的过程。

常见的调制方式有频率调制、相位调制和振幅调制等。

通过信号解调可以恢复出原始信号的特征和信息。

阵列信号处理(知识点)

阵列信号处理(知识点)

信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L称()()()()12,,,P span a a a θθθL 为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。

P N S 的正交补空间称为噪声子空间,记为N P N N -。

正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。

导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。

最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X K ,其中θ为参数集合,使条件概率()12,,,N f X X X θK 最大的参数θ估计称为最大似然估计。

不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。

阵列信号处理的基本知识分析

阵列信号处理的基本知识分析

diag{g ej1 ,, g e } jM
1
M
阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t) CAs(t) n(t)
阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。
信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。
Ref[1] H.krim and M.Viberg, Two decdees of array processing research: the parametric approach, IEEE signal processing Magazine, Vol.13, Vol.4, 1996. Ref.[2] D.H.Johnson, D.E.Dudgeon, Array signal processing, Prentice-Hall,1993. Ref.[3] IEE Proc. 1991. Ref.[4] Vaccaro, R.J, The past, present, and the future of underwater acoustic signal processing, IEEE Signal Processing Magazine, Vol.15 , No.4 , 1998.
-25
-30
-35
-40
-45
-50
-80 -60 -40 -20
0
20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

互质阵列信号处理是一种基于互质阵列的无线通信技术,它利用多个天线之间的相关性来提高信号质量和系统容量。

在传统的无线通信系统中,通常使用单个天线进行信号接收和发送。

然而,由于多径效应、干扰等因素的存在,这种单天线系统的性能受到了很大的限制。

为了解决这个问题,研究人员提出了使用多个天线进行信号处理的方法。

互质阵列是一种特殊的天线阵列,它由两个或多个相互独立的子阵列组成。

这些子阵列之间没有相关性,因此它们可以同时接收和发送信号,从而提高了系统的容量和性能。

在互质阵列中,每个子阵列都有自己的收发器和天线单元。

当一个子阵列接收到一个信号时,它会将其转换为数字信号并进行处理。

然后,该数字信号被传输到另一个子阵列中进行处理。

这个过程可以重复多次,直到所有的子阵列都完成了对信号的处理。

通过使用互质阵列进行信号处理,可以实现以下优点:
1. 提高信号质量:由于每个子阵列都可以独立地接收和发送信号,因此可以减少多径效应和其他干扰的影响,从而提高信号质量。

2. 提高系统容量:由于每个子阵列都可以同时接收和发送信号,因此可以增加系统的容量,使其能够同时处理更多的用户请求。

相关文档
最新文档