结构力学第9章__力矩分配法(新)
结构力学-力矩分配法

MB=150-90=60
2)去掉约束,相当于
m -150 A-15
M-1-50175
200kN150M-B 90 20kN/m
MB
-3B0 151020
-30↓↓↓↓↓↓↓↓↓↓↓ --12900
C
在结点加上负的不平衡
力矩,并将它分给各个 175
杆端及传递到远端。
mBA 300
mBC 120 -MB=-6090
注意:
• ①结点集中力偶m顺时针为正,产生正的分配弯矩。 • ②分配系数 μ1j 表示1j杆1端承担结点外力偶的比率,它
等于该杆1端的转动刚度S1j与交与结点1的各杆转动刚度 之和的比值,即:μ1j=S1j/ΣS1j ,且Σ μ1j=1 (3)
• ③只有分配弯矩才能向远端传递。
• ④分配弯矩是杆端转动时产生的近端弯矩,传递弯矩 是杆端转动时产生的远端弯矩。
• 用力矩分配法计算多结点的连续梁和无侧移刚架,只要 逐次放松每一个结点,应用单结点的基本运算,就可逐 步渐近求出杆端弯。以图1所示连续梁为例加以说明。
转动刚度
在确定杆端转动刚度时:近端看位移(是否为单位位移)
远端看支承(远端支承不同,转动刚度不同)。
下列那种情况的杆端弯矩MAB=SAB
MAB
MAB
θ MAB
1
√ ① ②
1
MAB
1
③④
1
Δ
转动刚度SAB=4i是( )
A
i
B
A
i
√ √ B ①
③
A
i
B
④
A
i
4i>SAB>3i
√B ②
A
i⑤ B
i
返回
结构力学下多结点力矩分配法

结构力学下多结点力矩分配法引言在结构力学中,力矩分配法是一种常见的分析方法,用于计算多结点约束下的力矩分配。
多结点力矩分配法通过将外加载荷分配给结构中的各个节点,以确定每个节点承载的力矩。
本文将介绍结构力学下的多结点力矩分配法的基本原理和计算方法。
原理多结点力矩分配法的原理基于以下假设:1.结构是一个刚体,可以忽略其变形。
2.结构中的每个节点都可以承受力矩,且力矩的分配是均匀的。
基于这些假设,我们可以将外加载荷分配给结构中的各个节点,并计算每个节点承载的力矩。
力矩的分配是根据节点间的刚性关系来确定的。
计算方法多结点力矩分配法可以通过以下步骤进行计算:1.确定结构的节点个数和节点编号。
2.根据结构的几何形状和边界条件,建立节点间的刚性关系。
3.将外加载荷均匀地分配给每个节点。
可以根据结构的几何形状和边界条件,考虑节点之间的距离和角度来确定各个节点的分配比例。
4.根据节点间的刚性关系,计算每个节点承载的力矩。
可以使用刚体平衡条件来计算力矩的分配。
5.检查计算结果的合理性。
根据结构的几何形状和边界条件,验证计算得到的力矩分配是否符合工程实际。
示例下面以一个简单的桁架结构为例,介绍多结点力矩分配法的计算方法。
假设桁架结构的节点个数为4,节点编号分别为1, 2, 3和4。
外加载荷为M,沿结构的纵向均匀分布。
根据桁架结构的几何形状和边界条件,建立节点间的刚性关系。
假设节点1和节点2之间的刚性系数为k1,节点2和节点3之间的刚性系数为k2,节点3和节点4之间的刚性系数为k3。
将外加载荷均匀地分配给每个节点。
假设节点1承载的力矩为M1,节点2承载的力矩为M2,节点3承载的力矩为M3,节点4承载的力矩为M4,可以得到以下关系:M1 + M2 + M3 + M4 = M根据节点间的刚性关系,可以得到以下关系:k1 * (M2 - M1) = 0k2 * (M3 - M2) = 0k3 * (M4 - M3) = 0通过这些关系,我们可以求解出每个节点承载的力矩。
结构力学 第二十九讲力矩分配法和近似法

一、转动刚度S(劲度系数、抗弯刚度):
表示杆端对转动的抵抗能力。 在数值上 = 仅使杆端发生单位转动时需在杆端施加的力矩。
SAB=4i
SAB=3i
11对等直杆,源自AB与杆的i(材料的S性AB质=i、横截面1的形状和尺寸、杆长)
= ∑S1j
式中∑S1j代表汇交于结点1的各 杆端转动刚度的总和。
Z1 1 4i12
2
4
2i12 3i13 1 i14
解典型方程得:
Z1=
3
(c) M1图
按叠加法
计算各杆端的最后弯矩。
结点1的各近端弯矩为:
M12=
M13=
M14= 以上各式右边第一项为荷载产生的弯矩,即固端弯矩。 第二项为结点转动Z1角所产生的弯矩,这相当于把不 平衡力矩反号后按转动刚度大小的比例分配给近端,因 此称为分配弯矩,m12 、m13 、m14 等称为分配系数, 其计算公式为
及远端支承有关,而与近端支承无关。
SAB = 4i
二、弯矩分配系数m
如用位移法求1解:
D
设iAAD 点M 有iA力AZC1矩iAMB ,B 求MMAB、MAC和MMMMADAAABDC
4iABSZAB1=3iS ABZ1
iAC Z1 1 SAC Z1 3iADSZAB1=1i SAD Z1
目录
第九章 力矩分配法和近似法
§9-1 力矩分配法的基本概念 §9-2 用力矩分配法计算连续梁和
无结点线位移的刚架 §9-4 多层多跨刚架的近似计算
教学内容
第九章 力矩分配法和近似法
教学内容:力矩分配法的基本概念,用力矩分配法计算连 续和无结点线位移的刚架,多层多跨刚架的近似计算,反 弯点。 教学要求: 1、理解力矩分配法的物理意义,转动刚度、分配系数、 传递系数概念的物理意义,多层多跨刚架的近似计算; 2、掌握力矩分配法中正负号规定,能够根据远端的不同 支承条件熟练地写出各种情形的杆端转动刚度、向远端的 传递系数,并计算分配系数;掌握力矩分配法的主要环节, 力矩分配法计算连续梁和无结点线位移刚架。 重点: 力矩分配法的基本原理,连续梁和无结点线位移 刚架的计算。 难点:多层多跨刚架的近似计算。
结构力学_第九章_作业参考答案

截面
DA
AD
AB
BA
BE
分配 系数 固端 弯矩
0.333
0.667
0.4
0.2
第一次
12←
24
12
第二次 -2←
-4
-8
→-4
第三次
0.8←
1.6
0.8
第四次 -0.13← -0.26
-0.54 →-0.27
第五次
0.05←
0.11
0.05
最终 弯矩
-2.13
-0.02 -4.28
-0.03 4.28
1/4 结构
3
华南农业大学 水利与土木工程学院(College of water conservancy and Civil Engineering, SCAU)
9-12 试计算图示空腹梁弯矩,绘制 M 图。 E = 常数
解:
截面
AB
BA
BC
CB
CD
CE
EC
分配 系数 固端 弯矩
0.856
0.143
0.143
0.856
0
1
1
0
1
第一次
0.286← -0.286 -1.714
0
第二次
-1.101 -0.185 →-0.185
第三次
0.026
0.159
0
第四次
最终
弯矩
-1.101
1.101
0.555 -1.555
1
注:表中弯矩× Fl 12
1/4 结构
4
0.0588 -18.75
第一次
-1.47←
1.47
第二次
李廉锟《结构力学》(上册)章节题库(9-11章)【圣才出品】

图 9-4 2.如图 9-4 所示结构中,力矩分配系数 μAB=____。
【答案】μAB=0.75。
图 9-4
5 / 52
【解析】因为 SAB=3i,SAC=i,SAD=0。 3.用力矩分配法计算如图 9-5(a)所示结构,EI=常数,可得:MAB=____KN·m, MBA=____kN·m,MCA=____kN·m。
图 9-6
6 / 52
【答案】
【解析】本题可用剪力分配法计算。方法是柱顶加支杆,由载常数求得支杆反力为 ,
再反向作用于柱顶由剪力分配法求各柱分得剪力均为
。(但左柱总剪力不为此
值)最后弯矩图如图 9-7 中左图所示。
图 9-7
三、判断题
1.在力矩分配法中,杆端的转动刚度只与杆另一端的支承情况有关。( ) 【答案】错 【解析】除杆另一端的支承情况外,还与线刚度 i 有关。
4.为什么单跨对称刚架可以用无剪力分配?单跨不对称刚架直接用无剪力分配有什么 问题?
答:(1)单跨对称刚架可以用无剪力分配的原因 单跨对称刚架受任意荷载作用时,可将其荷载分解成对称和反对称两组。在对称荷载组 作用下,可用力矩分配法求解。在反对称荷载组作用下,取半边结构后,主柱变成有相对线 位移但剪力静定的杆,可用无剪力分配法求解。 (2)单跨不对称刚架直接用无剪力分配所存在的问题 单跨不对称刚架,不能取半边结构计算,也没有存在线位移但剪力静定的杆,故不能用 无剪力分配求解。
图 9-1
1 / 52
【答案】D 【解析】由于 A 点以右为静定部分,计算分配系数时只需考虑超静定部分即可。由于 转动刚度 SAC=4i,SAB=4i,SAD=0,故 μAB=1/2。 3.如图 9-2 所示结构中,当结点 B 作用外力偶 M 时,用力矩分配法计算 MBA 等于( )。 A.M/3 B.M/2 C.M/7 D.2M/5
结构力学——力矩分配法分解

3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
第三节 多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩;
100k0N
EI
1 EI
2 EI
0.43 0.57 0.57 0.43
-500 -1000
M3B=1000
例题:有支座移动(已知结点线位移)E=200GPa,I = 2500cm4
绘制弯矩图。
A
B
C
D
EI
EI
=1cm
10m
10m
10m
0.429 0.571
0.571 0.429
MF
3000
3000 -1500
2 . 不相邻 点可同时 释放.
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
A
EI
10m
1 EI
10m
100k0N 2 EI 3 B 3B是悬臂梁,
转动结点3 时,
10m 1m 悬臂可自由转
0.43 0.57 0.5 0.5 1 0
动,固其转动
MF
1000 刚度为零
或A
MF
100k0N
放松状态的计算(与单点放松不同)。
力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
第三节 多结点力矩分配法
朱明zhubob结构力学9-2_1弯矩分配法

AB
SAB
SAB SAE SAD
SAC
4i 4i 4i i 3i
1 3
,
AE
4i 12i
1 3
,
AD
i 12i
1 12
,
AC
3i 12i
1 4
⑵计算固端弯矩(查表7-1): 0.035ql 2 0.179ql 2
M
F AB
MBFA
ql2 12
,
0.048ql 2 0.096ql 2 0.073ql 2 0.083ql 2 0.083ql 2
SAB M S
A
MAC SAC A iACA
SAC M S
A
MAD SAD A 3iADA SAD M S
近端弯矩:
远端弯矩:A
MAB 4iABA MAC iACA MAD 3iADA
MBA 2iABA MCA iACA
§9-2 弯矩分配法 9-2-1 基本概念
⒈ 名词解释 ⑴ 转动刚度S: 表示杆端对转动的抵抗能力。
远端固定: S 4i
远端简支:S 3i
远端滑动: S i
远端自由:S 0
§9-2 弯矩分配法
9-2-1 基本概念
⒈ 名词解释
⑴ 转动刚度S: 表示杆端对转动的抵抗能力。
⑵ 分配系数μ :
发生, 适合于用弯矩分配法。
S 15i
⑴各杆转动刚度: O
SOA k l l 3i, SOB 3i,
SOC 0, SOD 4i, SOE 0, SOF 0, SOG 4i, SOH i
结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。
假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。
题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。
〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。
〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。
习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。
(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
第9章 渐进法及超静定力的影响线 9-1 力矩分配法的基本概念 9-2 单结点的力矩分配法 9-3 多结点的力矩分配法 9-4 计算结果的校核
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
M
1 M21 2 M12 M31 M13 M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
96 64 → 32
-23.6 ← -47.3 -47.3 → -23.6 14.2 9.4 → 4.7
-1.2 ← 0.7 0.5 →
-2.3 -2.3 → -1.2 0.3
-0.1 -0.2
200.9 -200.9
237.3 -237.3 87.7
200.9
237.3
87.7
9-4计算结果的校核
1 2
M
f ki
3iik
因为,汇交于同一刚结点的各杆转角都相等, 所以,都应满足上式.
9-4计算结果的校核
例题
80kN
i=2 3m 3m
30kN/m
i=1 10m
160kN
i=1 3m 5m
分配系数 固端弯矩
分配 与 传递
杆端弯矩
M图(kNm)
0.6 0.4 90 -250
0.5 0.5 250 -187.5 112.5
56.4
70.2
51.6
4.8
2.4
M图(kNm)
9-2 单结点的力矩分配——基本运算
例题
0.8 0.2
Bi C
qi
l
A l
ql2/12 -4ql2/60
-ql2/60
ql2/60 -ql2/60
C
ql2/60 ql2/60
ql2/60
M图
7ql2/60
-ql2/12
-2ql2/60
-7ql2/60 A
9-2 单结点的力矩分配——基本运算
练习
i
i
k
i
Sik=4iik
k
i
Sik=4iik
k Sik=3iik
k
Sik=0
i
k
Sik=4iik
i
k
EI=∞ K
Sik=Kl2
l
i
k Sik=4iik
9-2 单结点的力矩分配——基本运算
q
i l
Mik=-ql2/12 Mki=ql2/12
k
9-2 单结点的力矩分配——基本运算
Sik Sik
i
ik 1
i
3 传递系数:近端发生转角时,远端弯矩与近端弯矩的比值.
Cik
M ki M ik
1
2
0
远端为固定端 远端为铰支端
1 远端为平行支链杆
9-2 单结点的力矩分配——基本运算
例题
M
ii
ii
4/7 3/7
固端弯矩
-M
分配、传递 2M/7
← 4M/7 3M/7
→
0
杆端弯矩 2M/7
5m
B
C
EI=常数
A
D
125kNm
ABCD部分: 弯矩图一样 剪力图一样 轴力图不一样
5m 5m
9-4计算结果的校核
平衡条件:每次分配时,自然满足
变形协调条件:
M ik
4iiki
2iikk
M
f ik
M ki
2iik i
4iikk
M
f ki
消去远端转角 k
i
M ik
1 2
M
ki
M
f ik
36 -18
分配、传递 -3.6
← -7.2 -10.8 →
0
最后M -39.6
28.8 -28.8
0
39.6
28.8
M图
(kNm)
9-2 单结点的力矩分配——基本运算
例题
i
l
固端弯矩 分配、传递 FPl/2
杆端弯矩 FPl/2
M图 FPl/2
2i l
10
-FPl FPl 0 FPl -FPl
FPl
i
M ik
1 2
M
ki
M
f ik
1 2
M
f ki
3iik
对于B点
AB B
200.9 0 90 0
3 2
110.9 6
200.9 1 237.3 250 1 250
BC B
2
31
2
55.45 110.9
3
6
同理,可对C点进行校核
9-4计算结果的校核
结束
9-4计算结果的校核
M21 2i121 M31 i131 M41 0
9-1力矩分配法的基本概念
根据平衡条件
M 0
1
M12 M13 M14 M
M 1 4i12 i13 3i14
M12
4i12
4i12 i13 3i14
M
M13
4i12
i13 i13
3i14
M
M14
4i12
3i12 i13 3i14
4m
练习
100kNm i
i i
i
50kNm
12kN/m
4m
练习
4m
i
i
2Δ
l
l
4m Δ
9-3 多结点的力矩分配——渐进运算
100
45.7
40.3
100
22.9
54.3
9-3 多结点的力矩分配——渐进运算
100kN
12.5kN
5m 100kN
B
C
EI=常数
5m
A
D
5m 5m
10m
100kN
5m 100kN
4M/7 3M/70M图Fra bibliotek2M/7
4M/7 3M/7
9-2 单结点的力矩分配——基本运算
q
例题
il
i
l
4/7 3/7
固端弯矩 分配、传递 2ql2/56 杆端弯矩 2ql2/56
← 4ql2/56 ← 4ql2/56
-ql2/8 3ql2/56 -4ql2/56
4ql2/56
M图 4ql2/56
→0 →0
FP 0
9-2 单结点的力矩分配——基本运算
例题
4m
30kN/m B i=2
4m
100kN
D
A
i=1.5
i=2
C
3m
2m
9-2 单结点的力矩分配——基本运算
AB
2
3
23 2 4 1.5 4
0.3
AD
2
1.5 4 3 2 4 1.5 4
0.3
100 22 M AD 52 48kNm
AC
23
24 2 4 1.5 4
0.4
1 M AB 8 3016 60kNm
100 2 32
M DA
52
72kN m
AB AC AD
B
0.3 0.4 0.3
D
A
60
-48
72
-3.6 -4.8 -3.6
→
-1.8
56.4 -4.8 51.6
→
70.2
C↓ -2.4
9-2 单结点的力矩分配——基本运算