信号与系统第二次作业
西安交通大学_信号与系统A课后习题(第3、4章)

ω
31
(a) 证明下面三个不同单位冲激响应的 LTI 系统:
h1 (t ) = u (t )
h2 (t ) = −2δ (t ) + 5e −2t u (t )
和
8
h3 (t ) = 2te − t u (t )
对输入为 x(t ) = cos t 的响应全都一样。 (b) 求另一个 LTI 系统的单位冲激响应,它对 cos t 的响应也相同。 (这道题说明,对 cos t 的响应不能唯一用来标定一个 LTI 系统) 32 考虑一个 LTI 系统 S ,其单位冲激响应为
和
(t ) = x
k =−∞
∑ x(t − kT )
∞
(t ) 的傅里叶级数系数, X ( jω ) 为 x(t ) 的傅里叶变换。 式中 T > 2 。令 ak 记作 x
(a) 求 X ( jω ) 的闭式表达式。
7
(b) 求傅里叶级数 ak 的表达式,并验证 ak =
1 2π k ) X (j T T
2
∞
k
sin(4(t + 1)) (c) x3 (t ) = π (t + 1)
10
《第三次课后作业》 (a) 借助于表 4.1(P.233—傅里叶变换性质)和表 4.2(P.234—基本傅里叶变换对) ,求 下列信号的傅里叶变换:
⎛ sin t ⎞ x(t ) = t ⎜ ⎟ ⎝ πt ⎠
x(t ) =
k =−∞
∑ae
k
+∞
jk (2π / T ) t
中,对全部非零的偶数 k ,有 ak = 0 ,则称 x(t ) 是奇谐(odd-harmonic)的。 (i) 证明:若 x(t ) 是奇谐的,则有
信号与系统考题参考解答(完整版)

《信号与系统》作业参考解答第一章(P16-17)1-3 设)(1t f 和)(2t f 是基本周期分别为1T 和2T 的周期信号。
证明)()()(21t f t f t f +=是周期为T 的周期信号的条件为T nT mT ==21 (m ,n 为正整数) 解:由题知)()(111t f mT t f =+ )()(222t f mT t f =+要使)()()()()(2121t f t f T t f T t f T t f +=+++=+则必须有21nT mT T == (m ,n 为正整数) 1-5 试判断下列信号是否是周期信号。
若是,确定其周期。
(1)t t t f πsin 62sin 3)(+= (2)2)sin ()(t a t f =(8)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=2cos 28sin 4cos )(k k k k f πππ解:(1)因为t 2sin 的周期为π,而t πsin 的周期为2。
显然,使方程n m 2=π (m ,n 为正整数)成立的正整数m ,n 是不存在的,所以信号t t t f πsin 62sin 3)(+=是非周期信号。
(2)因为)2cos 1()sin ()(22t a t a t f -==所以信号2)sin ()(t a t f =是周期π=T 的周期信号。
(8)由于)4/cos(k π的周期为8)4//(21==ππN ,)8/sin(k π的周期为16)8//(22==ππN ,)2/cos(k π的周期为4)2//(23==ππN ,且有16412321=⨯=⨯=⨯N N N所以,该信号是周期16=N 的周期信号。
1-10 判断下列系统是否为线性时不变系统,为什么?其中)(t f 、][k f 为输入信号,)(t y 、][k y 为零状态响应。
(1))()()(t f t g t y = (2))()()(2t f t Kf t y += 解:(1)显然,该系统为线性系统。
信号与系统第二章习题

rt et ht
sin tut ut 1ut ut 1
t
0
sin
d
τ
u
t
ut
2
1
t 1
sin
τ
d
τut
u
t
2
1 1 costut ut 2
X
20
第
例2-4 计算卷积 f1(t) f2(t),并画出波形。
页
f1 t
f2 t
2
1
1 e t1u t 1
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut X
18
例2-3
第
页
已知线性时不变系统的一对激励和响应波形如下图所示,
求该系统对激励的 et sin tut ut 1零状态响应。
et
r t
1
1
O 12
t
对激励和响应分别微分一次,得
t0
因为特解为3,所以 强迫响应是3,自由响应是 4 et e2t
X
12
方法二
第
页
零状态响应rzs t是方程
d2 r dt
t
2
3
dr d
t
t
2r
t
2
t
6ut
且满足rzs 0 rzs0 0的解
(5)
由于上式等号右边有 t项 ,故rzst应含有冲激函数,
从而rzs t 将发生跳变,即 rzs 0 rzs 0
d2 rt 3 d rt 2rt 0
dt2
dt
信号与系统 于敏慧(第二版)第二周作业答案

y0(t)
1
t
0
2
4
(6) x(t) = dx0 (t) , h(t) = dh0 (t) 。
dt
dt
x(t) * h(t) = dx0 (t) * dh0 (t) = d 2 y0 (t)
dt dt
dt 2
x(t) ∗ h(t) = 0.5δ(t) − 0.5δ(t − 2)
2.10 求 y[n] = x1[n]* x2[n]* x3[n] 。 其 中 x1[n] = (0.5)n u[n] , x2[n] = u[n + 3] 和
(2)利用(1)的结果,求系统的逆系统的单位样值(脉冲)响应。
(3)利用(2)的结果,结合卷积性质,求一信号 x[n],使之满足
x[n]* h[n] = 2n (u[n] − u[n − 4])
解:(1) h[n] − Ah[n −1] = δ [n],其中 h[n] = (1 )n u[n] , 2
(通项: an = a1q n−1 )
n
∑ 此题: a1 = 1, q = 2 ; x[n]* h[n] = 2nu[n]*u[n] = ( 2k )u[n] = (2n+1 −1)u[n] k =0
2.6 计算图 2-45(b)与(c)所示信号 x(n)与 h(n)的卷积和,注意:N=4。 解:(b)利用脉冲信号δ(n)的卷积性质以及卷积的延时性质计算:
k =−∞
+ 3] =
u[n + 3] 0.5k
k =0
;
= 2(1 − 0.5n+4 )u[n + 3]
(2) x1[n]* x2[n]* x3[n] = 2(1 − 0.5n+4 )u[n + 3]* (δ [n] − δ [n −1]) ; = 2(1 − 0.5n+4 )u[n + 3] − 2(1 − 0.5n+3 )u[n + 2]
信号与系统第2章习题

信号与系统第2章习题一、选择题1、下列信号不能用复指数信号stAe t x =)(表示的是( )A.冲激信号B.直流信号C.指数信号D.正弦信号 2、)22(4t e t--δ等于( )A. te4- B. )22(t -δ C.)1(214--t e δ D. )1(214δ-e 3、积分⎰--+642)8(dt t e t δ等于( )A.0B.16e C.1 D.)8(+t δ 4、已知信号)(t x 如下图所示,其表达式是( )A.)3()2(2)(---+t u t u t uB. )3(2)2()1(---+-t u t u t uC. )3()2()(---+t u t u t uD. )3()2()1(---+-t u t u t u 5、已知信号)(t x 如下图所示,其反转右移的信号)(1t x 是( )A. B.C. D.6、如下图所示:)(t x 为原始信号,)(1t x 为变换信号,则)(1t x 的表达式是( )A. )1(+-t xB. )1(+t xC. )12(+-t xD. )121(+-t x 7、若)(t x 是已录制声音的磁带,则下列表述错误的是( )A.)(t x -表示将磁带倒转播放产生的信号B.)2(t x 表示将磁带以二倍速度加快播放C.)2(t x 表示原磁带放音速度降低一半播放D.2)(t x 表示将磁带的音量放大一倍播放8、设)(t x 表示你在山谷喊话的声音,则你耳朵听到的声音可表示为( ) A.∑∞=0)(n nt x a,0>n a B. ∑∞=+0)(n n nT t x a,0,0>>n n T aC.∑∞=-0)(n n nT t x a,0,0>>n n T a D.∑∞=-0)(n nTt x ,0>n T9、如下图所示周期信号)(~t x ,其直流分量等于( )A.0B.2C.4D.6二、判断题1、两个奇信号的和还是奇信号( )2、任何信号可分解为直流分量与交流分量之和( )3、任何信号可分解为偶分量与奇分量之和( )4、)cos(t 是功率信号,)]()()[cos(T t u t u t --是能量信号( )5、积分1)(=⎰∞-td ττδ( )6、对连续周期信号进行抽样所得离散序列一定还是周期的( )7、设)2()(1k x k x =,则)2/()(1k x k x =( )三、简答题1、单位冲激信号和单位脉冲序列各有什么特性?2、正弦信号)sin(0t ω和正弦序列)sin(0k Ω有什么区别与联系?3、信号的时域分解有哪几种方法?4、连续时间信号分解为冲激信号的线性组合有何实际意义?四、计算题教材P66习题:2-9、2-10、2-12、2-14。
信号与系统第2章作业解答

解:(1) f (t t0 ) (t) f (t0 ) (t)
(2) f (t t0 ) (t t0 )dt f (0)
(3) 2 et (t 3)dt e3 2 (t 3)dt e3
4
4
(4) et sin t (t 1)dt 0 0
第二章 连续时间信号的时域分析
2
n
(4) x1(n) x2 (n) 2n u(n) 3n u(n) 2k 3nk k 0
3n
n
( 2 )k
1 ( 2)n1 3n 3 [3n1 2n1]u(n)
k0 3
1 2
3
(5) x1(n) x2 (n) [(0.5)n u(n 4)][4nu(n 2)]
( 1)k u(k 4) 4nk u(n k 2) 2 k
P59 2.24 解: (2) f1 f3 r(t) r(t 1) r(t 2)
2r(t 1) 2r(t 2) 2r(t 3) r(t 2) r(t 3) r(t 4)
f1 f3
1
0
1
2
34
t
-1
r(t) 3r(t 1) 4r(t 2) 3r(t 3) r(t 4)
4
42
(2) (t 3)etdt e3
(3) (1 t)(t2 4)dt 5
(4) (t) sin 2t dt 2 (t) sin 2t dt 2
t
2t
第二章 连续时间信号的时域分析
6 / 11
P91 3.1 (5) (6) 解: 由题意知 x(n) 的波形如下图示
eatu(t) sin tu(t) a sin t cos t eat u(t) 1 a2
第二章 连续时间信号的时域分析
信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。
1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。
17秋北航《信号与系统》在线作业二满分答案

北航《信号与系统》在线作业二
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 30 分)
1. 连续周期信号的傅氏变换是 ________。
A. 连续的
B. 周期性的
C. 离散的
D. 与单周期的相同
满分:3 分
正确答案:C
2. 某系统的系统函数为 H ( s ),若同时存在频响函数 H ( j ω),则该系统必须满足条件 ________。
A. 时不变系统
B. 因果系统
C. 稳定系统
D. 线性系统
满分:3 分
正确答案:A
3. 欲使信号通过系统后只产生相位变化,则该系统一定是 ________。
A. 高通滤波网络
B. 带通滤波网络
C. 全通网络
D. 最小相移网络
满分:3 分
正确答案:C
4. 已知某连续时间系统的系统函数H(s)= 1/(s+1),该系统属于什么类型 ________。
A. 高通滤波器
B. 低通滤波器
C. 带通滤波器
D. 带阻滤波器
满分:3 分
正确答案:B
5. 当输入信号的复频率等于系统函数的零点时,系统的强迫响应分量为 ________。
A. 无穷大
B. 不为零的常数
C. 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》课程研究性学习手册姓名_______ nicai ___________________________学号_______________________________________同组成员___________________________________指导教师____________________________________时间________________________________________信号的频域分析专题研讨【目的】(1) 建立工程应用中有效带宽的概念,了解有限次谐波合成信号及吉伯斯现象。
(2) 掌握带限信号,带通信号、未知信号等不同特性的连续时间信号的抽样,以及抽样过程中的参数选择与确定。
认识混叠误差,以及减小混叠误差的措施。
(3) 加深对信号频域分析基本原理和方法的理解。
(4) 锻炼学生综合利用所学理论和技术,分析与解决实际问题的能力。
【研讨内容】一一基础题题目1吉伯斯现象2 N 2(1) 以(C0| +2瓦n』C n )/P^0.90定义信号的有效带宽,试确定下图所示信号的有效带宽NCO。
,取A=1,T=2。
(2) 画出有效带宽内有限项谐波合成的近似波形,并对结果加以讨论和比较。
(3) 增加谐波的项数,观察其合成的近似波形,并对结果加以讨论和比较。
(a)周期矩形信号(b)周期三角波信号【知识点】连续周期信号的频域分析,有效带宽,吉伯斯现象【信号频谱及有效带宽计算】图示矩形波占空比为50%(A/2)P T0/2[t-(kT0/2-T0/4)](-1) k-1—(A/2)(T0/2)Sa(wT0/4)e -jw(kT0/2-T0/4)(-l)k-1可以发现频域项前面是一个周期函数,我们定量研究后面的指数衰减项就可以了;C0=1/4厲/n n n=1,3,5,7,9Cn=J 0 n=2,4,6,8%输出周期矩形波T=-10@.01:10;A=0.5;P=1;y=A*square(P.*T);>> plot(y)%求频谱>>X=fft(x);【仿真程序】(1) t=-5:0.001:5;y=0.6366.*sin(pi*t)+0.2133.*sin(3*pi*t);plot(t,y);加多谐波分量:t=-5:0.0001:5; b=0.0902.*sin(7*pi*t);y=0.6366.*sin(pi*t)+0.2133.*sin(3*pi*t)+0.1273.*sin(5*pi*t)+b; plot(t,y);(2) t=-5:0.0001:5; y=0.5-0.4052.*cos(pi*t);plot(t,y);加多谐波分量t=-5:0.0001:5; y=0.5-0.4052.*cos(pi*t)-0.04503.*cos(3*pi*t)-0.01621.*cos(5*pi*t);plot(t,y);【仿真结果】(1) 加多谐波分量:(2)加多谐波分量:【结果分析】周期三角波的模拟效果略好。
周期矩形加多谐波分量后,波形上的分量变多。
吉布斯现象明显。
正弦波增加谐波分量后,波形变尖,类似于三角波。
提示:应从以下几方面对结果进行分析:(1) 图(a)和图(b)信号有效带宽内有限项谐波合成波形与原波形的近似度比较。
⑵分析图⑻ 和图(b)信号的时域特性与有效带宽内谐波次数的关系。
⑶谐波次数增加,图(a)和图(b)信号合成波形分别有什么变化,从中能得出什么结论? 【自主学习内容】信号完整性、周期信号有效带宽的一些方法。
【阅读文献】《信号完整性研究》 ------------ 于争【发现问题】周期信号有效带宽的计算有时需要一定技巧。
【问题探究】【研讨内容】——中等题题目2:分析音阶的频谱(1) 录制你所喜欢乐器(如钢琴、小提琴等)演奏的音阶,并存为wav 格式。
(2) 画出各音阶的时域波形,并进行比较。
(3) 对所采集的音阶信号进行频谱分析,比较各音阶的频谱。
知识点】连续时间信号的频域分析【温馨提示】利用MATLAB 提供的函数fft 计算频谱。
【题目分析】利用fft 进行频域分析。
【仿真程序】(1) % 钢琴。
Eva ed 宇多田光[y,fs,bits]=wavread( 钢琴.wav' ); sound(y,fs,bits);m=length(y);Y=fft(y,m);subplot(2,1,1);plot(y);title( 'y' );subplot(2,1,2);plot(abs(Y));title( 'abs' );【仿真结果】(1)【结果分析】提示:应从以下几方面对结果进行分析:(1) 你所选择乐器演奏的音阶,其时域波形的包络有何特点?一开始幅度比较小,渐渐进入主题后振幅有一定加大,其幅度的涨落很有规律(2) 你所选择乐器演奏的音阶,其频谱有何特点?基波是多少?谐波是多少?钢琴的频谱主要分布在低频段及小段的高频段上。
求基波:钢琴.wav');sound(x,fs,bits);N=length(x); % x 是待分析的数据n=1:N;%1-FFTX=fft(x); % FFTX=X(1:N/2);Xabs=abs(X);Xabs(1) = 0; % 直流分量置0for i= 1 : m [Amax,index]=max(Xabs); if(Xabs(index-1) > Xabs(index+1)) a1 = Xabs(index-1) / Xabs(index); r1 = 1/(1+a1); k01 = index -1;elsea1 = Xabs(index) / Xabs(index+1);r1 = 1/(1+a1);k01 = index;endFn = (k01+r1-1)*fs/N; % 基波频率An = 2*pi*r1*Xabs(k01)/(N*sin(r1*pi)); % 基波幅值Pn = phase(X(k01))-pi*r1; % 基波相角单位弧度Pn = mod(Pn(1),pi);end【自主学习内容】格式转换;基波分析、谐波分析。
【阅读文献】【发现问题】(1) 改变音阶的包络,相应音阶听起来会有什么变化?h=y.*sin(y);H=100.*h;>> sound(H,fs,bits) 没什么,挺爽的。
(2) 音阶频谱中的谐波分量有什么作用?让声音圆润,更具乐感。
(3) 你所分析的乐器各音阶对应的频率是多少,之间存在什么关系?【问题探究】【研讨内容】——拓展题题目3:连续时间信号的抽样⑴对带限信号(如Sa(t),Sa2(t)等),确定合适的抽样间隔T,分析x(t)的频谱Xj)和抽样所得到离散信号x[k]的频谱X(j),并将两者进行比较。
⑵将正弦信号x(t) =sin(2n°t)按抽样频率f s=8kHz进行1秒钟抽样,得离散正弦序列x[k]为比较f o=2kHz, 2.2 kHz, 2.4 kHz, 2.6 kHz 和f o=7.2 kHz, 7.4 kHz, 7.6 kHz, 7.8 kHz 两组信号抽样所得离散序列的声音,解释所出现的现象。
⑶对于许多具有带通特性的信号x(t),举例验证可否不需要满足f sam _2f m?【知识点】连续非周期信号的频谱,离散非周期信号的频谱,时域抽样,频域抽样【温馨提示】(1) 利用MATLAB提供的函数fft计算抽样所得序列x[k]的频谱。
(2) 利用MATLAB函数sound(x, fs)播放正弦信号和声音信号。
(3) 可以利用仪器或仿真软件产生具有带通特性的信号。
【题目分析】【仿真程序】(1)t=-3*pi:pi/20:3*pi;y=si nc(t);plot(t,y);grid on;>> Y=fft(y);>> plot(t,Y)t=-3*pi:pi/10:3*pi;x=s in c(t);plot(t,x);grid on;>> X=fft(x);>> plot(t,X)gridt=-3*pi:pi/5:3*pi;x=s in c(t);plot(t,x);grid on;>> X=fft(x);>> plot(t,X)grid(2)(t=[0:1/8000:10];fo=7000f1=2000x=si n( 2*pi*fo.*t);p=si n( 2*pi*f1.*t);soun d(x)soun d(p)subplot(211);plot(t,x)X=fft(x); subplot(212);plot(t,X))不要了。
fs=8000;t=0:1/fs:1;fo=i nput( 'fo=' );x=si n( 2*pi*fo*t);sou nd(x,fs);X=fft(x);stem(X);【仿真结果】频域被“压扁了”。
(2)fo=2000fo=2200fo=2400fo=2800fo=7200fo=7400fo=7600fo=7800【结果分析】2.8k在第一组中声音最尖,7.8k在第二组中声音最尖。
因为抽样频率8000大于第一组中频率的两倍,所以无失真。
而小于第二组中的两倍。
故有失真。
所以第一组中不同频率,声音的声调岁频率增加而变高。
第二组中随平绿的增加而降低,这是抽样失真造成的。
【自主学习内容】【阅读文献】【发现问题】若连续时间信号x(t)的最高频率未知,该如何确定对信号进行抽样的最大间隔?【问题探究】带通信号抽样频率确定的理论分析。
系统的频域分析专题研讨【目的】(1)加深对系统频域分析基本原理和方法的理解。
(2)加深对信号幅度调制与解调基本原理和方法的理解。
(3)锻炼学生综合利用所学理论和技术,分析与解决工程实际问题的能力。
【研讨内容】题目1幅度调制和连续信号的Fourier变换本题研究莫尔斯码的幅度调制与解调。
本题中信号的形式为其中信号x(t)由文件ctftmod.mat定义,可用命令Load ctftmod 将文件ctftmod.mat定义的变量装入系统内存。
运行命令Load ctftmod后,装入系统的变量有af bf dash dot fl f2 t x其中bf af: 定义了一个连续系统H(s)的分子多项式和分母多项式。
可利用freqs(bf,af,w)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim求出信号通过该系统的响应。
dash dot: 给出了莫尔斯码中的基本信号dash和dot的波形f1 f2: 载波频率t:信号x(t)的抽样点x:信号x(t)的在抽样点上的值信号x(t)含有一段简单的消息。