单位负反馈系统的PID控制器设计及参数整定
PID控制原理与参数整定方法

PID控制原理与参数整定方法PID控制器是一种经典的控制方法,广泛应用于工业自动化控制系统中。
PID控制器根据设定值与实际值之间的差异(偏差),通过比例、积分和微分三个部分的加权组合来调节控制量,从而使控制系统的输出达到设定值。
1.比例控制部分(P):比例控制是根据偏差的大小来产生一个与偏差成比例的控制量。
控制器的输出与偏差呈线性关系,根据设定值与实际值的差异,输出控制量,使得偏差越大,控制量也越大。
这有利于快速调整控制系统的输出,但也容易产生超调现象。
2.积分控制部分(I):积分控制是根据偏差随时间的累积来产生一个与偏差累积成比例的控制量。
如果存在常态误差,积分控制器可以通过累积偏差来补偿,以消除常态误差。
但过大的积分时间常数可能导致控制系统响应过慢或不稳定。
3.微分控制部分(D):微分控制是根据偏差的变化率来产生一个与偏差变化率成比例的控制量。
微分控制器能够对偏差变化快速做出响应,抑制过程中的波动。
但过大的微分时间常数可能导致控制系统产生震荡。
1.经验法:根据工程经验和试错法,比较快速地确定PID参数。
这种方法简单直观,但对于复杂系统来说,往往需要进行多次试验和调整。
2. Ziegler-Nichols整定法:该方法通过调整控制器增益和积分时间来实现直观的系统响应,并通过系统的临界增益和临界周期来确定临界比例增益、临界周期和初始积分时间。
3. Chien-Hrones-Reswick整定法:该方法通过评估控制系统的阻尼比和时间常数来确定比例增益和积分时间。
4.频域法:通过分析系统的频率响应曲线,确定PID参数。
该方法需要对系统进行频率扫描,通过频率响应的特性来计算得到PID参数。
5.优化算法:如遗传算法、粒子群优化等,通过优化算法寻找最佳的PID参数组合,以使得系统具备最优的性能指标。
这种方法适用于复杂系统和非线性系统的参数整定。
总之,PID控制器的原理是根据比例、积分和微分的加权组合来调节控制量,使得系统能够稳定、快速地达到设定值。
PID控制器设计及其参数整定

一、绪论PID 参数的整定就是合理的选取PID 三个参数。
从系统的稳定性、响应速度、超调量和稳态误差等方面考虑问题,三参数作用如下:比例调节作用:成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调节立即产生与其成比例的调节作用,以减小偏差。
随着P K 增大,系统的响应速度加快,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。
比例调节的显著特点是有差调节。
积分调节作用:消除系统的稳态误差,提高系统的误差度。
积分作用的强弱取决于积分时间常数i T ,i T 越小,积分速度越快,积分作用就越强,系统震荡次数较多。
当然i T 也不能过小。
积分调节的特点是误差调节。
微分调节作用:微分作用参数d T 的作用是改善系统的动态性能,在d T 选择合适情况下,可以减小超调,减小调节时间,允许加大比例控制,使稳态误差减小,提高控制精度。
因此,可以改善系统的动态性能,得到比较满意的过渡过程。
微分作用特点是不能单独使用,通常与另外两种调节规律相结合组成PD 或PID 控制器。
二、设计内容1. 设计P 控制器控制器为P 控制器时,改变比例系数p K 大小。
P 控制器的传递函数为:()P P K s G =,改变比例系数p K 大小,得到系统的阶跃响应曲线当K=1时,P当K=10时,PK=50时,当P当P K =100时,p K 超调量σ% 峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e 1 49.8044 0.5582 0.2702 3.7870 0.9615 10 56.5638 0.5809 0.1229 3.6983 0.7143 50 66.4205 0.3317 0.1689 3.6652 0.3333 10070.71480.25060.07443.64100.2002仿真结果表明:随着P K 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。
PID控制系统工作原理以及PID参数整定方法

在常用的控制中,不但对控制的稳定程度有要求,对动态指标也有要求,都要求负载发生变化或调节器给定值调整等引起控制变化后,控制系统能够快速恢复到稳定状态。
本文详实阐述了三个参数之间的关系和相互之间的影响,为现场快速调整提供了依据。
三个参数分别代表比例、积分、微分,PID控制的重点不是怎样编制控制程序,而是在于怎样确定的参数,参数确定的难点是能够正确地理解各参数的物理含义。
控制机制上,比例越大调节速度就越迟钝,反之就灵敏,偏差越大调节作用越强。
积分越小就趋向灵敏,偏差存在的时间越久积分调节作用越大。
微分主要是补偿控制滞后的问题,微分数值越大调节作用越强烈,偏差变化速率越大微分调节作用越强。
实际上,一般的控制是针对温度的,流量整定用比例就行,液位用比例加积分,温度要用以上三者来综合调整。
1、的适用范围传统的控制方法是运用PID调节参数控制,它适用在液位、流量、压力、温度等的现场控制。
在不同形式的控制现场,只是PID设置参数值的不同,只要参数设置得当大多可以达到很好的控制效果(控制效果取决于PID调节器的控制算法和参数,在多数工况下,控制算法的作用更加明显)。
PID参数整定,特别是在现场,需要冷静的观察与PID参数整定口诀结合,多次实践后定会有所提高。
PID口诀本站内有数篇原创文章,大家可站内搜索。
2、PID参数的意义和作用指标分析①比例定义与作用在实际控制中,输出的大小与误差的大小成正比关系,当误差占整体量程的百分比达到P值时,比例作用的输出为100%,这时的P就定义为比例带参数。
②比例控制在实际工作中,有经验的师傅在手动控制加热炉的炉温时,往往可以获得非常好的控制效果,PID控制与人工控制在方法原理上基本相同。
例如,操作人员用比例控制的思维进行手动控制电加热炉的炉温,操作人员事先知道炉温稳定在给定值时,控制电位器所处的位置角度(我们将它称为位置S),并且会根据当时的温度误差值去调整电位器的旋转角度,从而控制加热电流强度。
单位负反馈系统的PID控制器设计及参数整定

PID控制的现实意义
目前,PID控制及其控制器或智能PID控制器(仪表) 已经很多,产品已在工程实际中得到了广泛的应用,有各 种各样的PID控制器产品,各大公司均开发了具有PID参 数自整定功能的智能调节器 (intelligent regulator),其 中PID控制器参数的自动调整是通过智能化调整或自校正、 自适应算法来实现。有利用PID控制实现的压力、温度、 流量、液位控制器,能实现PID控制功能的可编程控制器 (PLC),还有可实现PID控制的PC系统等等。可编程控制 器(PLC) 是利用其闭环控制模块来实现PID控制,而可编 程控制器(PLC)可以直接与ControlNet相连,如 Rockwell的PLC-5等。还有可以实现 PID控制功能的控制 器,如Rockwell 的Logix产品系列,它可以直接与 ControlNet相连,利用网络来实现其远程控制功能。
目录
• PID控制概述 • PID控制的现实意义 • PID控制器对系统性能的影响 • 项目感想
PID控制概述
这个理论和应用自动控制的关键是做出正确的测量和 比较后,如何才能更好地纠正系统。
PID(比例-积分-微分)控制器作为最早实用化的控 制器已有70多年历史,现在仍然是应用最广泛的工业控制 器。PID控制器简单易懂,使用中不需精确的系统模型等 先决条件,因而成为应用最为广泛的控制器。 PID控 制器由比例单元(P)、积分单元(I)和微分单元(D) 组成。其输入e (t)与输出u (t)的关系为 u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中积分的上下 限分别是0和t
DCS控制系统PID参数整定原理及操作

DCS控制系统PID参数整定原理及操作一、调节器正/反作用的确定方法调节系统投自动:往往在控制方案确定好且判断出调节器的正/反作用后,最关键的是P、I、D参数如何整定,根据多年的现场工作经验,谈谈如何整定调节系统的P、I、D参数,请大家在工程中参考。
在整定调节系统的P、I、D参数前,要保证一个闭环调节系统必须是负反馈,即Ko*Kv*Kc >0。
调节对象Ko:阀门、执行器开大,测量PV增加,则Ko>0;反之,则Ko<0;调节阀门Kv:阀门正作用(气开、电开),则Kv>0;阀门反作用(气关、电关),则Kv<0;调节器Kc:若Kc>0,则调节器为反作用;若Kc<0,则调节器为正作用;软件组态中要设置正确,在装置调试和开车及P、I、D参数整定前,调节器的正/反作用务必检查,且正确无误。
1、在整定调节系统的P、I、D参数前,要保证测量准确、阀门动作灵活;2、在整定调节系统的P、I、D参数时,打好招呼,要求用户工艺操作密切注意生产运行状况,确保安全生产;3、在整定调节系统的P、I、D参数时,先投自动后串级,先投副环后主环,副环粗,主环细。
在操作站CRT上,打开调节器的整定调整画面窗口,改变给定值SP或输出值OP,给出一个工艺允许的阶跃信号,观察测量值PV变化和趋势图,不断修定PID参数,往往反复几次,直至平稳控制。
实际中,一般能达到工艺满意的一阶特性即可。
二、经验PID整定参数预置1、对流量调节(F):一般P=120~200%,I=50~100S,D=0S;对防喘振系统:一般P=120~200%,I=20~40S,D=15~40S;2、对压力调节(P):一般P=120~180%,I=50~100S,D=0S;对放空系统:一般P=80~160%,I=20~60S,D=15~40S;3、对液位调节(L):1]、大容器(直径4米、高2米以上塔罐):一般P=80~120%,I=200~900S,D=0S;2]、中容器(直径2--4米、高1.5--2米塔罐):一般P=100~160%,I=80~400S,D=0S;3]、小容器(直径2米、高1.5米以下塔罐):4、对温度调节(T):一般P=120~260%,I=50~200S,D=20~60S;上述参数是经验性的东西,不是绝对的。
PID控制器设计与参数整定方法综述

PID控制器设计与参数整定方法综述一、本文概述本文旨在全面综述PID(比例-积分-微分)控制器的设计与参数整定方法。
PID控制器作为一种广泛应用的工业控制策略,其设计的优劣直接影响到控制系统的性能和稳定性。
因此,深入理解并掌握PID控制器的设计原则与参数整定方法,对于提高控制系统的性能具有非常重要的意义。
本文将首先介绍PID控制器的基本原理和组成结构,包括比例、积分和微分三个基本环节的作用和特点。
在此基础上,详细阐述PID控制器设计的一般步骤和方法,包括确定控制目标、选择控制算法、设定PID参数等。
本文还将重点介绍几种常用的PID参数整定方法,如Ziegler-Nichols法、Cohen-Coon法以及基于优化算法的参数整定方法等,并对这些方法的优缺点进行比较分析。
本文将结合具体的应用实例,展示PID控制器设计与参数整定方法在实际工程中的应用效果,以期为读者提供有益的参考和借鉴。
通过本文的阅读,读者将能够全面了解PID控制器的设计与参数整定方法,掌握其在实际应用中的技巧和注意事项,为提高控制系统的性能和稳定性提供有力的支持。
二、PID控制器的基本原理PID(比例-积分-微分)控制器是一种广泛应用于工业控制系统的基本控制策略。
它的基本工作原理是基于系统的误差信号(即期望输出与实际输出之间的差值)来调整系统的控制变量,以实现对系统的有效控制。
PID控制器的核心在于其通过调整比例、积分和微分三个环节的参数,即比例系数Kp、积分系数Ki和微分系数Kd,来优化系统的动态性能和稳态精度。
比例环节(P)根据误差信号的大小成比例地调整控制变量,从而直接减少误差。
积分环节(I)则是对误差信号进行积分,以消除系统的静态误差,提高系统的稳态精度。
微分环节(D)则根据误差信号的变化趋势进行预测,提前调整控制变量,以改善系统的动态性能,抑制过冲和振荡。
PID控制器的这三个环节可以单独使用,也可以组合使用,以满足不同系统的控制需求。
PID控制器的参数整定(经验总结)

PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。
在选择数字PID参数之前,首先应该确定控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。
一般来说,PI、PID和P控制器应用较多。
对于有滞后的对象,往往都加入微分控制。
选择参数控制器结构确定后,即可开始选择参数。
参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。
工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。
PID控制原理与PID参数的整定方法

PID控制原理与PID参数的整定方法PID控制是一种经典的自动控制方法,它通过测量被控对象的输出和参考输入之间的差异,计算出一个控制信号,通过调节被控对象的输入达到控制目标。
PID控制器由比例(P),积分(I)和微分(D)三个部分组成,分别对应于控制信号的比例、积分和微分作用。
比例控制(P)通过使用被控对象输出和参考输入之间的差异进行比例放大,并将放大的信号作为控制信号。
当比例增益增加时,控制器对误差的响应速度加快,但过大的增益会导致震荡。
积分控制(I)通过积分误差的累计值生成控制信号。
积分控制可以消除偏差,并提高系统稳定性。
然而,过大的积分增益可能导致系统的超调和振荡。
微分控制(D)通过测量误差变化的速率来生成控制信号,以预测误差的未来变化趋势。
微分控制可以提高系统的响应速度和稳定性,但过大的微分增益会导致噪声放大。
PID参数整定方法:PID参数整定是为了使控制系统实现快速响应、高稳定性和低超调。
下面介绍几种常用的PID参数整定方法。
1.经验法经验法是最简单直观的方法,通过试错和经验进行参数的调整。
根据系统的特点,调整比例、积分和微分增益,直至系统达到所需的响应速度和稳定性。
2. Ziegler-Nichols 方法Ziegler-Nichols 方法是一种基于系统响应曲线的经验整定方法。
首先,将增益参数设为零,逐渐增加比例增益直到系统开始震荡,这个值称为临界增益(Kc)。
然后,根据临界增益来确定比例、积分和微分增益。
-P控制:Kp=0.5*Kc-PI控制:Kp=0.45*Kc,Ti=Tc/1.2-PID控制:Kp=0.6*Kc,Ti=Tc/2,Td=Tc/83. Chien-Hrones-Reswick 方法Chien-Hrones-Reswick 方法是一种基于频域分析的整定方法。
它首先通过频率响应曲线的曲线变化形态来确定系统的参数。
然后,根据系统的动态响应特性来调整比例、积分和微分增益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机控制系统三级项目
单位负反馈系统的PID控制器设计及参数整定
目录
一.PID控制概述 (1)
二.PID控制在液压系统中的应用 (2)
三.课题分析与设计 (3)
一.PID控制概述
这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID(比例-积分-微分)控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。
PID 控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。
其输入e (t)与输出u (t)的关系为u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中积分的上下限分别是0和t
因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s]
其中kp为比例系数; TI为积分时间常数; TD为微分时间常数。
它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。
在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。
首先,PID应用范围广。
虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。
其次,PID参数较易整定。
也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。
如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID 参数就可以重新整定。
第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。
在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。
由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源
浪费等问题的困扰。
PID参数自整定就是为了处理PID参数整定这个问题而产生的。
现在,自动整定或自身整定的PID 控制器已是商业单回路控制器和分散控制系统的一个标准。
在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:
如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。
闭环工作时,要求在过程中插入一个测试信号。
这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。
如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。
另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。
因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。
自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。
PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。
最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。
虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器。
二.PID控制在液压系统中的应用
由于PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器,在工业领域得到广泛应用。
在液压领域,PID控制技术同样得到了广泛应用。
以液压伺服系统为例,模糊PID控制就得到了充分应用。
传统PID(比例、积分和微分)控制原理简单,使用方便,适应性强,可以广泛应用于各种工业过程控制领域。
但是PID 控制器也存在参数调节需要一定过程,最优参数选取比较麻烦的缺点,对一些系统参数会变化的过程,PID控制就无法
有效地对系统进行在线控制。
不能满足在系统参数发生变化时PID 参数随之发生相应改变的要求,严重的影响了控制效果。
本文介绍了基于车载伺服系统的模糊PID 控制,它不需要被控对象的数学模型,能够在线实时修正参数,使控制器适应被控对象参数的任何变化。
并对其进行仿真验证金属加工网,结果表明模糊PID 控制使系统的性能得到了明显的改善。
所谓模糊PID 控制器,即利用模糊逻辑算法并根据一定的模糊规则对PID 控制的比例、积分、微分系数进行实时优化,以达到较为理想的控制效果。
模糊PID 控制共包括参数模糊化、模糊规则推理、参数解模糊、PID 控制器等几个重要组成部分。
计算机根据所设定的输入和反馈信号,计算实际位置和理论位置的偏差e 以及当前的偏差变化ec ,并根据模糊规则进行模糊推理,最后对模糊参数进行解模糊,输出PID 控制器的比例、积分、微分系数。
三. 课题分析与设计
开环传递函数()3215120100G S s s s
=
++,不加入任何控制器的 情况下,用simulink 仿真,其系统原理图如下:
曲线为:
由上图可知,在不加入任何控制器的情况下,系统的反应时间长达35秒左右,灵敏度很差,但没有出现超调量,几乎没有稳态误差。
下图为加入比例环节的系统原理图,
通过调节Kp值的大小,得到一系列曲线:
由上图可知,比例系数Kp对系统稳态特性的影响为:加大比例控制Kp,在系统稳定的情况下,可以减小稳态误差,提高控制精度,但不能完全消除稳态误差;对动态特性的影响为:Kp加大使系统的动作灵敏,速度加快,Kp偏大,振荡次数增多,调节时间增长,Kp太大时,系统会趋于不稳定,Kp太小时,又会使系统不稳定。
下图为加入PI控制器时,系统的原理图:
Kp=50时,调节Ti的大小,得到一系列曲线如:
由上图可知,积分时间常数Ti对系统的稳态特性的影响为:可以消除稳态误差,提高系统的控制精度,但Ti太大时,积分作用太弱,以致不能减小稳态误差。
对系统的动态特性的影响为:会使系统的稳定性下降,Ti太小会使系统不稳定,Ti偏小,会使系统振荡次数增多,Ti太大,则对系统的性能影响减小,Ti 合适时,系统的过渡特性比较理想。
下图为加入PID控制器时,系统的原理图:
当Kp=50时,调节Ti,Td,得到若干曲线如下:
此时,无论怎样调节Ti、Td,曲线不是超条狼过大,就是灵敏度太差,始终无法达到系统要求。
之后逐渐增大Kp,调节Ti、Td,当系统参数达到如下图所给时,
便得到了符合要求的曲线,如下图:
阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <。