设计引物如何设计酶切位点

设计引物如何设计酶切位点
设计引物如何设计酶切位点

经常有战友对一些常见问题在丁香园反复问答了很多遍,所以希望园子中一些战友,特别是低分与0分战友,能将好的帖子归纳总结了一下,并结合自己的经验整理,一方面这是个学习提高的过程,另一方面也能帮助大家解决这方面的问题。同时如有不当或不完善的地方,希望各位战友不断补充,争取有朝一日我们能把园子里战友的经验系统整理,给大家以帮助。

我先把设计引物如何设计酶切位点这方面的帖子整理一下,因为昨天一下子看到三个相似问题。原帖如下:我想向你求教一个问题,假如说我想把胰岛素基因和腺病毒载体连接起来,如何确定设计目的基因PCR时的引物呢?和相应的限制性核酸内切酶呢?谢谢老师能给予讲解,谢谢

[整理]:最初的时候,由于害怕设计酶切位点最后切不开,所以经常采用最通用的方法,用T载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来酶切,所以感到还是直接扩增好一点。但这就需要你仔细设计引物。连入质粒中的重要目的就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR扩增出靶基因的时候在核酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,可以在质粒的图谱说明书上找取相应的位点,进行设计。

(一)设计引物前应做的准备工作:

准备载体图谱,大致准备把片断插在那个部分

对片断进行酶切分析,确定一下那些酶切位点不能用

准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用(二)设计引物所要考虑的问题

两个位点应是载体上的,,所连接片断上没有这两个位点,且距离不能太近,往往导致两个酶都切不好。因此,紧挨在一起,只能切一个,除非恰好是与上面两个酶在一起的酶切位点。我看promega的说明书上说,最好隔四个。还有一种情况是:不能有碱基的交叉,比如AGATCTTAAG,这样的位点比较难切。

两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。

最好使用酶切效率高的。

最好使用双酶切有共同buffer的酶。

最好使用较常用的酶(如hind3,bamh1,ecor1等),最好使用自己实验室有的酶,这样可以省钱。

Tm的计算,关于Tm的问题,很多的战友都有疑惑。其实园子里有很多的解释了。Tm叫溶解温度(melting temperature, Tm),即是DNA双链溶解所需的温度。大家可以理解,这个温度是由互补的DNA区域决定的,而不互补的区域对DNA 的溶解是没有作用的。因此,对于引物的Tm,只有和模板互补的区域对Tm才有贡献。计算Tm时,只计算互补的区域(除非你的酶切位点也与模板互补)。不少战友设计的引物都Tm过低,是因为他们误把保护碱基和酶切位点都计算到Tm 里了,最后的结果是导致了PCR反应的诸多困难。所以,设计引物的时候,先不管5'端的修饰序列,把互补区的Tm控制在55度以上(我喜欢控制在58以上,具体根据PCR的具体情况,对于困难的PCR,需要适当提高Tm),再加上酶切位点和保护碱基,这样的引物通常都是可用的,即使有小的问题,也可以挽回。Tm 温度高的引物就比较容易克服3‘发卡、二聚体及3'非特异结合等问题。简单的计算公式可以用2+4的公式。若你计算的Tm值达到了快90 ,不包括酶切位点。引物公司给你发的单子是包括酶切位点的。自己可以再估计一下。如你设计了带酶切位点的引物,总长分别为29、33个碱基,去掉酶切位点和保护碱基,分别为17、21个碱基。引物公司给的单子是70多度,实际用的只有50度,用55度扩的结果也差不多。

其它关于Tm值的计算,有用PP5.0进行评价的,需要考虑的参数包括:base number、GC%、Tm、hairpin、dimer、false priming、cross dimer。退一般退火温度为Tm-5度,退火温度的计算可以不把加入的酶切位点及保护碱基考虑进去,如上所言,PCR几个循环后,引物外侧的序列已经参入了扩增片断中,所以你可以在预变性后多加几步,温度比你Tm值低些(这样可能会增加非特异性),Tm值是你包括酶切位点及保护碱基的Primer计算出来的。1.一般在5'端加保护碱基,如果你扩增后把目的条带做胶回收转入T-VECTOR或者其它的载体的话,酶切时可以不需加保护碱基 2.有人的经验加入酶切位点的引物可以和未加入时使用相同的退火温度,结果也还是令人满意。

关于引物二聚体,最好用primer或是其他设计引物的软件进行计算一下,看看引物之间的△G(自由能)的绝对值,如果小于10,一般是问题的。如果稍大,

PCR时可以提高一下退火温度,一般是没有问题的。如果3’端形成二聚体,并且自由能绝对值较大,如果PCR没有条带,建议重新设计引物。此外,所加的三个核苷酸的保护序列经过尽心设计有时也可以降低二聚体的△G。

在设计酶切位点时,最好能尽可能多的利用引物本身的碱基。这是因为,一个特异性引物一般都是20bp左右,再加上酶切位点序列和保护性碱基,大致就是28bp 左右了。而我们在设计退火温度时,与引物的长度有关,比正常的引物(20bp) 的Tm肯定要高一些。如果我们能利用引物自身的部分序列,就可以有效地减少引物的长度。

还有,有些酶是离不开末端序列的,因此,在设计一个酶位点时,最好把该酶的性质弄清楚

设计时限制性酶切位点是应该在5’端的顶端。在设计引物时,常在5‘端添加酶切位点,以利于PCR产物连接到载体。

设计引物时保证在最后5个核苷中含有3个A或T。先用软件设计出合适的引物,引物的3’端是引发延伸的起点,因此一定要与模板准确配对,应尽量避免在引物3’端的第一位碱基是A。(容易错配)引物3’端最佳碱基的选择是G和C,因为他们形成的碱基配对比较稳定。目的序列上并不存在的附加序列,如限制位点和启动子序列,可以加入到引物5'端而不影响特异性。当计算引物Tm值时并不包括这些序列,但是应该对其进行互补性和内部二级结构的检测。

酶切位点都需要保护碱基以利于内切酶的有效切割。酶切位点前加保护碱基 1,两个酶切点至少隔上3个碱基,在做载体构建的时候设计引物扩增片段进行定向连接,除了酶切位点,还要在两端加一个三个核苷酸的保护序列,否则PCR产物很难被酶切,因此就会导致连接失败,因为内切酶需要一定的辅助性碱基才能顺利切割,在没有辅助碱基的情况下,有的酶是可以切割的,比如:SalI和SpeI,他们不需要辅助性碱基即可切割,但大部分酶是需要辅助性碱基的。所以引物顺序应是:5’—保护碱基+酶切位点+引物配对区—3’

下面是几个战友的讨论,请问:在引物的5‘端加限制酶切位点,只在酶切位点的5‘端加保护碱基可以吗?还是必须要在酶切位点的两侧加保护碱基?

是的,只要在5‘端加保护碱基可以了。其实保护碱基就是要给限制性内切酶一个结合位点,3‘端还有更长的引物序列在,当然不需要再加保护碱基了,下面

就来讨论一下这个问题:(下面引自NEB网站)

1、寡核苷酸近末端位点的酶切

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。(这里用的是寡核苷酸!!而不是末端带酶切位点的肽链!)实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。然后NEB就提供了一个表,关于链长和切割效率的。我觉得这只能说明酶在作用于识别位点时所需占据的链长,并不能说明在设计酶切位点时要加那么长的保护碱基,比如我用的NotI,要加10个碱基,切25个小时才95%的效率,这还是用了20倍的酶量!我师姐只加了4个碱基,也没见出现问题。

2、线性载体近末端位点的酶切

将线性载体与相应内切酶(10 units/μg)在适宜温度及缓冲液条件下反应60分钟,随后进行连接和转化。切割效率=100%-(酶切产物转化子数/再连接产物转化子数)""近末端碱基对数"指的是从识别位点到DNA末端的碱基对数,但并不包括最初切割位点处留下的单链突出碱基。(解释一下:就像下面这个例子EcoRI 酶切位点

NNNG AATTC

NNC TTAAG

它的近末端碱基对数就是3,而不是4)

还没有证据表明单链核苷酸能否提高切割效率,因此在设计PCR引物时应至少加上4个额外碱基。

Not I 7 100 (2) Bluescript SK- Spe I

4 100 (1) Bluescript SK-Ksp I

1 98 (2) Bluescript SK Xba I

拿NotI为例,我觉得NEB给出的这个表的意思是,用Spe I切Bluescript SK 载体,得到带7个近末端碱基对的NotI酶切位点,切1小时,效率是100%,以次类推。也就是说只有带4个末端碱基就能达到100%的效率,而不是像1所说的要加10个碱基,切25个小时。因为那是针对寡核苷酸的。

这是我的理解,欢迎大家讨论。因为我发现很多人都是依据那个表来加保护碱基,

不管是求助还是应助别人。然后在5‘端直接加上所需的限制性酶切位点而无需考虑引入的位点和模板的互补配对情况另外保护碱基是不是也不需要与模板对应位置配对

以前讨论过这个问题,其实保护碱基的问题可以归纳为几条:

1)大多数常用酶,根据NEB公司切割线性化的双链DNA片段的实验数据添加,2)某些比较常用的酶,根据NEB公司双酶先后切割的实验数据解决,参考的文件是NEB公司提供的,见附件

3)有些人随意添加3-6个碱基,也是一种做法,我不太赞同,毕竟不同的酶对保护碱基的要求差别很大

4)最通用的方法,用T载体克隆解决问题

1。由于内切酶在识别位点时要求位点的两侧都有几个碱基,设计引物的时候,要在位点的外侧至少再加几个碱基?

比如 3个碱基-酶切位点-引物。

2。进行PCR时,是不是要先在较低的温度下反应几个循环,就是以不含酶切位点时引物的Tm-10度,然后再在较高温度做,把引物、酶切位点、额外加入的碱基都包括在内,得到的Tm-10度。退火温度通常都是不考虑加入的酶切位点及保护碱基的,但要考虑发卡结构,及错误引发率之类的

这一段时间为了换载体,重新设计引物花了不少工夫,学了不少东西,希望能和你共勉:

1.上下游引物前端个加一个限制性核酸内切酶位点,加保护碱基并不是你所说的“内切酶在识别位点时要求位点的两侧都有几个碱基”,只要求在引物5’端加保护碱基;如你需要在上游引物上加Bam HⅠ(5-GAAGCC-3)酶切位点,那么你的保护碱基可以为C、CG或CGC,选择哪一个根据你的需要,是否影响Primer 的Tm值。关于保护碱基的问题,你可以查new England的相关资料。

Linearized vectors were incubated with the indicated enzymes (10 units/μg) for 60 minutes at the recommended incubation temperature an d NEBuffer for each enzyme. Following ligation and transformation, cleavage efficiencies were determined by dividing the number of transformants from

the digestion reaction by the number obtained from religation of the linearized DNA (typically 100-500 colonies) and subtracting from 100%. "Base Pairs from End" refers to the number of double-stranded base pairs between the recognition site and the terminus of the fragment; this number does not include the single-stranded overhang from the initial cut. Since it has not been demonstrated whether these single-stranded nucleotides contribute to cleavage efficiency, 4 bases should be added to the indicated numbers when designing PCR primers. Average efficiencies were rounded to the nearest whole number; experimental variation was typically within 10%. The numbers in parentheses refer to the number of independent trials for each enzyme tested (from Moreira, R. and Noren, C. (1995), Biotechniques, 19, 56-59).

Note: As a general rule, enzymes not listed below require 6 bases pairs on either side of their recognition site to cleave efficiently.

寡核苷酸近末端位点的酶切

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB 采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA 末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

实验方法:用γ-[32P]ATP 在T4多聚核苷酸激酶的作用下标记0.1A 260单位的寡核苷酸。取1 μg 已标记了的寡核苷酸与

20单位的内切酶,在20°C 条件下分别反应2小时和20小时。反应缓冲液含70 mM Tris-HCl (pH 7.6), 10 mM MgCl 2 , 5 mM DTT 及适量的NaCl 或KCl (视酶的具体要求而定)。20%的PAGE (7 M 尿素)凝胶电泳分析,经放射自显影确定酶切百分率。本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低

最后附上介绍new England限制性内切酶技术资料的一个很好的网站限制酶位点与翻译工具

常用限制性内切酶酶切位点汇总

Acc65I识别位点AccI识别位点AciI识别位点AclI识别位点AcuI识别位点 AfeI识别位点AflII识别位点AflIII识别位点AgeI识别位点AhdI识别位点AleI识别位点AluI识别位点AlwI识别位点AlwNI识别位点ApaI识别位点ApaLI识别位点ApeKI识别位点ApoI识别位点AscI识别位点AseI识别位点AsiSI识别位点AvaI识别位点AvaII识别位点AvrII识别位点BaeI识别位点BamHI识别位点BanI识别位点BanII识别位点

BbvCI识别位点BbvI识别位点 BccI识别位点BceAI识别位点BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点BmgBI识别位点BmrI识别位点BmtI识别位点BpmI识别位点Bpu10I识别位点BpuEI识别位点BsaAI识别位点BsaBI识别位点BsaHI识别位点BsaI识别位点BsaJI识别位点BsaWI识别位点BsaXI识别位点BseRI识别位点BseYI识别位点

BsiEI 识别位点BsiHKAI 识别位点BsiWI识别位点BslI 识别位点BsmAI识别位点 BsmBI识别位点BsmFI识别位点BsmI识别位点BsoBI识别位点Bsp1286I识别位点BspCNI识别位点BspDI识别位点BspEI识别位点BspHI识别位点BspMI识别位点BspQI识别位点BsrBI识别位点BsrDI识别位点BsrFI识别位点BsrGI识别位点BsrI识别位点BssHII识别位点BssKI识别位点BssSI识别位点BstAPI识别位点BstBI识别位点BstEII识别位点BstNI识别位点

shRNA设计原则

shRNA实验成功不得不看的shrna 设计原则大总结 RNAi由于可以特异地使基因沉默或表达量降低而成为生物实验的强有力工具。其中shrna设计在慢病毒的构建上应用颇广,本文对shRNA设计原则和操作技巧进行介绍。1.克隆到shRNA表达载体中的shRNA包括两个短反向重复序列,中间由一茎环( [shRNA shrna 设计原则寡核苷酸酶切位点聚合酶] RNAi由于可以特异地使基因沉默或表达量降低而成为生物实验的强有力工具。其中shrna设计在慢病毒的构建上应用颇广,本文对shRNA设计原则和操作技巧进行介绍。 1.克隆到shRNA表达载体中的shRNA包括两个短反向重复序列,中间由一茎环(loop)序列分隔的,组成发夹结构,由polⅢ启动子控制。随后在连上5-6个T作为RNA聚合酶Ⅲ的转录终止子。 2.两个互补的寡核苷酸两端须带有限制性酶切位点。 3.StrataGENE发现29个寡核苷酸较之原先推荐的23个寡核苷酸可以更有效的抑制目的基因。 4.在启动子下游的酶切位点下方紧连一个C,使插入片段和启动子有一定空间间隔以确保转录的发生。 5.ShRNA目的序列的第一个碱基必须是G以确保RNA聚合酶转录。如果选择的目的序列不以G开头,必须在紧连正义链的上游加一个G。 6.ShRNA插入片段中的茎环应当靠近寡核苷酸的中央。不同大小和核苷酸序列的茎环都被成功的运用过。其中包含一个独特的限制性酶切位点的茎环利于检测带有shRNA插入片段的克隆。在比较了众多不同长度和序列的茎环,5'TCAAGAG3'序列最为有效(AMBION use)。 7.5-6个T必须放置在shRNA插入片段尾部以确保RNA聚合酶III终止转录(stop)。 8.在正义链和反义链序列上不能出现连续3个或以上的T。这可能导致shRNA

限制性内切酶酶切位点汇总

Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

常用限制性内切酶酶切位点保护残基

酶切位点保护碱基-PCR引物设计用于限制性内切酶 发布: 2010-05-24 20:19| 来源:生物吧| 编辑:刘浩| 查看: 161 次 本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,AflIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,EcoRI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,PacI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI, 为什么要添加保护碱基? 在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。 其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。 该如何添加保护碱基? 添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。 添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1μg已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

设计引物如何设计酶切位点

经常有战友对一些常见问题在丁香园反复问答了很多遍,所以希望园子中一些战友,特别是低分与0分战友,能将好的帖子归纳总结了一下,并结合自己的经验整理,一方面这是个学习提高的过程,另一方面也能帮助大家解决这方面的问题。同时如有不当或不完善的地方,希望各位战友不断补充,争取有朝一日我们能把园子里战友的经验系统整理,给大家以帮助。 我先把设计引物如何设计酶切位点这方面的帖子整理一下,因为昨天一下子看到三个相似问题。原帖如下:我想向你求教一个问题,假如说我想把胰岛素基因和腺病毒载体连接起来,如何确定设计目的基因PCR时的引物呢?和相应的限制性核酸内切酶呢?谢谢老师能给予讲解,谢谢 [整理]:最初的时候,由于害怕设计酶切位点最后切不开,所以经常采用最通用的方法,用T载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来酶切,所以感到还是直接扩增好一点。但这就需要你仔细设计引物。连入质粒中的重要目的就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR扩增出靶基因的时候在核酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,可以在质粒的图谱说明书上找取相应的位点,进行设计。 (一)设计引物前应做的准备工作: 准备载体图谱,大致准备把片断插在那个部分 对片断进行酶切分析,确定一下那些酶切位点不能用 准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用(二)设计引物所要考虑的问题 两个位点应是载体上的,,所连接片断上没有这两个位点,且距离不能太近,往往导致两个酶都切不好。因此,紧挨在一起,只能切一个,除非恰好是与上面两个酶在一起的酶切位点。我看promega的说明书上说,最好隔四个。还有一种情况是:不能有碱基的交叉,比如AGATCTTAAG,这样的位点比较难切。 两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。 最好使用酶切效率高的。 最好使用双酶切有共同buffer的酶。

知道基因和位点,如何查SNP的rs号码,得到PCR产物序列!丁香园论坛

知道基因和位点,如何查SNP的rs号码,得到PCR 产物序列! [转自丁香园论坛] 老板让查SNP的东西。我有如下SNP的信息,但不知道怎么查SNP的rs号码,没rs号,没序列,没法设计引物,请同志们教我两招啊,插三根鸡毛: 基因:血管紧张素原(angiotensinogen, AGT)基因 M235T 文章:血管紧张素原H"$’I基因多态性与原发性高血压的相关研究;浙江大学学报;2004年33卷,02期。 引物: P1 CCGTTTGTGCAGGGCCTGGCTCTCT P2 CAGGGTGCTGTCCACACTGGACCCC 基因:G蛋白β3亚单位(GNB3)C825T 文章:G蛋白β3亚单位C825T等位基因多态性与原发性高血压的关系陈肖俊; 汪大望; 吴建波; 熊术道; 王春香; 临床内科杂志, Journal of Clinical Internal Medicine, 2007年 05期 基因:E-选择素G98T E-选择素基因G98T多态性对原发性高血压患者血压及心脏结构功能的影响中国医学影像技术, Chinese Journal of Medical Imaging Technology, 2007年 05

期 基因:β2-BKR基因-58T/C和AGT基因M235T 文章:缓激肽β2受体(β2-bradyk in in receptor,β2-BKR)基因β_2-BKR基因和AGT基因多态性与原发性高血压的相关性研究第三军医大学学报, Acta Academiae Medicinae Militaris Tertiae, 2006 年 11期 基因:化生长因子β1(TGF-β1)基因第1外显子+869T/C 及+915G/C 文章:转化生长因子β_1基因多态性与原发性高血压关系的研究中国老年学杂志, Chinese Journal of Gerontology,2007年 10期 最好是多查些文献,找到位点附件的序列(如测序图谱和TaqMan探针等的序列),然后在到NCBI上作BLAST,这样就可以找到该位点在基因序列中的位置。有的SNP位点可能没有对应的RS号。 还可以根据该位点的信息直接在NCBI上查出基因序列,在根据该位点在基因中的位置,如mRNA(有的是cDNA)为起始位置,往后计算该位点的位置。通常这样找到的位点还是需要与文献报道的位点序列进行笔对。因为,不少SNP位点的命名规律是不同的,也就是说有的是mRNA 中的位置,有的是cDNA中的位置,有的还是蛋白编码的位置,所以比较容易出错,最好要与文献进行笔对。

常用限制性内切酶酶切位点

AatII 识别位点 Acc65I 识别位点 AccI 识别位点 AciI 识别位点 AclI 识别位点 AcuI 识别位点 AfeI 识别位点 AflII 识别位点 AflIII 识别位点 AgeI 识别位点 AhdI 识别位点 AleI 识别位点 AluI 识别位点 AlwI 识别位点 AlwNI 识别位点 ApaI 识别位点 ApaLI 识别位点 ApeKI 识别位点 ApoI 识别位点 AscI 识别位点 AseI 识别位点 AsiSI 识别位点

AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI 识别位点 BanI识别位点 BanII识别位点 BbsI识别位点 BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点BcgI识别位点BciVI识别位点BclI识别位点 BfaI识别位点BfuAI识别位点BglI识别位点BglII识别位点BlpI识别位点Bme1580I识别位点BmgBI识别位点BmrI识别位点

BmtI 识别位点 BpmI 识别位点 Bpu10I 识别位点 BpuEI 识别位点 BsaAI 识别位点 BsaBI 识别位点 BsaHI 识别位点 BsaI 识别位点 BsaJI 识别位点 BsaWI 识别位点 BsaXI 识别位点 BseRI 识别位点 BseYI 识别位点 BsgI 识别位点 BsiEI 识别位点 BsiHKAI 识别位点 BsiWI 识别位点 BslI 识别位点 BsmAI 识别位点 BsmBI 识别位点 BsmFI 识别位点 BsmI 识别位点

引物设计原则及酶切位点选择和设计

引物设计原则及酶切位点选择和设计:最初的时候,由于害怕设计酶切位点最后且不开,所以经常采用最通用的方法,用[整理]载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来T连入质粒中的重要目的酶切,所以感到还是直接扩增好一点。但这就需要你仔细设计引物。扩增出靶基因的时候在核就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR可以在质粒的图谱说明书上酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,找取相应的位点,进行设计。(一)设计引物前应做的准备工作:准备载体图谱,大致准备把片断插在那个部分对片断进行酶切分析,确定一下那些酶切位点不能用准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用(二)设计引物所要考虑的问题往往导致两个,所连接片断上没有这两个位点,且距离不能太近,两个位点应是载体上的,除非恰好是与上面两个酶在一起的酶切位点。只能切一个,酶都切不好。因此,紧挨在一起,还有一种情况是:不能有碱基的交叉,比如promega的说明书上说,最好隔四个。我看AGATCTTAAG,这样的位点比较难切。 两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。最好使用酶切效率高的。的酶。最好使用双酶切有共同buffer最好使用自己实验室有的酶,这样可,ecor1等),最好使用较常用的酶(如hind3,bamh1以省钱。的问题,很多的战友都有疑惑。其实园子里有很多的解释了。的计算,关于TmTm大家可以理解,双链溶解所需的温度。即是DNA叫溶解温度(melting temperature, Tm),Tm因此,的溶解是没有作用的。而不互补的区域对DNA 这个温度是由互补的DNA区域决定的,(除时,只计算互补的区域Tm才有贡献。计算Tm只有和模板互补的区域对对于引物的Tm,过低,是因为他们误把保护碱。不少战友设计的引物都Tm 非你的酶切位点也与模板互补)反应的诸多困难。所以,设计引里了,最后的结果是导致了PCR 基和酶切位点都计算到Tm以度以上(我喜欢控制在58Tm控制在55物的时候,先不管5'端的修饰序列,把互补区的,再加上酶切位点和保Tm)的具体情况,对于困难的PCR,需要适当提高上,具体根据PCR温度高的引物就Tm护碱基,这样的引物通常都是可用的,即使有小的问题,也可以挽回。的公式。2+43'非特异结合等问题。简单的计算公式可以用比较容易克服3‘发卡、二聚体及,不包括酶切位点。引物公司给你发的单子是包括酶切位点90 若你计算的Tm值达到了快个碱基,去3329、的。自己可以再估计一下。如你设计了带酶切位点的引物,总长分别为多度,实际用的只7021个碱基。引物公司给的单子是掉酶切位点和保护碱基,分别为17、55度扩的结果也差不多。有50度,用其它关于Tm值的计算,有用PP5.0进行评价的,需要考虑的参数包括:base number、GC%、Tm、hairpin、dimer、false priming、cross dimer。退一般退火温度为Tm-5度,退火温度的计算可以不把加入的酶切位点及保护碱基考虑进去,如上所言,PCR 几个循环后,引物外侧的序列已经参入了扩增片断中,所以你可以在预变性后多加几步,温度比你Tm值低些(这样可能会增加非特异性),Tm值是你包括酶切位点及保护碱基的Primer计算出来的。1.一般在5'端加保护碱基,如果你扩增后把目的条带做胶回收转入T-VECTOR或者其它的载体的话,酶切时可以不需加保护碱基2.有人的经验加入酶切位点的引物可以和未加入时使用相同的退火结果也还是令人满意。,温度. 或是其他设计引物的软件进行计算一下,看看引物之间的关于引物二聚体,最好用primer时可以提高一下退△G(自由能)的绝对值,如果小于10,一般是问题的。如果稍大,PCR没火温度,一般是没有问题的。如果3'端形成二聚体,并且自由能绝对值较大,如果PCR 有条带,建议重新设计引物。。此外,所加的三个核苷酸的保护序列经过尽心设计有时也可以降低二聚体的△G一个特异性引物一在设计酶切位点时,最好能尽可能多的利用引物本身的碱基。这是因为,左右了。而我们在般都是20bp左右,再加上酶切位点序列和保护性碱基,大致就是28bp如果我

引物设计心得、Primer5.0 使用

引物设计、选择核酸内切酶、酶切位点之Primer5.0使用 下面以目的基因CD63 为例,介绍一下真核表达载体PcDNA3.1(+)-CD63的构建过程 1 cd63基因序列的获取 打开NCBI-选择 输入cd63 回车 找到第16条编码为 1 的 打开后可见该积基因的详细信息,找到CDS(编码序列)

可见其编码序列为第146到862位碱基,继续往下拉,可见基因序列,选中编码序列(146-862)复制,打开Primer 5.0 (起始密码子)ATG gc ggtggaagga ggaatgaagt gtgtcaagtt 181 tttgctctac gttctcctgc tggccttctg cgcctgtgca gtgggattga tcgccattgg 241 tgtagcggtt caggttgtct tgaagcaggc cattacccat gagactactg ctggctcgct 301 gttgcctgtg gtcatcattg cagtgggtgc cttcctcttc ctggtggcct ttgtgggctg 361 ctgtggggcc tgcaaggaga actactgtct catgattaca tttgccatct tcctgtctct 421 tatcatgctt gtggaggtgg ctgtggccat tgctggctat gtgtttagag accaggtgaa 481 gtcagagttt aataaaagct tccagcagca gatgcagaat taccttaaag acaacaaaac 541 agccactatt ttggacaaat tgcagaaaga aaataactgc tgtggagctt ctaactacac 601 agactgggaa aacatccccg gcatggccaa ggacagagtc cccgattctt gctgcatcaa 661 cataactgtg ggctgtggga atgatttcaa ggaatccact atccataccc agggctgcgt 721 ggagactata gcaatatggc taaggaagaa catactgctg gtggctgcag cggccctggg 781 cattgctttt gtggaggtct tgggaattat cttctcctgc tgtctggtga agagtattcg 841 aagtggctat gaagtaatg t ag 其中 tag((UAG)终止密码 子,设计引物的时候需要将其删除,因为,真核表达载体上多含有标

各种酶切位点的保护碱基引物设计必看

各种酶切位点的保护碱基 酶不同,所需要的酶切位点的保护碱基的数量也不同。一般情况下,在酶切位点以外多出3个碱基即可满足几乎所有限制酶的酶切要求。在资料上查不到的,我们一般都随便加3个碱基做保护。 寡核苷酸近末端位点的酶切 (Cleavage Close to the End of DNA Fragments (oligonucleotides) 为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。 实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。取1 μg 已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。反应缓冲液含70 mM Tris-HCl (pH , 10 mM MgCl2 , 5 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。 本实验采用自连接的寡核苷酸作为对照。若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

2.双酶切的问题 参看目录,选择共同的buffer。其实,双酶切选哪种buffer是实验的结果,takara公司从1979年开始生产限制酶以来,做了大量的基础实验,也积累了很多经验,目录中所推荐的双酶切buffer 完全是依据具体实验结果得到的。 有共同buffer的,通常按照常规的酶切体系,在37℃进行同步酶切。但BamH I在37℃下有时表现出star活性,常用30℃单切。 两个酶切位点相邻或没有共同buffer的,通常单切,即先做一种酶切,乙醇沉淀,再做另一种酶切。 3.酶切底物DNA,切不开 1)底物DNA上没有相应的限制酶识别位点,或酶切位点被甲基化。 2)PCR引物的酶切位点前没有保护碱基或引物合成有误,致使没有正确的酶切位点存在。PCR产物酶切前尽量进行精制以更换buffer。由于PCR产物中带入的其它物质,会影响酶切,据报道,通常PCR产物的添加量占总反应体积25%以下没有问题。 3)酶切条件的确认,包括反应温度和反应体系等。同样的DNA,同样量,用不同的限制酶切情况可能不同,由于DNA的空间结构造成的。同样的DNA,不同的反应体系,酶切效果也可能不同,由于一些空间因素或不可测因素造成的。 4)公司出售的限制酶都是液体状态,都是根据最佳反应体系配制了浓度,不可以再用buffer稀释,因为酶浓度和活性之间不呈直线对应关系,酶浓度越稀,相对活性越低,并且越不稳定,有时便会出现底物DNA不能被切断的现象。 不同公司的酶和buffer不要交叉使用,否则可能会影响酶切效果。 5)酶的识别位点上的碱基被甲基化。可以选用不受甲基化影响的同裂酶,或将质粒DNA转入甲基化酶欠损的宿主菌中,重新制备DNA,也可以使用PCR的方法对DNA进行扩增,再做酶切。常用的有XbaI容易受甲基化影响,通常选用GM33做宿主菌转化。 6)底物不纯,含有限制酶阻害物质,影响酶切作用,需要重新纯化DNA。一般做乙醇沉淀纯化即可。如果质粒中含盐或酚等,都会影响酶切效果。

引物设计原则及酶切位点选择和设计

引物设计原则及酶切位点选择和设计 [整理]:最初的时候,由于害怕设计酶切位点最后且不开,所以经常采用最通用的方法,用T载体克隆解决问题,但后来发现她也有问题,就是浓度提不上去,你需要体大量的载体来酶切,所以感到还是直接扩增好一点。但这就需要你仔细设计引物。连入质粒中的重要目的就是进行酶切和连接,当然首先就是在想要合成或者是进行PCR扩增出靶基因的时候在核酸的两端接入酶切位点,酶切位点是与你的质粒的特点相关的,可以在质粒的图谱说明书上找取相应的位点,进行设计。 (一)设计引物前应做的准备工作: 准备载体图谱,大致准备把片断插在那个部分 对片断进行酶切分析,确定一下那些酶切位点不能用 准备一本所买公司的酶的商品目录,便于查酶的各种数据及两种酶是否可以配用 (二)设计引物所要考虑的问题 两个位点应是载体上的,,所连接片断上没有这两个位点,且距离不能太近,往往导致两个酶都切不好。因此,紧挨在一起,只能切一个,除非恰好是与上面两个酶在一起的酶切位点。我看promega的说明书上说,最好隔四个。还有一种情况是:不能有碱基的交叉,比如AGATCTTAAG,这样的位点比较难切。 两个酶切点最好不要是同尾酶(切下来的残基不要互补),否则效果相当于单酶切。 最好使用酶切效率高的。 最好使用双酶切有共同buffer的酶。 最好使用较常用的酶(如hind3,bamh1,ecor1等),最好使用自己实验室有的酶,这样可以省钱。 Tm的计算,关于Tm的问题,很多的战友都有疑惑。其实园子里有很多的解释了。 Tm叫溶解温度(melting temperature, Tm),即是DNA双链溶解所需的温度。大家可以理解,这个温度是由互补的DNA区域决定的,而不互补的区域对DNA的溶解是没有作用的。因此,对于引物的Tm,只有和模板互补的区域对Tm才有贡献。计算Tm时,只计算互补的区域(除非你的酶切位点也与模板互补)。不少战友设计的引物都Tm过低,是因为他们误把保护碱基和酶切位点都计算到Tm里了,最后的结果是导致了PCR反应的诸多困难。所以,设计引物的时候,先不管5'端的修饰序列,把互补区的Tm控制在55度以上(我喜欢控制在58以上,具体根据PCR的具体情况,对于困难的PCR,需要适当提高Tm),再加上酶切位点和保护碱基,这样的引物通常都是可用的,即使有小的问题,也可以挽回。Tm温度高的引物就比较容易克服3‘发卡、二聚体及3'非特异结合等问题。简单的计算公式可以用2+4的公式。若你计算的Tm值达到了快90 ,不包括酶切位点。引物公司给你发的单子是包括酶切位点的。自己可以再估计一下。如你设计了带酶切位点的引物,总长分别为29、33个碱基,去掉酶切位点和保护碱基,分别为17、21个碱基。引物公司给的单子是70多度,实际用的只有50度,用55度扩的结果也差不多。 其它关于Tm值的计算,有用PP5.0进行评价的,需要考虑的参数包括:base number、GC%、Tm、hairpin、dimer、false priming、cross dimer。退一般退火温度为Tm-5度,退火温度的计算可以不把加入的酶切位点及保护碱基考虑进去,如上所言,PCR几个循环后,引物外侧的序列已经参入了扩增片断中,所以你可以在预变性后多加几步,温度比你Tm值低些(这样可能会增加非特异性),Tm值是你包括酶切位点及保护碱基的Primer计算出来的。1.一般在5'端加保护碱基,如果你扩增后把目的条带做胶回收转入T-VECTOR或者其它的载体的话,酶切时可以不需加保护碱基2.有人的经验加入酶切位点的引物可以和未加入时使用相同的退火温度,结果也还是令人满意。

SNP查找及SNP的几种研究方法

SNP位点的选择 1,如果是检测基因的所有已知的SNP,那么首先要去了解并查询到这些SNP位点,SNP 位点可以通过查询dbSNP数据库(https://www.360docs.net/doc/0b4871101.html,/SNP/)和TSC(The SNP Consortium)数据库(https://www.360docs.net/doc/0b4871101.html,/),可以获知基因及上下游邻近序列的SNP位点。 2,至于挑选的原则,可以介绍一下Hap Map的正规化标准: SNP Selection Criteria Category 1 "verified" This contains all SNPs for which we have allele frequency or genotyping data. This includes SNPs from the TSC allele frequency project, as well as SNPs characterized by JSNP. These SNPs were generated from those rs clusters in which at least one of the SNPs in the cluster contains genotype or allele frequency data and the minor allele must have been seen in at least two individuals. Category 2 "two-hit" These are true double-hit SNPs, produced in collaboration with Jim Mullikin and Sarah Hunt. A double-hit SNP must be seen twice, in two different DNA samples which must have produced two alleles. TSC trace data was only allowed to contribute one hit per allele because the individual source DNA for a trace could not be identified. Category 3 "jsnp-verified/perlegen-verified" This category contains two groups: SNPs that JSNP certifies are likely to be real based on manual inspection of their data (but have not been genotyped),and SNPs that Perlegen verified independently. Category 4 "bac-overlap" These are SNPs from BAC overlaps that do not fall into category 1 or 2 above. 我的经验: 也可以从文献中查找,找好几个SNP位点,如果你样本量很大,那么很容易出有意义的结果。有以下三种方法可供选择: 1、提取EDTA抗凝全血中的DNA,荧光定量PCR法。用ABI的SNP分型试剂盒,只要你提供位点,买来试剂盒就上仪器,成本也不高,效果还可靠。 2、提取EDTA抗凝全血中的DNA,普通PCR扩增(需设计引物,可自己设计或者让公司设计),限制性内切酶分型(在引物设计的同时找到合适的酶切位点),分出基因型,统计SPSS 卡方检验 3、提取EDTA抗凝全血中的DNA,高分辨溶解曲线,一次性即可完成PCR扩增及基因分

4个近交系小鼠SNP位点的测定_胡培丽

2006年5月第16卷 第5期 中国比较医学杂志 CHINESE J OURNAL OF COMPAR ATIVE MEDICINE May ,2006Vol .16 No .5 研究报告 4个近交系小鼠SNP 位点的测定 胡培丽,范昌发,岳秉飞,邢瑞昌 (中国药品生物制品检定所,北京 100050) 【摘要】 目的 将新近建立的单管双向等位基因专一性扩增(single _tube bi _d irectional allele specific amplification ,SB _ASA )方法用于分析国内近交系小鼠基因组中的单核苷酸多态性(single nucleotide polymorphis m ,SNP )。方法 以国内4个近交系小鼠为研究对象,采用SB _ASA 方法对其16个SNP 位点进行检测,并通过测序进行验证。结果 16个SNP 位点,SB _ASA 都成功地对4个品系小鼠进行了分型,与测序结果完全一致。结论 SB _ASA 方法可以准确地检测国内近交系小鼠SNP 位点等位基因型。 【关键词】 单核苷酸多态性;单管双向等位基因专一性扩增;小鼠;近交系;遗传检测【中图分类号】Q78 【文献标识码】A 【文章编号】1671-7856(2006)05-0278-03 Monitoring the S NP Loci of 4Inbred Mice HU Pei _li ,FAN Chang _fa ,YUE Bing _fei ,XING Rui _chang (National Institute for the Control of Pharmaceutical and Biological Products ,Beijing 100050,China ) 【Abstract 】 Objective T o analyse S NP (s ingle n ucleotide polymorp his m )loci of the domestic inbred mouse gen e by the lately establis hed method (single _tube bi _directional allele specific amplification (SB _ASA )).Method Four domestic inbred mouse strains were detected by 16SNP loci with the method of SB _ASA ,and seq uencing was designed to validate the reliab ility of the method .Results SB _AS A was successfully used to type 4inbred mous e strains for 16SNP loci ,and th e res ults were completely consistent with s equencin g .C onclusion SB _ASA could be us ed to exactly inspect genotype of the domes tic in bred mous e . 【Key words 】 Single nucleotide polymorphis m ;Single _tube bi _directional allele specific amplification ;Mouse ;Inbred ;Genetic monitoring [基金项目]北京实验动物法制管理与科技支撑平台(编号:Z0004100040691)。 [作者简介]胡培丽(1981-),女,硕士研究生,研究方向:免疫遗传检测。E _mail :hupeili -1981@https://www.360docs.net/doc/0b4871101.html, [通迅作者]岳秉飞(1960-),男,研究员,博士。研究方向:动物遗传学。E _mail :yue _bingfei @nicpbp .org .cn 自从Jenson 等于上世纪初应用一个闭锁繁育的 小白鼠品系成功地进行了肿瘤转移试验以来,近交系实验动物在医学研究(特别是肿瘤研究)中显示了潜在的价值。尔后,关于培育近交系动物的理论及实践工作得到了较快的发展。高度近交系实验动物能为生物学、医学及农业科研工作提供敏感、特异性 强和重复性好的试验材料[1] 。 目前,已培育出了大量的小鼠、大鼠、地鼠、豚鼠、家兔、鸡等实验动物的近交系。在我国,随着生物科学的发展,培育大量的、具有各种特殊用途的、符合遗传质量标准近交系实验动物,满足科学研究的需要,已经刻不容缓。对于近交系小鼠,在从国外不断引进的同时,我国也先后培育出一些具有一定 特征的品系,并逐步应用于各个科学领域。 近交系小鼠具有同基因性、长期遗传稳定性、均一性、个体性、背景资料和数据较完善等特点,随着生命科学的不断发展,对其遗传品质要求越来越高。传统的小鼠遗传检测方法有形态学方法、免疫学方法、生物化学方法 [2-3] 。随着一系列分子遗传标记 的发现,产生了分子生物学检测方法,应用于实验动物遗传检测,如基于限制性片段长度多态性(restriction fragment length polymorphism ,RFLP )[4] 、随机引物多态性(Random a mplified polymorphic DNA , RAPD )[5-7]、微卫星(Microsatellite )[8-11] 和DNA 指纹(DNA Fingerprints )[12-13] 等。近来单核苷酸多态性(single nucleotide polymorphism ,SNP )技术也被用于

实验2-设计性实验-不同限制性内切酶对质粒切割-指导讲解

实验二不同限制性核酸内切酶对质粒DNA 的切割(设计性实验) 设计实验目的:培养学生独立完成实验设计、实验操作和撰写小论文的能力。 设计实验要求:选用1或2种内切酶,将所提供的质粒DNA切割为至少3-4个以上的片段。 设计实验过程:学生根据实验要求,运用学过的知识,先设计实验方案,提交老师批阅认可;再独立进行实验准备和实验;实验结束,撰写设计性实验报告,即小论文1篇。小论文要求:字数不少于3000,包括论文题目、作者、摘要、关键词、引言、材料与方法、结果与分析、结论或讨论、参考文献等。 设计实验涉及知识点:1)质粒的限制性内切酶图谱;2)质粒酶切鉴定;3)DNA片段的琼脂糖凝胶电泳。 设计实验要求学生独立撰写小论文。

Digestion of plasmid DNA with different restriction endonuclease 不同限制性核酸内切酶对质粒DNA的切割 一、原理 限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作用且依赖于A TP的存在。Ⅰ类酶结合于识别位点并随机的切割识别位点不远处的DNA,而Ⅲ类酶在识别位点上切割DNA分子, 然后从底物上解离。Ⅱ类由两种酶组成: 一种为限制性内切核酸酶(限制酶),它切割某一特异的核苷酸序列; 另一种为独立的甲基化酶, 它修饰同一识别序列。Ⅱ类中的限制性内切酶在分子克隆中得到了广泛应用,它们是重组DNA的基础。绝大多数Ⅱ类限制酶识别长度为4至6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列:5'- G↓AATTC-3'),有少数酶识别更长的序列或简并序列。Ⅱ类酶切割位点在识别序列中,有的在对称轴处切割,产生平末端的DNA片段(如SmaⅠ: 5'-CCC↓GGG-3');有的切割位点在对称轴一侧,产生带有单链突出末端的DNA片段称粘性未端, 如EcoRⅠ切割识别序列后产生两个互补的粘性末端。 5'…G↓AATTC…3' →5'… G AATTC…3' 3'…CTTAA↑G …5' →3'… CTTAA G…5' 大部分限制性内切酶不受RNA或单链DNA的影响。当微量的污染物进入限制性内切酶贮存液中时, 会影响其进一步使用,因此在吸取限制性内切酶时, 每次都要用新的吸管头。如果采用两种限制性内切酶, 必须要注意分别提供各自的最适盐浓度。若两者可用同一缓冲液,则可同时水解。若需要不同的盐浓度, 则低盐浓度的限制性内切酶必须首先使用, 随后调节盐浓度,再用高盐浓度的限制性内切酶水解。也可在第一个酶切反应完成后,用等体积酚/氯仿抽提,加0.1倍体积3mol/L NaAc和2倍体积无水乙醇,混匀后置-70℃低温冰箱30分钟,离心、干燥并重新溶于缓冲液后进行第二个酶切反应。 DNA限制性内切酶酶切图谱又称DNA的物理图谱,它由一系列位置确定的多种限制性内切酶酶切位点组成,以直线或环状图式表示。本实验采用重组质粒pUC19-P35S:ARF8,其物理图谱如图1所示。

史上最全限制性内切酶酶切位点汇总

A系列 AatII识别位点 Acc65I识别位点 AccI识别位点 AciI识别位点 AclI识别位点 AcuI识别位点 AfeI识别位点 AflII识别位点 AflIII识别位点 AgeI识别位点 AhdI识别位点 AleI识别位点 AluI识别位点 AlwI识别位点 AlwNI识别位点 ApaI识别位点 ApaLI识别位点 ApeKI识别位点 ApoI识别位点 AscI识别位点 AseI识别位点 AsiSI识别位点 AvaI识别位点 AvaII识别位点 AvrII识别位点 BaeI识别位点 BamHI识别位点 BanI识别位点 BanII识别位点

BbvCI识别位点 BbvI识别位点 BccI识别位点 BceAI识别位点 BcgI识别位点 BciVI识别位点 BclI识别位点 BfaI识别位点 BfuAI识别位点 BglI识别位点 BglII识别位点 BlpI识别位点 Bme1580I识别位点 BmgBI识别位点 BmrI识别位点 BmtI识别位点 BpmI识别位点 Bpu10I识别位点 BpuEI识别位点 BsaAI识别位点 BsaBI识别位点 BsaHI识别位点 BsaI识别位点 BsaJI识别位点 BsaWI识别位点 BsaXI识别位点 BseRI识别位点 BseYI识别位点

BsiEI识别位点 BsiHKAI识别位点 BsiWI识别位点 BslI识别位点 BsmAI识别位点 BsmBI识别位点 BsmFI识别位点 BsmI识别位点 BsoBI识别位点 Bsp1286I识别位点 BspCNI识别位点BspDI识别位点 BspEI识别位点 BspHI识别位点 BspMI识别位点 BspQI识别位点 BsrBI识别位点 BsrDI识别位点 BsrFI识别位点 BsrGI识别位点 BsrI识别位点 BssHII识别位点 BssKI识别位点 BssSI识别位点 BstAPI识别位点 BstBI识别位点 BstEII识别位点 BstNI识别位点

相关文档
最新文档