在变量满足定值条件下求最值的几种方法

合集下载

基本不等式求最值技巧解析

基本不等式求最值技巧解析

基本不等式求最值技巧解析技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。

技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯+=(当t =2即x =1时取“=”号)。

基本不等式求最值的思维方法

基本不等式求最值的思维方法

ʏ吴春艳从近几年高考试题看,基本不等式主要应用在求最值及证明方面㊂下面将对基本不等式求最值的思维方法进行归纳提炼,期望大家通过练习㊁感悟,提升对基本不等式的应用能力㊂方法1: 拼凑法凑积或和为定值 用基本不等式求最值例1 (1)若实数x ,y 满足2x 2+x y -y 2=1,则5x 2-2x y +2y 2的最小值为㊂(2)已知0<x <1,则x (4-3x )取得最大值时x 的值为㊂解:(1)拼凑积为定值,运用a 2+b 2ȡ2a b(a ,b ɪR )求最值㊂由2x 2+x y -y 2=1,可得(2x -y )(x +y )=1,则5x 2-2x y +2y 2=4x 2-4x y +y 2+x 2+2x y +y 2=(2x -y )2+(x +y )2ȡ2(2x -y )(x +y )=2,当且仅当x =23,y =13时等号成立㊂故5x 2-2x y +2y 2的最小值为2㊂(2)拼凑和为定值,运用a +b ȡ2a b(a ,b ɪR +)求最值㊂x (4-3x )=13(3x )(4-3x )ɤ133x +4-3x 2()2=43,当且仅当3x =4-3x ,即x =23时取等号㊂故所求x 的值为23㊂感悟:基本不等式a 2+b 2ȡ2a b (a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),当一端为定值时,另一端就可取到最值,注意两个不等式适应的范围和取等号的条件㊂拼凑法的实质是代数式的灵活变形,拼系数㊁凑常数是求解的关键㊂方法2: 常数代换法凑积为定值 用基本不等式求最值例2 (1)已知x ,y 均为正数,若2x+6y=1,则当3x +y 取得最小值时,x +y 的值为( )㊂A.16 B .4C .24D .12(2)若a >b >0,a +b =4,则4a +4b+12a -b的最小值为( )㊂A.14B .34C .18D .38解:(1)由 1的整体代入展开凑积为定值,利用基本不等式求最值㊂因为2x +6y=1,所以3x +y =(3x +y )2x +6y()=6+18x y +2y x +6ȡ12+218x y ㊃2y x =24,当且仅当18x y =2y x ,即y =3x 时取等号㊂又因为2x +6y=1,所以x =4,y =12,这时x +y =16㊂应选A ㊂(2)由(a +4b )+(2a -b )=3(a +b )=12,整体代换展开凑定值,利用基本不等式求最值㊂因为a >b >0,a +b =4,所以(a +4b )+(2a -b )=3(a +b )=12,a +4b >0,2a -b >0,所以4a +4b +12a -b =112ˑ4a +4b +12a -b ()[(a +4b )+(2a -b )]=112ˑ4+4(2a -b )a +4b +a +4b 2a -b +1[]ȡ112(5+4)=34,当且仅当a =2b =83时取等号㊂故4a +4b +12a -b 的最小值为34㊂应选B ㊂81 知识结构与拓展 高一数学 2022年9月Copyright ©博看网. All Rights Reserved.感悟:灵活运用 1的整体代换是解答本题的关键㊂当条件等式和所求式子之间变量系数 不一致 时,可直观凑配或者分母换元化归 1 的整体代换,如本题(2)中依据目标4a +4b +12a -b 对条件变形为(a +4b )+(2a -b )=3(a +b )=12,利用整体代入展开凑积为定值,再求最小值㊂方法3: 反解代入消元法凑积为定值 用基本不等式求最值例3 (1)设正实数x ,y ,z 满足x 2-3x y +4y 2-z =0,则当z x y 取得最大值时,x +2y -z 的最大值为( )㊂A.0 B .98C .2D .94(2)已知正数a ,b 满足1a +1b=2,则3b +1-a 的最大值为㊂解:条件和结论之间无法沟通时,采用反解代入法凑积为定值,再求最大值㊂(1)因为z x y =x 2-3x y +4y 2x y =xy+4y x -3ɤ2x y ㊃4y x-3=1,当且仅当x =2y时取等号,所以z =4y 2-6y 2+4y 2=2y 2,所以x +2y -z =4y -2y 2=-2(y -1)2+2ɤ2㊂应选C ㊂(2)由1a +1b =2,可得b =a2a -1㊂由a >0,b >0,可得a >12㊂所以3b +1-a =3a2a -1+1-a =3(2a -1)3a -1-a =2-13a -1+3a -13()-13=53-13a -1+3a -13()㊂而13a -1+3a -13ȡ213a -1㊃3a -13=233,当且仅当13a -1=3a -13,即a =1+33时取等号,所以53-13a -1+3a -13()ɤ53-233=5-233,所以3b +1-a 的最大值为5-233㊂感悟:多元满足的条件等式和所求等式之间互化难以实现时,可以借助反解代入消元,再重新构造结构式凑积为定值,然后求最值,这是求解最值的通法㊂方法4: 利用不等式构建不等式 求最值例4 (1)已知正实数x ,y 满足(x +4)㊃(y +1)=9,则x y 的最大值等于()㊂A.0B .5C .1D .2(2)已知a +b +c =0,a 2+b 2+c 2=4,则a 的最大值为( )㊂A.1 B .223C .233D .263解:注意题设中两变量的和与积的形式,借助基本不等式构建不等式求最值㊂(1)正实数x ,y 满足(x +4)(y +1)=9,即x y +x +4y =5,所以5=x y +x +4y ȡx y +2x ㊃4y =x y +4x y ,所以x y +4x y ɤ5(当且仅当x =4y 时取等号),所以-5ɤx y ɤ1,即0ɤx y ɤ1㊂故x y 的最大值为1㊂应选C ㊂(2)由a +b +c =0,a 2+b 2+c 2=4,可得b +c =-a ,b 2+c 2=4-a 2㊂因为b 2+c 22ȡb +c 2()2,所以4-a 22ȡ-a 2()2,解得-263ɤa ɤ263,即a 的最大值为263㊂应选D ㊂感悟:灵活借助基本不等式a 2+b 2ȡ2a b(a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),a 2+b 22ȡa +b2()2(a ,b ɪR ),构造不等式求解,这是求解最值的一条简捷的途径㊂作者单位:河南省商丘市回民中学(责任编辑 郭正华)91知识结构与拓展高一数学 2022年9月Copyright ©博看网. All Rights Reserved.。

初中数学中求极值的几种常见的方法

初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。

同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。

这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。

下面从不同的角度讨论如何求一些问题的最值。

一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。

若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。

例1:已知13M x x =-++,则M 的最小值是 。

【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。

如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。

显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。

所以, 当31x -≤≤时,距离之和最短,最小值为4。

故M 的最小值为4。

二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。

一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。

例2:设,a b 为实数,求222a ab b a b ++--的最小值。

【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。

二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。

解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。

求最值问题的几种方法

求最值问题的几种方法






4 a
一 × l = (_ 一 一) 9
= 4 2

I求 若 干个含有 变量 的式子 的和 的虽 小 值 . 时条 件 这 是这些 式子 都为正 , 为常数 ( 且积 即定积 求和 的最小 值) 。 2 求若干 个含有 变量 的式子 的最大 值 , 时条件 是这 这 些式 子都为 正 , 和为 常数( 且 即定 和求 积的最大 值 ) 。 例 3设 >O 求 函数 y: + 4 的最 值 : , _

分析 : 时 m E , 这
‘ .

b 一4 c≥ 0即 (n+1 一4 m +4 a r ) ( )≥ 0
若 。 o 当 =一 , 时, ~ =
m ≤一3 或 m ≥ 5 ,
2 有条件 的二 次函数 的最值 ( 自变量 x 有限制 ) 由于 ,
有 限制 , 以 =一 不一定 成立 故此 时 的最 大值 ( 所 0 或
20 02年 6月
J n.0 2 u 2 0
求 最 值 问题 的几 种方 法
庞 佑 墉
( 州市一 中 , 达 四川 选 州 650 ) 300
【 摘
要】 本文培出了四十带有一定务件的最值的求法. 井给出了若干实例。
【 关键词】 单调函数 ; 有界性 ; 二次函数; 算术一 几何平均值不等式。 【 中图分类号] 636 o3. 【 文献标I ̄] R A 【 文章编号】08 48(020 — 05 3 1 — 8620)2 09 —0 0
误解 :


分析: 这时s =一 b: 【 儿 五

2 可能 (‘ 不
1≤ s x≤ 1 i n )自变量 有 限制 正确 的解 法应 为 :

二次函数求最值的六种考法(含答案)

二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。

定值与最值问题

定值与最值问题

{{定值与最值问题}}
1.定值问题
解析几何中的定值问题的证明可运用函数的思想方法来解决。

证明过程可总结为“标量-函数-定值”,具体操作程序如下:
(1)选择适当的量为变量
(2)把要证明为定值的量表示成上述变量的函数
(3)把得到的函数解析化简,消去变量得到定值
求定值问题常见的方法有两种:
(1)从特殊入手、求出定值,再证明这个值与变量无关。

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值。

2.求最值问题常见的两种方法:
(1)几何法:题中给出的条件有明显的几何特征,则考虑用图像性质来解决,这是几何法。

(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值。

求函数的最值常见的方法有配方法、判别式法、基本不等式法、单调法、三角换元法等。

3.求定值、最值等圆锥曲线综合问题要四重视:
(1)重视定义在解题中的作用
(2)重视平面几何只是在解题中的作用
(3)重视根与系数的关系在解题中的作用
(4)重视曲线的几何特征与方程的代数特征在解题中的作用。

解决最值问题的三种最基本方法

解决最值问题的三种最基本方法摘要:最值问题是中学数学的重要题型之一,解决最值问题,经常用到基本不等式、消元法与换元法、导数法。

关键词:最值问题基本不等式消元法与换元法导数法。

最值问题是中学数学的重要题型之一,它的综合性较强,题型多样,解法灵活,涉及知识面广泛。

在高考中,常以一些基础题、小综合的中档题,或一些难题的形式出现,几乎每年的高考试题中都有考查。

解决最值问题,经常用到基本不等式、消元法与换元法、导数法。

本文结合两个典型例题进行分析和探讨,体会上述三种最基本方法的解题思路和解题技巧。

典型例题1:已知x>1,y>1,xy=16,求log2x·log2y的最大值?思路一分析:利用基本不等式≥ab,将log2x·log2y替换ab的位置,进而寻求最值。

解析:∵x>1,y>1,∴log2x>0,log2y>0,∴log2x+log2y≥2log2x·log2y,∵log2x+log2y=log2xy=log216=4,∴log2x·log2y≤4,当且仅当log2x=log2y,即x=y时等号成立。

∴最大值为4。

点评:利用基本不等式求最值,可以概括为“凑定和”与“凑定积”的问题,思路一灵活运用对数运算的性质,达到“凑定和”的目的。

思路二分析:先利用消元法,将y=代入,转变为一个变量的函数,再利用换元法转变为二次函数,利用二次函数的图像与性质求最值。

解析:∵xy=16,y=,∴log2x·log2y=log2x·log2=log2x·(log216-log2x)令t=log2x,∵x>1,t>0,∴原式=t·(4-t)=-t2+4t,利用二次函数图像得:t=2时,即x=4,取得最大值4。

点评:消元法是求最值问题常用的方法之一,是学生所熟悉和乐于使用的方法。

换元法中要特别注意中间变量的取值范围。

函数最值论文:浅析函数最值的七种初等求法

函数最值论文:浅析函数最值的七种初等求法函数最值的初等求法在中学数学中既是重点也是难点,其综合性较强,对逻辑思维能力和变形转换能力的要求也较高.若能让学生理解掌握各种求法,则对其分析和解决问题能力的提升大有裨益.现根据本人多年的教学实践,对函数最值的常用初等求法简叙于下.一、配方法配方法在求函数值及值域中应用较为广泛,且比较容易掌握,是求函数最值的基本方法.操作要点是:把函数表达式的一部分或整体配成二次函数y=a(x+m)2+n(a≠0)的形式,再利用二次函数的性质求出最值.【例1】求函数y=x2-2x-5-2x+1x2的最值.解:函数定义域是(-∞,0)∪(0,+∞).y=(x2+1x2)-2(x+1x)-5=(x+1x)2-2(x+1x)-7=(x+1x-1)2-8.∵当x>0时,x+1x≥2;当x<0时,x+1x=-(-x-1x)≤-2.∴当x+1x=2,即x=1时,y min =-7,此函数无最大值.评注:利用配方法求最值时,一定要注意考查变量的取值范围,此题若不注意就会得出错误答案y min =-8.二、基本不等式法利用基本不等式a 1+a 2≥2a 1a 2(a 1、a 2∈r+)求函数最值时要同时满足三个条件:一正、二定、三相等,即(1)a 1、a 2∈r+;(2)a 1+a 2(或a1a 2)为定值:(3)a 1=a 2能成立..上面的基本不等式定理可推广到n(n>1,n∈n)个正数的情形.【例2】已知a>b>0,求a-4+1(a-b)b的最小值.解:∵a>b>0,∴a-b>0,∴a-4+1(a-b)b=(a-b)+b+1(a-b)b-4≥33(a-b)b1(a-b)b-4=-1.∴当且仅当a-b=b=1(a-b)b,即a=2,b=1时,a-4+1(a-b)b 的最小值是-1.【例3】已知|x|<3 ,求y=(x-3)x+5的最小值.解:∵|x|<3,∴0<3-x<6.∴y=-(3-x)x+5=-(3-x)2(x+5)=-22(3-x)2(2x+10)=-22(3-x)(3-x)(2x+10)≥-22[(3-x)+(3-x)+(2x+10)3]3=-3296.∴当且仅当3-x=2x+10,即x=-73时,y min =-3296.评注:在变形过程中,配凑技巧是解题的关键,要紧紧围绕基本不等式取得最值的三个条件进行配凑.缺一不可. 如例2中,把a变成(a-b)+b是为了得到常数3. 例3中把x-3变形成-(3-x)是为了使3-x>0,而把x+5变形成2x+102是为了使(3-x)(3-x)能与2x+10凑成常数.在配凑过程中,不要忽略取等号的条件,否则容易出错.例如这样的变形:x4+5x2=x4+2x2+3x2≥336就没有取等号的条件.三、判别式法此法适合能把函数关系式y=f(x)转化为关于x的二次方程φ 1(y)x2+φ 2(y)x+φ 3(y)=0(其中φ 1(y)≠0)的类型,因为x的值是实数,即该方程有实根,那么由判别式δ≥0,便可能求出函数y的最值.【例4】求函数y=2x-4x2-x+2的最大值和最小值.解:函数定义域为r,由题设可得yx2-(y+2)x+2(y+2)=0.∵x∈r,∴δ=(y+2)2-8y(y+2)≥0.∴-2≤y≤27,∴y max =27,y min =-2.评注:有时函数y=f(x)的定义域不是r,那么δ≥0只是关于x的二次方程有实数解的必要条件,这时求出的y值不一定是函数y=f(x)的最值,需要进一步检验. 若求出的y 值在函数值域内,则此y值才是最值;或者求出与y值对应的x值(在方程中求),求出的x值至少有一个在定义域内,则此y值才是最值.四、函数单调性法如果能够判断函数在某区间[a,b]上是单调增函数,则由单调函数的性质易求得区间[a,b]上函数的最值.【例5】设f(x)是奇函数,对任意x∈r,都有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=-2,求f(x)在区间[-3,3]上的最值.分析:审题后,猜测函数f(x)可能具有单调性.解:设-3≤x 1≤x 2≤3,则x 2-x 1>0,∴f(x 2-x 1)<0.∵f(x)是奇函数,且恒有f(x+y)=f(x)+f(y),∴f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(x 1-x 2)=-f(x 2-x 1)>0.∴f(x)在[-3,3]上是减函数.在区间[-3,3]上,f(x) max =f(-3)=-f(3)=- [f(1)+ f(1)+f(1)]=6.f(x) min =f(3)=-f(-3)=-6.五、数形结合法数形结合法是一种重要的解题方法,其核心就是利用函数的几何意义把函数的最值问题转化为几何问题来解决.此法直观性较强,易于理解,有一定的灵活性,且常有化难为易的神奇效果.【例6】已知3x-4y-8=0,求u=(x-1)2+y2的最小值.分析:(x-1)2+y2可看作是原点a(1,0)与点 p(x,y)的距离,即u=|ap|,而p点是直线3x-4y-8=0上的动点,所以|ap|的最小值就是点a到直线3x-4y-8=0的距离,也就是u的最小值.【例7】如果实数x、y满足方程y=1-x2,求u=x-y的最大值和最小值.分析:如右图,方程y=1-x2的曲线是上半圆,而-u就是平行直线系y=x-u的纵截距,x、y满足方程就是直线与半圆有公共点,这样由几何意义知-1≤-u≤2,∴-2≤u≤1.∴u max =1,u min =-2.评注:由数形结合法求最值时,两点间的距离、点到直线的距离、直线的斜率、截距等是常用的几何意义.六、消元法在求多元函数最值的条件中,若能由条件中的多元关系解出某些变量,则可考虑通过代入消元法,把多元函数问题转化为一元函数来解决,以达到简化的目的.【例8】已知x2+2y2=3x,求u=2x2+y2-x的最大值.分析:由已知得y2=12(-x2+3x).①∵-x2+3x≥0,∴0≤x≤3.将①代入u=2x2+y2-x化为一元函数,再用配方法即可求解.评析:应注意通过条件找到所保留的元的取值范围.七、换元法换元变换是一种重要的数学变换,在数学中有着广泛的应用. 正确而灵活地运用换元法可使问题化繁为简,化难为易.【例9】求函数sinx-1sinx+2的最值.解: ∵y=1-3sinx+2,f(t)=1-3t(其中t=sinx+2),t∈[1,3],而f(t)在[1,3]上是增函数,又f(1)=-2,f(3)=0,∴y min =-2,y max =0.评注:换元的方法多、灵活性强,换元的目的是化难为易、化陌生为熟悉.在变换过程中,既要注意等价,又要注意取值范围.三角代换是常用的换元方法,如例7就可用三角换元法(令x=cosθ(0≤θ≤π),则y=sinθ,代入函数式即可求出最值.)函数最大值和最小值求法较多,方法灵活多变,除以上几种常见的初等求法外,导数法亦是目前高中数学常用的方法,这里不再赘述.对一个具体题目往往有多种解法,而优选解法是能否顺利解答的关键.在平时应多练、多思、多总结归纳,力求对这些重要方法融会贯通、灵活选用.要强调的是无论用哪种方法解题都要特别留意函数的定义域.参考文献[1]黄兆全. 最值问题中的几类典型错误例析[j]. 中学生理科应试, 1996(1).[2]刘桦. 谈运用数形结合法解题的误区[j]. 中学数学(苏州),1995(9).[3]陈国群. 均值不等式解题教学中逻辑错误的纠正[j]. 中学数学教学参考,2010(11).。

求函数最值的几种方法


. .
③对称轴x 一 不在 [,3 内,则y 一 …y = = l 0 J = 5

比较之,. 一= , ~= 三 . 5y 一 y
D 对称 轴x l 【2 1j 0 =一 ,y 一 3 =5 =一 在 一 ,3 ̄ ,贝 y , . =一 ,y 比
较之 ,.y ‘ 一=5,y . =- 3
【 : 解】 令cs=t E[l 】 y 。x ,t 一 ,l 则 =二
(1 )≤0 或
,一) ( 1 >0
可化 为 t+(一 2 y
3 + — y ) 3 2 =0此 方 程 在卜1 】 有解 的 充要 条件是 :f 一 ) ・ f ,l 上 (1 f
2 。试判断在闭区间 卜3 】 f x 是否有最 值 ?如果 有 ,求 出其最 ,3 上 ( ) 值。 [ 令x=x : ,lf 0 解】 0 k ( )= 0)+ ( ), . ( )=0 h J f( f 0 ・ 0 . f 。令
维普资讯
高 校 论 坛
南 缸 科 j 2 0年第1 1 2 宣 08 期 Q
求 函 数 最 值 的 几 种 方 法
王 晓 东
( 阳职业技术 学院 ) 濮
摘 要 最值 问题遍及数 学的各个分 支和 日常的生产 实践 中。求最值的方法常 用的 有配方法 、单调性 法 、判别 式法 、不等 式法、 换 元法、数形 结合 法、线性规 划法 、导数 法和向量法等 。 关 键 词 函数 最 大 值 最 小 值
[1 知函 Y 例 】已 数 =寺x x 詈, Y 区 : 一 求 在 问: +
()( ,3);() 一 ,3);() 1 0 2( 2 3 ,3;() ,3上 的最 大值 。 】 4卜2 】

求函数最值与值域的常用方法

ʏ甄新锋求函数的最值与值域是高中数学的重要内容㊂函数的值域就是全体函数值的集合,是由其定义域㊁对应法则共同决定的㊂求函数的最值与值域在解法上是相通的㊂下面举例分析,供同学们学习与参考㊂方法一:函数的单调性法例1 已知函数f (x )=a x +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),则g (a )的最大值为㊂函数f (x )=a -1a()x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,所以g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,所以g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1㊂由上可得函数g (a )=a ,0<a <1,1a,a ȡ1,{所以g (a )在(0,1)上为增函数,在[1,+ɕ)上为减函数㊂因为当a =1时,a =1a=1,所以当a =1时,g (a )取最大值为1㊂评注:利用单调性法求最值,先确定函数的单调性,再由单调性求最值㊂方法二:判别式法例2 设非零实数a ,b 满足a 2+b 2=4,若函数y =a x +bx 2+1存在最大值M 和最小值m ,则M -m =㊂由y =a x +bx 2+1,可得y x 2-a x +y -b =0,由题意知此方程有实根,所以Δ=a 2-4y (y -b )ȡ0,即4y 2-4yb -a 2ɤ0㊂因为a 2+b 2=4,所以4y 2-4y b +b 2-4ɤ0,即[2y -(b +2)][2y -(b -2)]ɤ0,解得b -22ɤy ɤb +22,所以m =b -22,M =b +22,可得M -m =2㊂评注:形如分子㊁分母的最高次数为二次的分式函数,可利用判别式法求函数的最值㊂方法三:二次函数的性质法例3 已知函数f (x )=4x 2-m x +1在(-ɕ,-2)上单调递减,在[-2,+ɕ)上单调递增,则f (x )在[1,2]上的值域为㊂因为f (x )在(-ɕ,-2)上单调递减,在[-2,+ɕ)上单调递增,所以函数f (x )=4x 2-m x +1的对称轴方程为x =m8=-2,可得m =-16㊂又[1,2]⊆[-2,+ɕ),且f (x )在[-2,+ɕ)上单调递增,所以f (x )在[1,2]上单调递增㊂所以当x =1时,f (x )取得最小值f (1)=4-m +1=21;当x =2时,f (x )取得最大值f (2)=16-2m +1=49㊂故f (x )在[1,2]上的值域为[21,49]㊂评注:二次函数y =a x 2+b x +c (a ʂ0),当a >0时,顶点为图像的最低点,即当x =-b2a 时,y 的值最小;当a <0时,顶点为图像的最高点,即当x =-b 2a时,y 的值最大㊂方法四:基本不等式法例4 已知幂函数f (x )的图像过点2,14(),则函数g (x )=f(x )+x 24的最小值为㊂设幂函数f (x )=xα,因为f (x )的图像过点2,14(),所以2α=14,解得α=-2,所以幂函数f (x )=x -2,其中x ʂ0㊂因为函数g (x )=f (x )+x24=1 数学部分㊃知识结构与拓展 高一使用 2022年1月Copyright ©博看网. All Rights Reserved.1x 2+x 24ȡ21x2㊃x 24=1,当且仅当x =ʃ2时 = 成立,所以函数g (x )取得最小值为1㊂评注:利用基本不等式求最值时,必须满足的三个条件:一正㊁二定㊁三相等㊂ 一正 就是各项必须为正数; 二定 就是要求和的最小值,必须把构成和的二项之积转化成定值,要求积的最大值,必须把构成积的因式的和转化成定值; 三相等 就是检验等号成立的条件,判断等号能否取到,只有等号能成立,才能利用基本不等式求最值㊂方法五:分离常数法例5 当-3ɤx ɤ-1时,函数y =5x -14x +2的最小值为㊂由函数y =5x -14x +2,可得y =54-74(2x +1)㊂因为-3ɤx ɤ-1,所以720ɤ-74(2x +1)ɤ74,所以85ɤy ɤ3㊂故所求函数的最小值为85㊂评注:求形如y =c x +d a x +b (a c ʂ0)的函数的值域或最值,常用分离常数法求解㊂方法六:反解法例6 函数y =1-|x |1+|x |的值域为㊂由函数y =1-|x |1+|x |,可得|x |=1-y 1+y ㊂因为|x |ȡ0,所以1-y 1+y ȡ0,所以-1<y ɤ1㊂故所求函数的值域(-1,1]㊂评注:反解法求函数的值域,先由已知函数式解出x ,再根据x 的取值范围列不等式求出值域㊂方法七:换元法例7 函数y =x +1-x 2的值域是㊂由1-x 2ȡ0得-1ɤx ɤ1㊂设x =c o s α,αɪ[0,π],则原函数等价于函数f (α)=c o s α+s i n α=2㊃s i n α+π4(),且α+π4ɪπ4,5π4[],所以s i n α+π4()ɪ-22,1éëêêùûúú㊂故所求函数的值域为[-1,2]㊂评注:求形如y =a x +b +(c x +d )(a c ʂ0)或y =a x +b ʃc 2-x 2(c ʂ0)的函数值域或最值,常用代数换元法或三角换元法,再结合函数的相关性质求解㊂方法八:绝对值不等式法例8 函数y =|x +1|+|x -3|的值域为㊂因为y =|x +1|+|x -3|ȡ|x +1+3-x |=4,所以此函数的值域为[4,+ɕ)㊂评注:含有绝对值的不等式的性质:|a |-|b |ɤ|a ʃb |ɤ|a |+|b |㊂方法九:数形结合法例9 函数f (x )=|x -1|+x 2的值域为㊂把函数f (x )化为分段函数求值域㊂函数f (x )=|x -1|+x 2=x 2+x -1,x ȡ1,x 2-x +1,x <1{=x +12()2-54,x ȡ1,x -12()2+34,x <1㊂ìîíïïïï作出分段函数f (x )的图像(图略)㊂由图知函数f (x )=|x -1|+x 2的值域为34,+ɕ[)㊂评注:数形结合法包含 以形助数 和 以数辅形 两个方面,其应用大致可以分为两种情形:一是借助于形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,如利用函数的图像来直观地说明函数的性质;二是借助于数的精确性和严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质㊂作者单位:浙江省绍兴市新昌县新昌技师学院大市聚校区(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年1月Copyright ©博看网. All Rights Reserved.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过 原 点 的切 线 方 程 为 y k 。 由 圆心 到 切 线 的距 离 d :x :

当且 仅 : y 4
Y x
即 2 3 3:y 时取等号, 三+ : 所以 三的最小


、 k+ / l
l解 得 k ±X 3- , : /

值是 4 。 二 、 角 代换 法 三
() , 3 AB∥平面A , c Bc∥平面A 而直线AB nBC= , c, ,, ,B ,
所 以命 题 6 成立 。 不
另 外 , 比还 可 以帮 助 我 们 从 平 面 几 何 问题 的解 决 中 , 类 猜 想 相 应 立 体 几 何 问 题 的 解 决 方 法 . 者 在 此 不 作 展 开 。 当然 . 笔 由于 类 比推 理 属 于 似 真 推 理 , 出 的结 论 不 一 定 可 靠 。 推 尚需 证 明其 合 理 性 。比如 例 3 的命 题 1 命 题4 命 题 6 命题 7 是假 中 、 、 和 都 命题 。 因此 。 运用 类 比法 时 , 们要 注意 适 当 、 意 义 , 我 有 否则 , 可 能 带 来 消 极 影 响 , 成 知 识 的 负迁 移 。不 过 , 该 特 别 指 出 的 造 应

分 析 : 题 显 然 不 符 合 均值 不等 式 的使 用 条件 , 们 可 利 此 我
用 常 数 进 行 变 换 , 之 能 利 用 均 值 不 等式 。 使 解: 由 + 3 c + cx 2 , c + + 2 3+ y = 1
xV0XV




使 这 类 问题 迎 刃 而 解 。 现 介绍 几种 常见 的方 法 。 配 凑 利 用 均值 不 等 式

分析 : 已知条』 所表示的曲线是一个圆 , 可 以看成是圆 牛 上

例1若正数xy : , 满足3 2-: , +3的最小值 - 6 0求 _ y _
X Y
上 一 点 xy 与 点 ( ,) 线 的 斜 率 。 ,) 00连 解 : X + 4 + : 变 为 ( + ) y = 知 y 的 值 即 为 由 2y + x 3 0 x 2 2 l




吉 的斜率 。 O
以 ( 2 0 为 圆 心 、 为 半 径 的 圆 上 的 点 ( , ) 点 ( , ) 线 一 ,) 1 xY 与 00 连
的 最 大 值 与最 小值 即 为 圆的 切 线 的斜 率 。 可 设 故
(、 . + 2: , 2 1)4
V Y X
命 题 5 空 间几 何 中 的平 行 公 理 。 余 七 个 命题 中命 题 2 是 其 、 命 题3 命题8 真命题 , 和 是 而命 题 l 命 题 4 命 题 6 命 题 7 是 、 、 和 都
假 命 题 。反 例 :
平行平面南公垂线段,公垂线段的长度叫做两个平行平面间
的 距 离 。‘’。



如 图 , 长 方 体A C — A BC D 中 , 在 B D , ,,
( ) 上B .B 1AB B , C上B .而A " C B, 以命 题 1 成 立 。 B , BfB = 所 l 不
() 面A . 2平 B 上平 面 A , 面 B , C平 C 上平 面 A 而 平 面 A . C, Bn 平 面B . 直线 B 所 以命 题 4 成立 。 C= B, 不
■墨
在 变 量 满 足 定 值 条 件 下 求 最 值 的 几 种 ;- b法
黄 小彬
( 州 厚 德 外 国 语学 校 , 西 赣 州 3 1 0 ) 赣 江 4 00
摘 要 :本 文 通 过 对 变 量 满 足 定 值 条 件 下 , 目标 式 子 对 的 最值 求 法进 行 研 究 , 用 代数 和 几 何 的 方 法 求得 最值 , 利 可对 学 生提 高 解题 能 力 起 到 一 定 的 帮 助作 用 。 关键 词 :变量 定值 最值
小值。
在 中学 数 学 中经 常 会 遇 到 在 两 个 或 两 个 以上 的变 量 满 足

个 定 值 的 情 况 下 ,求 目标 式 子 的最 值 问 题 ,如 果 处 理 不 得 当 , 类 问题 的 解 决 会 显 得 比较 棘 手 , 选 择 合 适 的 方 法 , 这 若 会

所 以 的最大值 为 _:  ̄
X j

y 的最 小 值 _


例 2 设 实 数 m, ,,满 足m + ‘1x+f9 求m + y 最 : nx y n= , y= , x n 的
平 面平 行 。 命 题 8 如 果 两 个 平 面 同 时平 行 于 第 三 个 平 面 , 么 这 两 : 那 个平 面平 行 。
分析 : 由条 件 可 将 其 与 圆 的 方 程 联 系 起 来 。 用 圆 的参 数 利 方 程 和 三 角 函数 来 求 解 。 解 : m s o,  ̄ O O,= s l,= c s , 令 = i t C S. 3i 3 y 3 o l n. n tx n 3 故m + y 3 i s l 3 oa o l 3 o ( . ) x n = s a i 3 e s e s = c sa 1 . n n+ 3 一 3 所 以mx n 的最 小 值 为一 。 +y 3 三 、 形 结 合 法 数 例3 若x y 足x+ 4 + : , — 的最 值 。 : ,满 y x 3. 求 y + - 0 _
为一


概 念 2 如 果 一 条 直 线 和 一 个 平 面 平 行 . 条 直 线 上 任 意 : 这 点 到 这 个 平 面 的距 离 . 叫做 这 条 直 线 和 这 个 平 面 的距 离 。
’‘
平 面 的 公 垂 线 。 夹 在 这 两 个 平行 平 面 问 的 线 段 , 它 叫做 这 两 个
相关文档
最新文档