中职数学三角函数练习题
中职数学-三角函数的诱导公式最终版

,则
= _______, = ________, = _______.
,
− ,则角的终边与单位圆
2.已知 =
=
的交点的坐标为_________.
情境导学
在初中,我们已经会求锐角的三角函数值.对于90°~
360°内的三角函数我们能否进一步把它们转化到锐角范
此即诱导公式四.
+ = −.
诱导公式四
例4.求下列各值:
(1) ; (2)°.
利用上述四个诱导公式可以把任意角的三角函数转化为锐角的三角函数.
例5.求下列各值:
(1)°;
(4)
−
.
(2)
;
(3) −° ;
围内来求解.本节课将解决这一问题.
诱导公式一
角 + ∈ 与角的三角函数值之间的关系
由任意角的三角函数的定义可知,终边相同的角,它们的同名三角函数值
相等(“同名”指同是正弦、余弦或正切,下同).而角 + ∈ 与角
的终边相同,所以可得到一组公式:
+ = ,
点分别为点和点′,由三角函数的定义可
知,点的坐标是 , ,点′的坐标
是 + , + .容易看出,点
和点′关于原点对称,它们的横坐标和纵坐
标都互为相反数,即
+ = −, + = −,
又由同角三角函数的基本关系式,得
例6.已知 =
− + +
,且是第四象限角,求
中职数学(基础模块)第一册单元检测题

第一章 集合 单元练习题一、选择题1.下列各结论中,正确的是( )A .{}0是空集B . {}220x x x ++=是空集 C. {}1,2与{}2,1是不同的集合 D .方程 2440x x -+=的解集是{}2,22.集合}{4p x x =≤,则( )A .p π∉B . p π⊆C .{}p π∈D .{}p π⊆3.设A =}{22x x -<<,}{1B x x =≥,则AUB =( )A .}{12x x ≤<B .{2x x <-或2x >C .}{2x x >-D .{2x x <-或}2x >4.如果{|||2}M x x =<,{|3}N x x =<,则A B ( )A .}{22x x -<< B .{}23x x -<< C .{}23x x << D .{}3x x <5.设为,x y 实数,则22x y =的充要条件是( )A .x y =B .x y =-C .33x y =D .||||x y =二、填空题1.用列举法表示集合{|05,}x x x N <<∈ .2.已知{1,2,3,4,5},A ={2,5,6},B =则A B = .3.已知全集{1,2,3,4,5},A =则{1,2,3},A =则CuA = .4.“四边形是正方形”是“两条对角线互相平分”的 条件.5.设全集为R ,集合{|3A x x =<,则CA = .6.已知集合{,0},{1,2},{1},M a N M N ===则a = .三、解答题1.判断集合2{|10}A x x =-=与集合{|||1}B x x o =-=的关系2.选用适当的方法表示下列集合(1) 不大于5的所有实数组成的集合;(2) 二元一次方程组5,3x y x y +=⎧⎨-=⎩的解集3.设全集为{1,2,3,4,5,6},{1,3,5,6,},{3,4}.===求A BCuA CuB Cua CuB CuA CuB(1),;(2)()();(3)()().4.设全集,{|06},{|2==≤<=≥.求R A x x B x xCuA CuB Cua CuB CuA CuB(1),;(2)()();(3)()()第二章 不等式 单元练习题一、选择题(本题共10小题,每题2分,共20分)⑴ 不等式组⎪⎩⎪⎨⎧->≤223x x 的解集为( ) A.⎭⎬⎫⎩⎨⎧≤23x x B.{}2->x x C.⎭⎬⎫⎩⎨⎧≤<-232x x D.∅ (2) 不等式02142≤-+x x 的解集为( )A. ]()[∞+-∞-,37,B. []3,7-C. ]()[∞+-∞-,73,D. []7,3--(3)不等式123>-x 的解集为( ) A.()+∞⎪⎭⎫ ⎝⎛-∞-,131, B.⎪⎭⎫ ⎝⎛-1,31 C.()+∞⎪⎭⎫ ⎝⎛∞-,131, D.⎪⎭⎫ ⎝⎛1,31⑷ 一元二次方程042=+-mx x 有实数解的条件是m ∈( )A.]()[∞+-∞-,44,B.()4,4-C.()()+∞-∞-,44,D.[]4,4-二、填空题(本题共10小题,每题5分,共50分)⑴ 不等式352>-x 的解集为⑵ 当x 时,代数式223x x ++有意义⑶ 当x 时,代数式2412-+x 不小于0⑷ 已知集合A=[]4,2,B=](3,2-,则A ∩B= ,A∪B= ⑸ 不等式组⎩⎨⎧≤-->241x x 的解集为⑹ 不等式()()021>+-x x 的解集为三、解答题(本题共2小题,每题10分,共20分)1.解下列各不等式(组):⑴ ⎩⎨⎧<-≥-723312x x ⑵ ()1427+≤-x x2.解下列各不等式⑴ 032≥-x x ⑵062<--x x⑶ 052≤+-x x ⑷ 02322>++x x3.解下列各不等式⑴ 25<+x ⑵ 2143≥--x4. 解关于x 的不等式:32-<+mx ()0≠m5.设全集为R,A={}41<-x x ,B={}022≥-x x x ,求A ∩B ,A ∪B , A ∩B C U .6.设a ∈R,比较32-a 与154-a 的大小第二章 不等式 单元练习题(二) 一、选择题1.设,(,1),(0,),A B =-∞=+∞则A B =A .R B.(),1O C.(),0-∞D.()1,+∞ 2.设()()4,2,0,4,A B =-=,则A B =A.()4,4- B.()0,2 C.(]0,3D.()2,4 3.设()(]0,,2,3,A B =+∞=-则A B =A.()2,-+∞ B.()2,0- C.(]0,3 D.()0,34.不等式31x ->的解集是A.()2,4 B.()(),24,8-∞+ C.()4,2-- D.()(),42,-∞--+∞ 二、填空题(1)集合{}23x x -<≤用区间表示为 .(2)集合{}2x x ≥-用区间表示为 .(3)设全集(),3,R A ==+∞,则CA = .(4)设(][]1,3,3,6,A B =-=,则A B . (5)不等式34x <的解集用区间表示为 .三、解答题1.解下列各不等式(1)2232;x x +> (2)2320x x -+->(3)2212x -≤ (4)4130x +->2.解下列不等式组,并用区间表示解集(1)35020x x ->⎧⎨-≤⎩ (2)3124543x x x ->+⎧⎨-≤⎩3.指出函数232y x x =+-图象的开口方向,并求出当0y ≥时x 的取值范围4.m 取何值时,方程()2110mx m x m --+-=有实数解第三章 函数 单元练习题(一)一、选择题1.下列函数中为奇函数的是A .22y x =+ B.y =C.1y x x=- D.22y x x =- 2.设函数(),f x kx b =+若()()12,10f f =--=则A.1,1k b ==- B.1,1k b =-=-C.1,1k b =-= D.1,1k b ==3.已知函数⎩⎨⎧--=112x x y 11x x ≥< 则()2f f =⎡⎤⎣⎦ A.0 B.1 C.2 D.不存在4.函数1y x=的定义域为 A.[]1,+∞ B.()1,-+∞ C.[1,)-+∞ D.[1,0)(0,)-+∞5.下列各函数中,既是偶函数,又是区间(0,8)+内的增函数的是 A.y x = B.3y x = C.22y x x =+ D.2y x =-二、填空题1.已知函数()22f x x x =+,则1(2)()2f f ⋅=2.设()31,f x x =-则()1f t +=3.点()2,3p -关于坐标原点的对称点'p 的坐标为 4.函数15y x =-的定义域为 三、简答题1.判断下列函数中那些是奇函数?哪些是偶函数?那些椒非奇非偶函数? (1)()51f x x =+ (2)()3f x x =(3)()221f x x =-+ (4) ()21f x x =-4.判断函数()()52y x x =--的单调性5.已知函数⎩⎨⎧--=112x x y 11x x ≥< (1)求()f x 的定义域。
四川省中等职业学校对口升学考试-数学-第五章《三角函数》总复习-课件

扇形的弧长公式:l=|α|r或l=nπr/180.
扇形的面积公式:S=1/2lr=1/2|α|r2或S=nπr2/360.
(5)象限角和轴线角的表示法.
第一象限角:{α|2kπ<α<2kπ+π/2,k∈Z}.
第二象限角:{α|2kπ+π/2<α<2kπ+π,k∈Z}.
第三象限角:{α|2kπ+π<α<2kπ+3π/2,k∈Z}.
(3)tan(α±β)=tanα±tanβ/(1∓tanα·tanβ).
2.倍角公式
(1)sin2α=2sinαcosα.
(2)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
(3)tan2α=2tanα/(1-tan2α).
一
知识清单
3.降次公式
(1)sin2α=1-cos 2α2;(2)cos2α=1+cos 2α2.
(1)第一象限的诱导公式.
sin(2kπ+α)=sin α,cos(2kπ+α)=cos α,tan(2kπ+α)=tan α.(k∈Z)
(2)第二象限的诱导公式.
sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.
(3)第三象限的诱导公式.
sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.
相同的角不一定相等,但相等的角终边一定相同.
一
典例解析
例2
将75°转化为弧度为 .
【解析】 由角度与弧度的换算关系可得75°=π/180×75=5/12π.
【技巧点拨】 角度化为弧度,分母是180;弧度化为角度,分母是π.
中职数学第学期期末考试试卷 (一)

中职数学第学期期末考试试卷 (一)本文讲述的是一份中职数学第学期期末考试试卷,旨在展示中职数学教育的教学重点和难点,希望能够对读者了解、掌握数学知识和应试技巧有所帮助。
一、试卷结构该试卷分为两部分:选择题和简答题。
选择题共计30小题,考察知识点涵盖了代数、函数、几何、概率、统计等多个方面,其中包括客观选择、计算等形式,考察题型涵盖填空、选择、判断等。
简答题共计5小题,考察知识点涵盖了三角函数、函数的极值和最值、导数的应用、两点求直线等,题型主要为判断、计算和简答,难度逐渐递增。
二、知识要点1. 代数代数是数学中的基础分支,涉及到一系列概念和运算规则。
在本试卷中,代数部分主要考察了多项式和有理式的计算和分解、根式化简、方程等内容。
2. 函数函数是数学中非常重要和广泛应用的概念。
在本试卷中,函数部分主要考察了函数的定义和图像、函数的极值和最值、函数的奇偶性、函数的反函数等内容。
3. 几何几何涉及到一系列图形概念和结论,是数学中的重要分支。
在本试卷中,几何部分主要考察了平面直角坐标系、三角形的性质、相似和全等三角形、圆的属性等内容。
4. 概率和统计概率和统计是数学中的实用分支,涉及到随机事件的概率和数据的分析。
在本试卷中,概率和统计部分主要考察了离散型随机变量的概率分布和期望、简单统计分析等内容。
三、应试技巧1. 细心审题阅读题目时要仔细,确定清楚题目需要做什么,不要将其与其他题目混淆。
2. 仔细计算在计算过程中,应根据需要选择合适的公式或方法,避免一错再错的情况。
3. 注意单位在计算过程中,应注意单位的统一和转换,以保证正确性。
4. 不放弃如果在做题过程中遇到了困难,不要轻易放弃,可以通过反复思考和尝试找到解决问题的方法。
综上所述,该中职数学第学期期末考试试卷涵盖了多个知识领域和题型形式,旨在全面考察学生的数学素养和运用能力。
考生在备考阶段,应充分了解试题结构和知识重点,进行有针对性的复习和演练。
在考试期间,应细心审题、仔细计算、注意单位、不轻易放弃,争取发挥出自己的最佳水平。
中职数学(人教版):三角函数试题汇编及答案

三角函数(1985年——2003年高考试题集)一、选择题 1. t an x =1是x =45π的 。
(85(2)3分) A.必要条件B.充分条件C.充要条件D.既不充分也不必要条件2. 函数y =2sin2xcos2x 是 。
(86(4)3分)A.周期为2π的奇函数 B.周期为2π的偶函数C.周期为4π的奇函数D.周期为4π的偶函数3. 函数y =cosx -sin 2x -cos2x +417的最小值是 。
(86广东) A.47 B.2C.49D.417 E.4194. 函数y =cos 4x -sin 4x 的最小正周期是 。
(88(6),91(3)3分)A.πB.2πC.2πD.4π5. 要得到函数y =sin(2x -3π)的图象,只须将函数y =sin2x 的图象 。
(87(6)3分) A.向左平移3π B.向右平移3π C.向左平移6π D.向右平移6π6. 若α是第四象限的角,则π-α是 。
(89上海)A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角7. t an 70°+tan50°-3tan70°tan50°的值是 。
(90广东) A.3B.33C.-33 D.-38. 要得到函数y =cos(2x -4π)的图象,只需将函数y =sin2x 的图象 。
(89上海) A.向左平移8π个单位 B.向右平移8π个单位 C.向左平移4π个单位 D.向右平移4π个单位9. 函数y =cotx|cotx ||tanx |tanx cosx |cosx ||sinx |sinx +++的值域是 。
(90(6)3分)A.{-2,4}B.{-2,0,4}C.{-2,0,2,4}D.{-4,-2,0,4} 10. 若函数y =sin(ωx)cos(ωx)(ω>0)的最小正周期是4π,那么常数ω为 。
(92(2)3)A.4B.2C.21 D.41 注:原考题中无条件“ω>0”,则当ω取负值时也可能满足条件 11. 在直角三角形中两锐角为A 和B ,则sinAsinB 。
【中职专用】(高教版2021十四五基础模块上册)数学4.8 已知三角函数值求角 课件

4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
如何求出正弦函数y=sinx与直线 在区间[0, 2π]上的交点?
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
要求这个交点,实际上就求
,
x∈[0, 2π]的解.也就是已知三角函数值求
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练习
3.在[0,2π]范围内, 求适合下列条件的特殊角x的值.
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
函数型计算器的标准设置中, 已知余弦函数值, 只能显 示0°~180°范围内的角.
函数型计算器的标准设置中, 已知正切函数值, 只能显 示 -90°~90°范围内的角.
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
由sin(π+α)=-sinα= , 得第三象限内的角 由sin(2π-α)=sin(-α)=-sinα= , 得第四象限内的角 所以,在[0,2π]上满足sinx= 的角为
4.8 已知三角函数值求角
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
求下列特殊的三角函数值在[0,2π]上的角x的值.
已知三角函数值, 利用计算器求角可以按如下流程操作:
【中职专用】(高教版2021十四五基础模块上册)数学4.4 同角三角函数的基本关系 课件

关系式
中的
是指终边在y轴上的角的正切值不存在.
4.4 同角三角函数的基本关系 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
例1 已知sinα= , 且角α是第二象限角, 求cosα和tanα. 解 因为sin²α+ cos²α =1, 所以
又因为角α是第二象限角, 所以cosα<0, 因此 从而
4.4 同角三角函数的基本关系 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练习
5. 已知tanα= −4, 求下列各式的值:
(1)
; (2)
6. 求证:
=
7. 化简:
, 其中角α是第一象限角.
4.4 同角三角函数的基本关系 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
4.4 同角三角函数的基本关系 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
1.书面作业:完成课后习题和学习与训练; 2.查漏补缺:根据个人情况对课题学习复习与回顾; 3.拓展作业:阅读教材扩展延伸内容.
再见
4.4 同角三角函数的基本关系 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
一般地,设点P (x,y)是角α的终边与单
位圆O的交点,则|OP|=1,x=cosα, y=sinα.
因为
,所以
x²+y²=1 即 sin²α+ cos²α =1
显然,当α的终边与坐标轴重合时,这
个公式也成立.
2.已知cosα= , 且角α是第三象限角, 求sinα和tanα.
3.已知tanα= , 且角α是第一象限角, 求sinα和cosα.
4.4 同角三角函数的基本关系 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
中职数学(人教版):三角函数检测题及答案.doc

高一数学第一册(下)三角函数综合检测题(A)★江西上饶刘烈庆一、选择题(每小题 5 分,共 60 分)1. 若13 , 则()7A. sin 0 且 cos 0B. sin 0 且 cos 0C. sin 0 且 cos 0D. sin 0 且 cos 02. 函数 y 3sin x 4cos x 5 的最小正周期是()A.5 B.2C. D. 23. 已知定义在 [ 1,1]上的函数 y f ( x) 的值域为 [ 2,0] ,则函数 y f (cos x) 的值域为()A. [ 1,1]B. [ 3, 1]C. [ 2,0]D. 不能确定4. 方程sin x 1 )x 的解的个数是(4A.5B.6C.7D.85. 函数 y 2 sin(2 x ) cos[2( x )] 是()A. 周期为的奇函数B. 周期为的偶函数4 4C. 周期为的奇函数D. 周期为的偶函数2 26. 已知ABC 是锐角三角形,P sin A sin B, Q cos A cos B, 则()A. P QB. P QC. P QD. P 与Q的大小不能确定7.设 f (x) 是定义域为R,最小正周期为则 f ( 15) 等于()43 cos x,( x 0)2的函数,若 f ( x) 2 ,sin x,(0 x )A.1B.2D.2C.02 28. 将函数y f ( x)sin x 的图象向右平移个单位后,再作关于 x 轴的对称变换,得到4y 1 2sin 2 x 的图象,则 f ( x) 可以是()A. cos xB.2cos xC. sin xD. 2sin x9. 如果函数f ( x) sin( x )(0 2 ) 的最小正周期是T ,且当 x 2 时取得最大值, 那么()A. T 2,B. T 1,C. T 2,D. T 1,2 2 10.若0 y x , 且tan x 3tan y, 则x y 的最大值为()2A. B. C. D.不存存34 611. 曲线y A sin x a( A 0, 0) 在区间[0,2] 上截直线y 2 及 y 1 所得的弦长相等且不为0,则下列对A, a的描述正确的是()A. a 1, A 3 B. a1, A 3 C. a 1, A 1 D. a 1, A 1 2 2 2 212. 使函数 f(x)=sin(2x +θ ) + 3 cos(2x+θ)是奇函数,且在[0,]上减函数的θ的4值是A. B. 2 C. 4 D. 53 3 33二、填空题(每小题 4 分,共 16 分)13、已知sin cos 2 3, 那么sin 的值为, cos2 的值为;2 2 314、已知在ABC 中,3sin A 4cos B 6,4sin B 3cos A 1, 则角C的大小为15、设扇形的周长为8cm ,面积为4cm2,则扇形的圆心角的弧度数是16、关于x的函数 f(x) = cos(x +α ) 有以下命题:①对任意α,f(x)都是非奇非偶函数;②不存在α,使f(x)既是奇函数,又是偶函数;③存在α,使f(x) 是偶函数;④对任意α,f(x)都不是奇函数.其中一个假命题的序号是,因为当时,该命题的结论不成立.三、解答题(共74 分)17.(本小题满分 12 分)已知函数 f ( x) a(cos2 x sin x cos x) b( 1)当 a> 0 时,求 f(x) 的单调递增区间;( 2)当 a< 0 且x[0,] 时,f(x)的值域是[3, 4],求a、b的值.218. (本小题满分12 分)设0, P sin 2sin cos .(1)若 t = sin θ- cos θ用含 t 的式子表示 P;(2)确定 t 的取值范围,并求出 P 的最大值和最小值 .19.(本小题满分 12 分)已知函数 f ( x) sin( x ) cos( x ) 的定义域为R,( 1)当0时,求 f ( x)的单调区间;( 2)若(0, ) ,且sin x 0 ,当为何值时, f ( x) 为偶函数.20.(本小题满分 12 分)已知函数x xy sin 3 cos , .22( 1)求y取最大值时相应的x 的集合;( 2)该函数的图象经过怎样的平移和伸变换可以得到y sin x( x R) 的图象.21.(本小题满分 12 分)已知奇函数 f ( x) 在 ( ,0) U (0, ) 上有意义,且在 (0, ) 上是增函数, f (1) 0, 函数 g ( ) sin2 mcos 2m, [0, ]. 若集合 M m g( ) 0 ,2N m f [ g ( )] 0 , 求 M I N.22.(本小题满分 14 分)已知函数f ( ) 4 sin 2x2sin 2x2, . x x R( 1)求f ( x)的最小正周期及 f ( x) 取得最大值时x 的集合;( 2)求证:函数 f ( x) 的图象关于直线x 对称8高中数学第一册(下)三角函数综合检测题(A )及答案★江西上饶 刘烈庆一、选择题(每小题 5 分,共 60 分)1、提示: C 角 13是第四象限角 .74 ,2、提示: Dy 3sin x 4cos x5 5sin( x) 5, 其中 tan最小正周期为T 2 .33、提示: C当 x0 时,则 cos x1,1 ,又 Q x1,1时, f ( x) 2,0f (cos x )2,0 .故选 C.4、提示: C 易知 y sin x, y1x 都是奇函数,只须考虑 x 0 时,作图有 4 个交点,当 x0 时有 3 个交点,综上有 47 个交点,故选 C.5、提示: Cy2 sin(2 x) cos(2 x 2 )2 sin 2x cos2x2sin 4 x,2则函数的周期 T2 , 是奇函数,故选 C.6、提示: B由题可知:A BABsinA cos ,22B同理 sin B cos Asin A sin B cos A cos B, 故选 C.7、提示: B15) f ( 15 3 )3 )32f (3f (sin4.442428、提示:B 作函数 y 1 2sin 2 x 的图象关于 x 轴对称的图象, 得函数y 1 2sin 2 x ,即 ycos 2x, 再向左移个单位,得 ycos2(x4 ), 即 y sin 2x42sin x cos x, f ( x)2cos x, 故选 B.9、提示: Ay sin( x), 其周期 T2 , 当 x2k时取得最大值 , 由题知22 T2.又当 x 2时,有2 2k2(k1).22又 02 .k 1. 则,故选 A.210、提示: C 由 0 y xtan y 0 且 0 x ytan x tan y22 , tan(x y)tan x tan y12tan y 2tan y 3 , x y .易验证得y 时,等号成立,选 C.1 3tan2 y 23 tan y 3 6611、提示:A 依题意 y 2 与 y 1 关于 y a 对称, a 2 1 1,Q y 2 及y 1所3 2 2截得的弦大于0,2A 2 ( 1), A. 12、提示:2 二、填空题(每小题 4 分,共 16 分)13、已知sin cos 2 3, 那么sin 的值为 1 , cos2 的值为7 ;2 23 3 9提示:17 由 sin2cos22 3 (sin cos ) 2 43 9 3 2 2 31 sin 4sin13.31 7由cos2 1 2sin 2 1 2 ( )2 .3 914、已知在ABC 中,3sin A 4cos B 6,4sin B 3cos A 1, 则角C的大小为提示:两式平方相加得:sin( A B) 1, 又Q 3sin A 6 4cos B 2,65 2A B , A B , C.6 6 615、设扇形的周长为8cm ,面积为4cm2 ,则扇形的圆心角的弧度数是2r r 8提示: 2 设扇形半径为r, 圆心角的弧度数为, 则 1 r2 4 2.216、关于x的函数f (x) cos( x ) 有以下命题:①对任意, f (x) 都是非奇非偶函数;②不存在,使 f (x) 既是奇函数,又是偶函数;③存在,使 f (x) 是偶函数;④对任意, f (x) 都不是奇函数.其中一个假命题的序号是提示:答案1:①;,因为当时,该命题的结论不成立. k(k Z ). 答案2:②;k(k Z ).2 2三、解答题(共 74 分)17、(本小题满分 12 分)已知函数 f ( x) a(cos 2 x sin x cos x) b( 1)当 a 0 时,求 f ( x) 的单调递增区间;()当 a0 且 x [0, ] 时, f ( x) 的值域是 [3, 4], 求 a,b 的值 .2解:( 1) f ( x)a(1 cos2 x sin 2x) b2asin(2 x) a b,224 2由 222() 得3k2x4kk Zk8x k(k Z ),238当 a 0 时, f ( x) 的递增区间为 [ k, k ]( k Z ).8 8(2)由 0x得 2x5 , 2 sin(2 x ) 1.44 22 44又 a 02 1a b 2asin(2 x) a b b,224 22 12 2 .由题意知2a b 3 a 2b 4b 418、(本小题满分 12 分) 设 0, P sin 2 sin cos .( 1)若 tsincos , 用含 t 的式子表示 P ;( 2)确定 t 的取值范围,并求出 P 的最大值和最小值 .解:( 1)由 t sincos , 有 t 2 1 2sin cos 1 sin 2 .sin 2 1t 2 .P 1 t 2 tt 2 t 1.( 2) tsincos2sin().Q 0 ,344,441 sin( ) 1. 即 t 的取值范围是 1 t 2.24P(t)t 2 t 1(t 1) 2 5, 从而 P(t) 在 [ 1,1] 内是增函数,在 [ 1, 2]2 4 2 2 内是减函数 . 又 P( 1)1,P( 1 5 2) 2 1, P( 1) P( 2) 1 ) , P( P( ).2 4 2P 的最大值是5,最小值为1.419、(本小题满分 12 分)已知函数 f ( x) sin( x) cos( x ) 的定义域为 R ,( 1)当0时,求 f ( x) 的单调区间;( 2)若(0, ) ,且 sin x0 ,当 为何值时, f ( x) 为偶函数.解:(1)0 时, f (x) sin x cosx2 sin(x)3 4当 2kx2k,即 2kx 2k( kZ )时 f (x)2 424 4单调递增;当 2k2x 4 2k3 ,即 2k4 x 2k5 ( k Z )时 f (x)24单调递减;( 2)若 f (x) 偶函数,则 sin( x ) cos( x ) sin( x ) cos( x )即 sin( x)sin( x) cos(x) cos( x) =02sin x cos 2sin xsin2sin x(cossin ) 02 cos(4 ) 0Q (0,)4 ,此时, f (x) 是偶函数.20、(本小题满分 12分)已知函数xx ,.ysin23 cosx R1y 2取最大值时相应的 x 的集合;( )求( 2)该函数的图象经过怎样的平移和伸变换可以得到 ysin x( x R) 的图象 .解: y 2sin( x).23( 1)当 y最大2.x { x | x 4k3 , k Z}( 2)把 y2sin(x) 图象向右平移 2 ,再把每个点的纵坐村为原来的 1 ,23 3 1,纵坐标不变, 2横坐标不变 .然后再把每个点的横坐标变为原来的2即可得到 ysin x 的图象21、(本小题满分 12 分)已知奇函数 f ( x) 在 (,0) U (0, ) 上有意义 , 且在 (0, ) 上是增函数 , f (1) 0,函数 g () sin 2mcos2m,[0, 2 ]. 若集合 M m g() 0 ,N m f [ g ( )] 0 , 求 M I N.解: Q 奇函数 f (x) 满足 f (1)0,f ( 1) f (1) 0.Q f ( x) 在 (0,) 上是增函数 , f ( x) 在 (,0) 上也是增函数 .由 f ( g( )]0 可得 g( )1 或 0 g( ) 1, Nm g( )1或0 g( ) 1 .M I N m g( )1 .由 g() 1, 得 sin 2m cos2m1, (2 cos )m 2cos 2,2 cos 24 [(2cos )2].m22 coscosQ[0, ], 2 cos[1,2],4 [(2cos )2 4 2 2,2 ]2cosm 4 2 2, 即 M I N m m 4 2 2 .22、(本小题满分 14 分)已知函数f ( ) 4 sin 2 x 2sin 2 x 2, .xx R( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大值时 x 的集合;( 2)求证:函数 f ( x) 的图象关于直线 x对称8解:( 1) f ( x) 2 sin 2 x 2 sin 2x 22 sin 2x 2(1 2 sin 2 x)2 sin 2x 2 cos 2x= 2 2 sin(2x4 )所以 f ( x) 的最小正周期是xR ,所以当 2x42k,即x k 3 (k Z )时, f ( x) 的最大值为 2 2 .28即 f (x) 取得最大值时 x 的集合为 { x | xk3 , k Z}8( 2)证明:欲证函数 f ( x) 的图象关于直线x对称,只要证明对于任意x R ,8有f ( x) f ( ) 成立即可.8 8f ( x) 2 2 sin[2( x) ] 2 2 sin( 2x) 2 2 cos 2x;8 8 4 2f (8 x) 2 2 sin[ 2( x) ] 2 2 sin( 2 x) 2 2 cos2 x.8 4 2f ( x) f ( x).8 8从而函数 f ( x) 的图象关于直线x 对称 .8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元测试题
姓名: 班别:
一、 选择题:
1.与角︒-30终边相同的角的集合是( );
A.},36030|{Z k k x x ∈︒⋅+︒=
B.},18030-|{Z k k x x ∈︒⋅+︒=
C.},27030|{Z k k x x ∈︒⋅+︒-=
D.},36030|{Z k k x x ∈︒⋅+︒-=
2.角
3
7π所在的象限为( ); A.一 B.二 C.三 D.四 -
3.设角α的终边经过点)1,3(-,则ααtan cos +等于( ); A.231+- B.231-- C.63 D.63-
4.已知角α的终边经过点),2(a ,且54
sin -=α,则a 的值为( ); A.38 B.38- C.83± D.83-
5.计算6tan 6cos 4tan 2cos 3tan 3sin π
πππππ
⋅+⋅-⋅的结果为( ); A.1 B.1- C.2 D.2-
6.如果θsin 与θcos 同号,则角θ所在的象限为( );
A.第一、二象限
B.第一、三象限
C.第二、三象限
D.第二、四象限 (
7.若角α是ABC ∆的一个内角,且5
1cos =α,则αsin 等于( ); A.54 B.562 C.
562- D.562± 8.若角α第三象限角,则化简
αα2sin 1tan -⋅的结果为( );
A.αsin -
B.αsin
C.αcos
D.αcos -
9.若5tan -=α,且α第二象限角,则αsin 的值为( ); A.66 B.66- C.
630- D.630 10.若角α是钝角三角形中的最大角,则化简ααααcos sin 1sin cos 122-+-的结果为
( );
A.0
B.1
C.2
D.2-
|
11.化简
1)cos()cos()(sin 2+-⋅+-+ααπαπ的结果为( ); A.1 B.α2sin 2 C.0 D.2
12.已知21tan =α,则ααα
αsin 4cos 3sin 4cos -+等于( );
A.3
B.12-
C.3-
D.21
13.函数x x x f cos ||)(+=是( );
A.奇函数
B.偶函数
C.非奇非偶函数
D.既是奇函数又是偶函数
14.下列函数中是奇函数的是( );
A.1sin -=x y
B.|sin |x y =
C.x y sin -=
D.1cos 3+=x y "
15.函数x y sin 3-=的最大、最小值分别是( );
A.2,4
B.4,2
C.3,1
D.4,2-
16.下列命题中正确的是( ).
A.x y cos =在第一象限是增函数
B.x y cos =在]0,[π-上是增函数
C.x y sin =是增函数
D.x y sin =和x y cos =在第二象限都是减函数
二 填空题:本大题共8小题,每小题3分,共24分. 把答案填在题中横线上.
:
1.已知集合⎭
⎬⎫⎩⎨⎧∈+-==Z k k S ,253ππαα,则S 中在()π2,0之间的角是 .
2.已知圆的半径为10,则︒135的圆心角所对的圆弧长为 .
3.若角α的终边上一点的坐标为)1,2(-,则αcos 的值为 .
4.若0tan sin <⋅θθ,则角θ是第 象限角.
5.已知3tan -=α,且α是第四象限角,则αsin 的值为 .
6.⎪⎭
⎫ ⎝⎛-313sin π . 7.函数1sin 4+-=x y 的最小值为 .
8.已知23sin =
α,且0≤πα2<,求角α等于 . )
三 解答题:本大题共5小题,第1~4小题每小题5分,第5小题8分,共28分.
解答应写出推理、演算步骤.
1.已知角α的终边经过点)3,1(-,试求α的三个三角函数值.
!
2.已知4
1sin -=α,且α是第三象限的角,求角α的余弦和正切的值.
3.化简:ααααα2sin 4cos 1cos 1cos 1cos 1--+++-.。
4.比较
)16sin(π-与)
17sin(π-的大小. (
|
5.用“五点法”画出函数]2,0[,sin 21π∈-=x x y 的简图,并根据图像写出这个函数的最大值与最小值.。