卷心菜中过氧化物酶热稳定性的初步方案设计研究

合集下载

油脂氧化稳定性的研究_孙曙庆

油脂氧化稳定性的研究_孙曙庆

油脂氧化稳定性的研究孙曙庆(国家食品质量监督检验中心,北京,100027)摘 要 用R ancimat仪器测定了油脂氧化稳定性。

结果表明,温度的高低,脂肪酸不饱和度,抗氧化剂和增效剂的使用,均与油脂氧化稳定性有着密切的关系。

关键词 油脂 氧化稳定性 油脂主要分为植物油和动物油两大类,它是人类膳食中的基础营养素之一,是人体中脂肪和热量的主要来源。

它所产生的热量相当于同量碳水化合物和蛋白质产生热量的总和。

此外,它不仅能为人体提供一些所需要的营养成分,如磷脂、甾醇或胆固醇,以及含多个双键的必需脂肪酸(亚油酸和花生四烯酸等)。

而且还能帮助人体吸收脂溶性物质和脂溶性维生素等。

近年来的动物实验证明,缺乏必需脂肪酸将导致生长迟缓,并出现鳞屑样皮炎;一些研究认为婴儿的皮肤湿疹是缺乏必需脂肪酸的一种表现;在临床上发现成人长期靠静脉注射给养的患者,在不补充必需脂肪酸时会产生皮疹。

实验还证明花生四烯酸是合成前列腺素所必需的前体,它具有抑制血栓形成的功能。

另外,多不饱和脂肪酸还有降低血浆中胆固醇和血脂的作用[5]。

在人们普遍关心油脂中不饱和脂肪酸生理功能的同时,还应注意它给人体健康带来危害的另一面。

由于不饱和脂肪酸中的双键很容易被氧化,导致油脂酸败(败),从而丧失其原有的生理功能以及产品应有的风味和口感,甚至产生一些对人体健康有害的物质,所以对油脂氧化稳定性的问题应给予充分的重视。

目前研究油脂氧化问题时,通常采用2种方法,(1)用测定过氧化值(过氧化物含量)、羰基值(羰基化合物含量),或用气相色谱、紫外吸收光谱测定不饱和脂肪酸含量,来评价油脂的氧化程度;(2)用活性氧法或烘箱法来评价油脂氧化的稳定性,此方法是将油脂加热、通氧,定时测定过氧化值,以过氧化值到达某一预先设定值的时间来反映油脂的氧化稳定性,达到设定值的时间越长表示油脂越稳定。

上述2种方法相比较,前者只能表示油脂在某个时期的被氧化程度,却不能反映其氧化稳定性的好坏;后者虽能反映油脂的氧化稳定性,但操作比较费时和繁琐。

水稻Ⅲ类过氧化物酶基因IPH1调控水稻株高

水稻Ⅲ类过氧化物酶基因IPH1调控水稻株高

水稻Ⅲ类过氧化物酶基因IPH1调控水稻株高冯萍;刘杨;杨杰;马宏蕾;秦诚;王楠;沈文强【期刊名称】《西南大学学报(自然科学版)》【年(卷),期】2024(46)2【摘要】过氧化物酶(peroxidase, PRX)是过氧化物酶体的标志酶,能够保护细胞免受氧化损伤和解除H2O_(2)的毒害作用,还可以增强自然杀伤细胞的活性,调节细胞的增殖、分化和凋亡等.其中Ⅲ类过氧化物酶(CⅢPRXs)是植物中特有的过氧化物酶家族,通过清除活性氧(ROS)在植物免疫中发挥重要作用,然而CⅢPRXs在水稻株型建立中的功能尚不清楚.通过基因编辑技术CRISPR/Cas9获得CⅢPRXs基因(LOC_Os12g09460)两种不同形式的敲除突变体iph1-1,iph1-2.iph1突变体的株高显著高于野生型,除倒1节节长(即第5节)外,其他节节长均显著或极显著长于野生型.农艺性状考察表明,穗长及结实率等主要性状差异无统计学意义;通过RT-qPCR技术进行的表达模式分析表明,IPH1在根、茎、叶、鞘、穗中均表达,并在茎和鞘中表达相对较高;亚细胞定位分析表明,IPH1蛋白主要定位于过氧化物酶体中.进一步通过生理分析,发现突变体中过氧化物酶活性显著降低,同时H2O_(2)质量分数显著增加.这些结果初步证实了IPH1能够通过过氧化氢途径调控水稻株高的形成,可为丰富株高调控网络提供有利的基因资源,进一步为株型相关生物育种奠定基础.【总页数】10页(P24-33)【作者】冯萍;刘杨;杨杰;马宏蕾;秦诚;王楠;沈文强【作者单位】西南大学水稻研究所/农业科学研究院/转基因植物与安全控制重庆市重点实验室【正文语种】中文【中图分类】S511【相关文献】1.通过抑制水稻高度控制基因D18来改变水稻株高2.水稻株高数量性状基因座位与主效矮秆基因的关系3.水稻株高表观遗传调控研究取得重大进展4.我国水稻株高表观遗传调控研究取得重大进展5.水稻株高表观遗传调控研究取得重大进展因版权原因,仅展示原文概要,查看原文内容请购买。

过氧化物酶和a-淀粉酶的测定

过氧化物酶和a-淀粉酶的测定

过氧化物酶和a-淀粉酶的测定一、实验目的1、了解过氧化物酶和a-淀粉酶活力测定的测定原理及方法;2、理解淀粉的结构和性质。

二、实验原理过氧化物酶普遍的存在于植物中,具有很高的耐热性。

如果食品材料经热处理后,过氧化物酶已失活,那么可以认为与其共存的酶残存的可能性不会太大。

因此,常利用它作为判断视频材料热处理是否充分的指标。

过氧化物酶催化的反应:H2O2 + AH2过氧化物酶 A +2H2O。

式中AH2是无色还原性化合物,经氧化作用后转变成有色的化合物A,因此,可以采用分光光度法测定酶的活力,也可以用目测法估计食品中过氧化物酶的活力。

a-淀粉酶能催化水解淀粉分子中的a-1,4糖苷键,湿淀粉的相对分子质量下降,同时产生还原性的末端。

当淀粉相对分子质量下降时,淀粉糊粘度下降,因此可以用肉眼观察到淀粉胡话变稀即液化的现象。

根据这一特点判断a-淀粉酶的催化作用是否存在,也可以采用3,5-二硝基水杨酸钠与淀粉水解形成的还原糖反应,根据形成的棕红色氨基化合物的量测定淀粉酶的活力。

三、实验步骤(一)热烫时间对卷心菜(或花菜)中过氧化物酶残存量的影响。

1、将卷心菜切成1×2cm的小块。

2、将卷心菜小块在沸水中分别热烫0.5, 1.0, 1.5, 2.0, 2.5,3.0分钟后立即移入冷水中冷却。

3、将经热烫的卷心菜各两片根据加热时间不同分别置于6根2×15cm的试管中,加入15ml去离子水,1ml1%愈创木酚溶液和1ml0.5%过氧化氢溶液,随即震荡试管使其均匀混合。

4、两分钟后,观察卷心菜表面及溶液中的变化,按照无变化、产生粉红色、浅棕色和强烈的颜色变化四种等级记录实验结果。

(二)a-淀粉酶作用于淀粉按下列步骤进行实验:试管1 试管2 试管3 淀粉0.3g 0.3g 0.3g水2ml 2ml 2ml 在100℃水浴中搅拌直至淀粉糊化,然后冷却至50℃左右,再加入:a-淀粉酶0滴1滴2滴水2滴1滴0滴放置5~10min观察淀粉糊化表面是否出现液化现象,再加入:氢氧化钠6ml 6ml 6mlDNS试剂3滴3滴3滴混合后置于100℃水浴中,3min 后,观察颜色变化并作详细记录四、实验材料与试剂卷心菜或花菜;1%愈创木酚:1ml愈创木酚溶于100ml95%乙醇中0.5%过氧化氢:1ml30%过氧化氢溶液于60ml去离子水中3,5-二硝基水杨酸钠(DNS试剂);普通玉米淀粉0.5mol/L氢氧化钠溶液;1:100的a-淀粉酶提取液五、说明1、经过热烫失活的过氧化物酶在室温下可能出现部分再生现象,因此观察卷心菜中酶活力残存情况下不能无限制的延长时间。

卷心菜中过氧化物酶热稳定性的初步研究

卷心菜中过氧化物酶热稳定性的初步研究

实验一卷心菜中过氧化物酶热稳定性的初步研究一、实验原理果蔬中的过氧化物酶(peroxidase)往往具有较高的热稳定性,对果蔬进行热烫处理时,常以过氧化物酶是否失活作为热烫是否充分的标准。

许多研究表明果蔬中的过氧化物酶有热稳定和热不稳定两部分。

这两部分的比例取决于果蔬的品种和热烫处理的温度。

过氧化物酶催化的典型反应为:H2O2+AH2→A+2H2O。

AH2是无色的还原性化合物,如果它经过氧化转变成有色的A,那么反应体系在特定波长下的吸光值就会随反应进行而增加。

因此,可以用分光光度法测定过氧化物酶的活力。

二、试剂和仪器试剂:0.05mol/L磷酸盐缓冲液pH7.0,含1.0mol/L NaCl(缓冲液Ⅰ)、0.1mol/L 磷酸盐缓冲液pH7.0(缓冲液Ⅱ)、1%邻苯二胺-乙醇溶液、0.3%过氧化氢溶液仪器:组织捣碎机、抽滤装置、水浴锅、721分光光度计(含比色皿)、秒表、常规玻璃仪器三、实验步骤1、从卷心菜中提取过氧化物酶125g卷心菜+125mL缓冲液Ⅰ↓均质(20000rpm,2min)匀浆↓抽滤液体↓离心(8000rpm,15min,4℃)↓ˉˉˉˉˉˉˉˉˉˉˉˉˉˉˉˉˉ↓残渣滤过液(粗酶液)2、过氧化物酶热处理将从卷心菜中萃取得到的过氧化物酶粗酶液置于试管中。

取适量酶液稀释5倍左右,过滤后测定酶活。

另取适量酶液分别置于已编号的试管中,将试管在60℃水浴中保温 1 min,然后移至85℃水浴锅中,分别处理0.5min、1min、1.5 min、2 min、3 min、5 min、7 min和10 min,然后立即将试管转移至冰浴中,快速冷却至0℃。

再取适量酶液分别置于已编号的试管中,并将试管在60℃水浴中保温 1 min,然后在100℃下分别处理15s、30 s、45 s、1 min、1.5 min、2 min和3 min,然后在冰浴中快速冷却,测定残余过氧化物酶活力。

3、过氧化物酶活力测定如果热处理后酶液中产生混浊,应在比色前过滤去除沉淀。

9多酚氧化酶,过氧化物酶,脂肪氧合酶

9多酚氧化酶,过氧化物酶,脂肪氧合酶
• 天然方法: 如利用色拉酱的几种成分进行互 相抑制.如菠萝汁对苹果切片的酶促褐变有 很好的抑制作用;蜂蜜中分子量大于600的 某些多肽对白葡萄及一些水果切片的PPO
2020/4/17
化学方法 抗坏血酸
• 它对酶促褐变有较好的抑制作用,主要是由于其能把 醌还原成酚类化合物,从而阻止了黑色素的形成.但 如果抗坏血酸被氧化成脱氢抗坏血酸(DHAA),则醌 类物质同样可以积累而形成黑色素.
2020/4/17
酶的各种形式之间可以相互转变。导致相互转变的 因素: 酶液 pH
• PPO的多种分子离形子式强度或浓度
蛋白质解离剂的作用等
2020/4/17
PPO的多种分子形式
PPO不同形式之间的差别表现在
– 底物特异性 – 最适pH – 温度稳定性 – 对抑制剂量敏感性等
此外,氧化和羟基化活力之比在PPO的 不同分子形式之间也有差别。
2020/4/17
3.PPO抑制剂
许多金属螯合剂如氰化物,一氧化碳,铜锌灵 ,2-巯基苯并噻唑,二巯基丙醇或叠氮化合物对 PPO都有抑制作用,其中有些还能与酶反应生成 的醌作用。 • 在这类抑制剂中,对食品加工和保藏有实际价值 的是抗坏血酸,柠檬酸,亚硫酸盐,巯基化合物 。 • 4-己基间苯二酚是近年来发现并已被验证对酶促 褐变(如马铃薯,苹果,莴苣)具有较好抑制作 用的新型抑制剂。
• 若它能与抗坏血酸或其衍生物联合处理(如 1%柠檬酸+0.25%抗坏血酸)对切分土豆、 苹果等有更佳的抑制褐变作用
• 乙二胺四乙酸(EDTA)作为一种螯和剂,与其 它褐变抑制剂一起处理,对切分果蔬也有很 好的抑制褐变的效果.
2020/4/17
化学方法 4-已基间苯二酚
• 4-已基间苯二酚(4-HR)是近年来发现的并且已经 被实验证实对酶促褐变(如苹果、土豆、莴苣)有 较好抑制作用的新型抑制剂.

PGC-lα_调控畜禽肌肉脂肪生长代谢及其与肉品质研究进展

PGC-lα_调控畜禽肌肉脂肪生长代谢及其与肉品质研究进展

辛建增,唐婷,刘盛.PGC-lα调控畜禽肌肉脂肪生长代谢及其与肉品质研究进展[J].畜牧与兽医,2024,56(5):138-145.XINJZ,TANGT,LIUS.Progressinresearchonrelationshipbetweenregulationofperoxisomeproliferator-activatedreceptorγ-coactivator-1αongrowthandmetabolismofmuscleandfatandmeatqualityinlivestockandpoultry[J].AnimalHusbandry&VeterinaryMedicine,2024,56(5):138-145.PGC-lα调控畜禽肌肉脂肪生长代谢及其与肉品质研究进展辛建增1,唐婷1,刘盛2∗(1.烟台大学生命科学学院,山东烟台㊀264000;2.烟台大学药学院,山东烟台㊀264000)摘要:过氧化物酶体增殖物激活受体γ辅激活因子1α(PGC-lα)是一种具有广泛功能的转录调节因子,其在动物体内参与线粒体生物合成㊁肌纤维类型转化㊁脂肪分化㊁肌内脂肪沉积㊁糖脂代谢㊁能量代谢等多项生理过程,其中,肌纤维类型和肌内脂肪含量与肉品质密切相关㊂因此,在分子水平深入探究PGC-1α调控肌肉和脂肪的生长代谢过程将为改善肉品质提供新的研究思路㊂本文系统概述了PGC-lα的结构特点及PGC-1α调控肌肉线粒体增生㊁脂肪分化㊁能量代谢等过程的机制,重点介绍了PGC-lα调控肌纤维类型转化㊁肌内脂肪沉积㊁糖类代谢及其与肉品质形成之间的可能关系,以期为今后通过PGC-1α调控畜禽肌肉脂肪生长代谢,进而改善肉品质提供参考㊂关键词:过氧化物酶体增殖物激活受体γ辅激活因子1α;肌纤维类型;肌内脂肪沉积;能量代谢;肉品质中图分类号:S826㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0529-5130(2024)05-0138-08Progressinresearchonrelationshipbetweenregulationofperoxisomeproliferator-activatedreceptorγ-coactivator-1αongrowthandmetabolismofmuscleandfatandmeatqualityinlivestockandpoultryXINJianzeng1,TANGTing1,LIUSheng2∗(1.CollegeofLifeSciences,YantaiUniversity,Yantai264000,China;2.CollegeofPharmacy,YantaiUniversity,Yantai264000,China)Abstract:Peroxisomeproliferator-activatedreceptorγ(PPAR-γ)coactivator1α(PGC-lα)isaversatiletranscriptionalregulator.Thisregulatorisinvolvedinmanyphysiologicalprocessessuchasmitochondrialbiosynthesis,musclefibertypetransformation,adiposedifferenti⁃ation,intramuscularadiposedeposition,glycolipidmetabolism,andenergymetabolisminanimals.Musclefibertypeandintramuscularfatcontentarecloselyrelatedtomeatquality.Therefore,exploringtheregulationofPGC-1αonthegrowthandmetabolismofmuscleandfatatthemolecularlevelwillprovidenewresearchideasforimprovingmeatquality.Inthispaper,thestructuralcharacteristicsofPGC-lαandthemechanismofPGC-1αregulatingmusclemitochondria,adiposedifferentiationandenergymetabolismaresystematicallyreviewed.Theregu⁃lationofPGC-lαonmusclefibertypetransformation,intramuscularfatdeposition,carbohydratemetabolismanditspossiblerelationshipwiththeformationofmeatqualityareemphasized;whichprovidesreferenceforimprovingmeatqualitybyregulatingthegrowthandmetabo⁃lismofmuscleandfatbyPGC-1αinlivestockandpoultry.Keywords:PGC-1α;musclefibertype;intramuscularfatdeposition;energymetabolism;meatquality㊀㊀畜禽肉品质包括肉色㊁嫩度㊁系水力㊁风味㊁多汁性等多个方面㊂因此,肉品质性状是一个复杂的综合性状㊂肉品质受宰前和宰后多种因素的影响,例如遗传(品种㊁性别㊁年龄㊁基因)㊁营养水平㊁饲养管理㊁宰前运输㊁屠宰方式㊁宰后成熟方式等,其中㊀收稿日期:2023-05-25;修回日期:2024-03-20基金项目:烟台大学博士启动基金项目(SM20B113)第一作者:辛建增,男,博士,讲师∗通信作者:刘盛,讲师,研究方向为食品化学,E-mail:liush⁃eng87@126 com㊂遗传因素起决定性作用㊂然而,在饲养过程中,畜禽肌肉和脂肪的生长发育及代谢对肉品质的形成也起着至关重要作用㊂畜禽肌肉的生长发育及代谢是一个及其复杂的过程,由多种基因和信号通路在不同水平上参与调控,各调控因子与信号通路分工协作组成精细复杂的调控网络,有序调控肌肉的生长发育㊁肌纤维类型的转化㊁肌纤维的能量代谢等生物学过程㊂而脂肪组织是畜禽维持生命活动必不可少的组织,通常储存在皮下㊁内脏㊁肌肉等部位㊂与肉品质最相关的脂肪为肌内脂肪和肌间脂肪㊂其中肌内脂肪的含量与肉品质最为密切,是肉品领域的研究热点,肌内脂肪的含量会影响肉的系水力㊁风味㊁多汁性等品质㊂过氧化物酶体增殖物激活受体γ辅激活因子1α(PGC-1α)是肌肉和脂肪生长代谢过程中必需的转录共调节因子,它参与调控肌细胞线粒体生物合成㊁肌纤维类型的转化㊁肌细胞能量代谢等生物学过程㊂PGC-1α在脂肪的分化㊁沉积㊁合成㊁代谢等方面也发挥重要的调节作用㊂此外,PGC-1α还参与机体的适应性产热㊁肝脏的糖异生㊁血管生成㊁调控细胞中活性氧簇水平㊁调控机体的生物钟基因等生理过程㊂PGC-1α功能广泛,参与众多生理调节过程㊂本文将对PGC-1α分子结构特征,PGC-1α调控肌纤维能量代谢㊁肌纤维糖代谢㊁肌纤维类型转化㊁脂肪分化㊁肌内脂肪沉积㊁脂肪代谢及其与宰后肉品质的可能关系进行了系统阐述,并对相关可能的研究热点进行了展望㊂以期为更深入地探究PGC-1α信号通路及其靶基因调控畜禽肌肉脂肪生长代谢和提高肉品质提供参考㊂1㊀PGC-1α概述PGC-1α是由Spiegelman团队1998年最先在小鼠棕色脂肪组织中发现的一种转录共调节因子[1]㊂PGC-1α属于PGC-1家族,该家族共有3个成员,另外两个分别为过氧化物酶体增殖物激活受体γ(PPAR-γ)辅激活因子-1β(PGC-1β)和PGC-1相关辅活化因子(PRC),其家族成员蛋白长度存在着一定的差异,但存在着相应的保守序列㊂PGC-1家族的N端结构域均含有转录激活域,C端结构域均包含富含丝氨酸/精氨酸的RS域和RNA结合区域(RMM)[2]㊂PGC-1α与PGC-lβ同源性较高,而与PRC的同源性则相对较低㊂人的PGC-1α基因位于染色体4p15 1区域,全长为681kb,由13个外显子和12个内含子组成,其mRNA含有6908bp,编码一个包含798个氨基酸,分子量91kDa的蛋白质[3],其他常见畜禽的PGC-1α基因与蛋白质基本信息见表1(引自NCBI)㊂PGC-1α的蛋白结构域,其N端有一个富含酸性氨基酸的转录激活区(activationdomain,AD),该区内有一个LXXLL结构域(X:任意氨基酸;L:亮氨酸),此结构域是PGC-1α与配体依赖型核受体结合的基础㊂负调控元件和转录因子结合位点位于PGC-1α的中间区域,当转录因子与PGC-1α结合时,负调控元件就会暴露出来[4]㊂C末端是一个RNA结合基本序列RRM和富含丝氨酸/精氨酸的RS区域,这个区域可以与RNA聚合酶Ⅱ的C末端相互作用,处理新转录的RNA㊂PGC-1α上还有与细胞呼吸因子(NRF)㊁肌细胞特异性增强子2C(myocyteenhancerfactor2C,MEF2C)及PPARγ结合的位点[3]㊂因此,PGC-1α是作为转录因子的激活因子来调控其他基因的表达㊂表1㊀人与常见畜禽PGC-1α基因和蛋白质基本信息物种所处染色体基因长度/kbmRNA长度/bp内含子数外显子数蛋白肽链长度(氨基酸残基数量)蛋白质分子量/kDa人46816908121380392猪86966738121379690狗36415841131480391牛67156324121379690羊67186680121378789鸡43486615121380892鸭43619716121380892鸽子43644913121367077㊀㊀PGC-1α分子本身的促转录激活活性较低,只有被相应的受体募集后,其活性才显著增强㊂PGC-1α与核受体结合后,会导致PGC-1α构象发生改变,并与下游因子作用,发挥转录激活作用㊂PGC-1α不仅对PPARγ具有组织特异性的辅激活作用,而且也是类维生素AX受体(RXR)㊁肌细胞增强因子2c(myocyteenhancerfactor2C,MEF2C)㊁甲状腺激素受体(thyroidhormonereceptor,TR)㊁糖皮质激素受体(glucocorticoidreceptor,GR)㊁雌醇受体α(es⁃trogenreceptor,ERα)和PPARs等核受体(nuclearreceptor,NR)的辅激活因子[2,5-7]㊂PGC-1α的表达具有组织特异性,通常在线粒体含量丰富和氧化代谢活跃的器官或组织中高表达,如骨骼肌㊁心脏㊁棕色脂肪组织㊁肝脏㊁肾脏和大脑组织等,而在肺㊁小肠㊁结肠和胸腺中只有很少量的表达,在胎盘㊁脾和外周白细胞中未见表达[8]㊂前已述及,PGC-1α在肌肉脂肪的生长发育及代谢中发挥着重要调控作用,下面将针对其活性调控㊁肌肉脂肪生长代谢及其与肉品质和一些生理功能的相关作用进行论述㊂2㊀PGC-1α活性调控相关信号因子PGC-1α含有磷酸化㊁乙酰化㊁糖基化㊁甲基化㊁泛素化等翻译后修饰的位点,这些翻译后修饰对于其发挥作用时的精细化调控具有重要意义[9]㊂其中当前研究较多的为乙酰化和磷酸化修饰㊂沉默信息调节因2相关酶1(sirtuin1,SIRT1)和AMP依赖的蛋白激酶(adenosine5-monophosphate-activatedproteinkinase,AMPK)是调控PGC-1α去乙酰化和磷酸化的关键酶,此两种酶对于机体肌肉脂肪生长发育和能量代谢的精准调控和稳态维持具有重要的意义㊂SIRT1可以将乙酰化后的PGC-1α去乙酰化,从而提高PGC-1α的活性[10-11]㊂此外SIRT1是体内代谢的感受器,当机体处于能禁食或者饥饿等状态下,SIRT1会加速PGC-1α的去乙酰化,导致其活性上升,可增加线粒体的合成㊂而一些乙酰转移酶例如组蛋白乙酰化酶氨合成通用控制蛋白5(histoneacetyl⁃transferaseGCN5,GCN5)和核受体共激活因子-3(steroidreceptorcoactivator3,SRC-3)可以使PGC-1α发生乙酰化,从而抑制其活性[12-15]㊂此外,SIRT1的去乙酰化作用还是PGC-1α调控生物钟基因表达的重要事件㊂SIRT1与乙酰化酶协调作用,精细化调节PGC-1α发挥作用㊂AMPK是体内能量感受器,当机体能量处于缺乏状态时,AMPK可使PGC-1α磷酸化位点磷酸化,从而提高PGC-1α活性,激活与能量代谢相的通路,引起线粒体增生㊁脂肪酸氧化等生物学过程增加[14]㊂3㊀PGC-1α与肌肉生长代谢及肉品质3 1㊀PGC-1α与肌肉线粒体合成及肉品质线粒体是为骨骼肌生长发育提供能量的细胞器,它对骨骼肌发挥正常生理功能具有重要的意义,PGC-1α是调控线粒体生物合成和氧化磷酸化过程中的关键调节因子[15-16]㊂研究发现,PGC-1α可参与调控肌纤维中线粒体的生成,并且还能够调节线粒体的融合及分裂,在某些组织,如白色脂肪㊁肌肉㊁神经㊁心脏中超表达PGC-1α,都会促进线粒体的生成[15-17]㊂PGC-1α促进线粒体生成主要通过与转录因子结合发挥作用,常见的为核呼吸因子-1(nuclearrespiratoryfactor-1,NRF-1)和核呼吸因-2(nuclearrespiratoryfactor-2,NRF-2)㊂研究发现,PGC-1α与核呼吸因子结合后会刺激线粒体转录因子A(mitochondrialtranscriptionfactorA,mtTFA)的合成㊂这些因子直接影响线粒体生成,在线粒体内引起线粒体DNA的双向转录,实现了线粒体的增殖[18-19]㊂畜禽宰杀放血后,肌肉中的线粒体发生肿胀,最终结构破坏而破裂,但肉品质形成过程中,线粒体的生理代谢状态与肉嫩度㊁肉色㊁持水力等品质有着密切关系㊂研究表明,宰后初期肌肉线粒体耗氧率与肉品嫩度密切相关,高嫩度牛肉拥有更高的线粒体耗氧率[20]㊂宰后肌肉中线粒体影响肉色稳定性主要通过两种途径,一是线粒体与氧合肌红蛋白竞争氧气,使其转变为脱氧肌红蛋白状态,此情况过度发生可导致肉色变暗;另一方面,线粒体具有高铁肌红蛋白还原酶活性,可以将氧化的高铁肌红蛋白转化为还原态脱氧肌红蛋白,为鲜红色氧合肌红蛋白的生成提供还原态肌红蛋白[21-22]㊂肌肉持水力是肉品一个重要的品质,最近研究表明,牛肉宰后成熟过程中,线粒体脂肪成分的变化与肌肉持水力的变化密切相关[23]㊂PGC-1α已被证明其与畜禽生长和肉品质密切相关,且已被列为能够候选基因[24],然而未见PGC-1α调控肌肉中线粒体与宰后肉品质的相关研究,PGC-1α对肌肉中线粒体的调控及宰后肉品质的变化形成需要开展深入研究㊂3 2㊀PGC-1α与肌肉糖类代谢葡萄糖是肌肉组织主要的能源物质,糖类氧化供能为肌肉的各类生理活动提供能量㊂PGC-1α在体内糖代谢的过程中发挥重要调节作用,主要表现在以下几个方面:首先PGC-1α是糖异生过程的关键调节因子㊂在禁食情况下,PGC-1α会在肝细胞中大量表达,与其他相关调节因子配合在转录水平上激活糖异生关键酶组,如葡萄糖-6-磷酸酶㊁磷酸烯醇式丙酮酸羧激酶等,最终导致肝糖输出增加[25-26]㊂其次,葡萄糖进入肌肉细胞需要葡萄糖转运载体4(glucosetransporters4,GluT4)的转运,PGC-1α可与肌细胞增强子因子2(myocyteenhancerfactor2,MEF2)共同作用,刺激GluT4的表达,从而增加肌细胞内葡萄糖的水平㊂此外,PGC-1α在某些情况还可抑制肌细胞葡萄糖的氧化,其与雌激素相关受体(estrogen-relatedreceptorα,ERRα)结合后,刺激丙酮酸脱氢酶4表达,从而抑制葡萄糖氧化和增加葡萄糖吸收来补充肌糖原贮备,为下一次的肌肉运动做准备㊂肌肉中的糖原是宰后生成乳酸的原料,动物胴体在宰后冷藏排酸过程中,糖原转化为乳酸导致肌肉pH值下降,这是宰后肌肉排酸的原理㊂而宰后pH的下降幅度和速度影响肉品质形成,宰后肌肉pH值过高或过低都会形成异质肉㊂而PGC-1α对于肌肉糖代谢具有调控作用,宰前肌肉中PGC-1α的表达水平和活性对于宰后肌肉糖原水平㊁pH值变化及肉品质形成是否具有影响,未见相关报道,需要开展相应研究㊂3 3㊀PGC-1α与骨骼肌肌纤维类型转换及肉品质不同肌纤维类型对于肌肉发挥生理功能具有重要的作用,比较常见的例子是,动物不同部位的肌肉的肌纤维组成存在着明显差异,且肉品质也存着差别㊂肌肉纤维类型受遗传㊁运动㊁营养㊁和环境等多种因素的影响㊂PGC-1α是调控肌纤维类型转变的主要因子,PGC-1α基因高表达,可以提高与氧化型肌纤维有关的基因表达,提高细胞色素C和肌红蛋白的含量提高有氧呼吸能力与线粒体的数量,增强抗疲劳的能力等,主要为使酵解型肌纤维向氧化型肌纤维转化[27-28]㊂超表达PGC-1α的转基因小鼠,其骨骼肌中Ⅱ型肌纤维表现出Ⅰ型肌纤维的蛋白特性,其中TNN1蛋白㊁肌红蛋白和肌钙蛋白Ⅰ明显增加,Ⅱ型肌纤维逐步转化为Ⅰ型肌纤维[29]㊂人和动物的骨骼肌类型变化研究表明,PGC-1α的表达量与快肌纤维的含量成负相关,与慢肌纤维的含量成正相关[30-31]㊂相关研究已证实,寒冷可以刺激诱使鸡的胸肌部分从ⅡB型转化为ⅡA型,而PGC-1α的上调表达在其中发挥了关键的作用[32]㊂PGC-1α通过调节肌纤维类型影响畜禽肉品质已经被证实,但是其发挥作用的详细分子机制还不清晰,需要开展相应的深入研究㊂3 4㊀PGC-1α与肌肉中活性氧含量及肉品质PGC-1α可促进肌肉等组织中线粒体的合成,还能刺激线粒体呼吸链电子转运活性,从理论上讲,PGC-1α将导致细胞内活性氧(reactiveoxygenspecies,ROS)水平提高,但是实际上并非如此,在肌肉和棕色脂肪中,运动与寒冷环境的暴露均和ROS负面影响没有关联,这主要是PGC-1α可以增强很多抗氧化酶的表达[33-34]㊂即PGC-1α有两种能力,刺激线粒体电子转运的同时抑制ROS水平㊂这样,肌肉组织,棕色脂肪通过提升线粒体代谢应对外部环境变化的过程中,不会对自身造成氧化损伤㊂而ROS与宰后肉品的形成密切相关,动物在宰杀后,ROS主要来源于线粒体和脂肪的氧化,产生的ROS往往会对某些肉品质,肉色㊁嫩度㊁系水力等产生负面影响[23,35]㊂ROS与宰后肉品质形成一直是肉品科学领域研究的热点,PGC-1α已被证实是影响肉品质的候选基因之一,但是其调控宰后肌肉中ROS的作用机制及如何影响肉品质未见相关报道㊂4㊀PGC-1α与脂肪生长代谢及肉品质4 1㊀PGC-1α与脂肪细胞分化动物脂肪组织中大约1/3是脂肪细胞,其余的2/3是成纤维细胞㊁微血管㊁神经组织和处于不同分化阶段的前脂肪细胞㊂由前脂肪细胞分化为脂肪细胞的过程是一个涉及多个信号通路的复杂调控过程,该过程大致可为4个阶段,分别为生长抑制阶段㊁克隆扩增㊁早期分化和终末分化[36]㊂PPARs在动物脂肪发育分化的早期分化阶段开始发挥调控作用,它们与相应的因子协调作用,共同调节脂肪的增殖分化㊂PPARγ是PPARs家族成员,它是脂肪细胞分化的及其的重要因子,其通常可作为前体脂肪分化处于早期分化的标志基因,是脂肪细胞增殖分化过程中起决定性作用的基因㊂研究证实,PPARγ缺失的胚胎干细胞能够分化为多种细胞,但唯独不能分化为脂肪细胞㊂此外,PPARγ基因敲除的小鼠,在胚胎期10d左右就会死亡,且未在胚胎内检测到脂肪细胞,而正常小鼠在胚胎期10d即可检测到脂肪细胞的存在[36]㊂这说明PPARγ在脂肪分化形成过程中起关键作用,PPARγ发挥脂肪分化调控作用时,需要先与RXRα形成异源二聚体,然后与所调节基因启动子上游的过氧化物酶体增殖物反应元件(PPRE)结合才发挥转录调控作用,而PGC-1α作为PPARγ配体,能促进PPARγ与相应调控因子的结合[37]㊂很多哺乳动物体内存在着白色脂肪组织㊁米色脂肪组织和棕色脂肪组织三种,白色脂肪主要作用为贮存能量,米色脂肪具有贮存能量和非战栗产热的功能,棕色脂肪主要进行非战栗产热㊂在细胞结构和功能上,白色脂肪细胞拥有一个大脂滴用于存贮能量,而棕色脂肪细胞拥有多脂滴㊁多线粒体的结构㊂PGC-1α能够促进白色脂肪向棕色脂肪转化,它能够刺激白色脂肪中线粒体的大量生成,还能增加解偶联蛋白1(UCP1)等分子的生成,这些改变可使白色脂肪逐渐转化为棕色脂肪组织[38]㊂4 2㊀PGC-1α与脂肪氧化供能脂肪是畜禽体内重要的储能物质,在冷暴露㊁禁食㊁运动等情况下,可为机体提供能量,其中脂肪酸β氧化产能是其最为主要的供能方式㊂脂肪是也骨骼肌获取能量的重要物质㊂研究表明,过表达PGC-1α可增加骨骼肌线粒体的生物合成,也可使脂肪酸氧化相关酶含量上升或者活性增强,从而增加脂肪酸氧化供能[39-40]㊂在小鼠骨骼肌和猪前脂肪细胞过表达PGC-1α,可促进脂肪酸氧化过程中相关基因肉碱棕榈酰转移酶1β(CPT1β)㊁肝型脂肪酸结合蛋白(FABP1)㊁过氧化物酶酰基辅酶A氧化酶1(ACOX1)㊁中链酰基辅酶A脱氢酶(MCAD)㊁脂肪酸转位酶(CD36)等的表达,其中CPT1β是脂肪酸氧化过程中的限速酶[38-41]㊂CD36㊁FABP1是脂肪酸转运的重要蛋白,可将脂肪酸逐步转运至肌肉等组织,便于氧化供能㊂而ACOX1㊁MCAD是参与脂肪酸氧化过程中的关键酶㊂过表达PGC-1α还可促进氧化磷酸化相关基因ATPSynthase㊁CytC㊁COXⅢ等的表达[27]㊂而在PGC-1a敲除后的小鼠表现为心脏功能不全,肌肉耐力下降,轻度心动过缓,心肌脂肪酸氧化能力下降,能量产生减少[42-44]㊂以上研究说明PGC-1α在肌肉的脂肪酸氧化供能方面起重要的调节作用㊂4 3㊀PGC-1α与肌内脂肪沉积及肉品质肌内脂肪的沉积是一个涉及多种信号通路和代谢因子的复杂过程,PPARs家族成员㊁肌内脂肪转运相关因子等发挥了重要的作用㊂PGC-1α是PPARs家族某些因子的配体,其在肌肉脂肪代谢过程中发挥了重要作用㊂PGC-1α不仅能够增加肌肉脂肪的分解代谢(前已述及),而且还可增加肌细胞中脂肪的合成代谢㊂通过肌细胞培养实验和转基因小鼠试验证实,PGC-1α不仅能增加脂肪的分解代谢,还可以增加肌细胞内脂肪酸和磷脂等脂肪的合成代谢[45-46],且PGC-1α转基因小鼠的脂肪酸转运蛋白等脂质代谢相关蛋白也增加了[46]㊂PGC-1α对于肌内脂肪的双向调控作用,对于动物维持生命活动具有重要的意义,不仅能够保障机体对于能量的需求,还对机体后续的生命活动具有重要的意义㊂其发挥脂肪调控作用,还要取决于动物机体所处的状态㊂畜禽上的相关研究已经证实,PGC-1α与脂肪沉积及肉品质存在一定关联㊂在猪上的研究表明,PGC-1α参与猪脂肪沉积的基因,PGC-1α基因多态性与失水率㊁剪切力等肉品指标显著相关[47-49]㊂因此,PGC-1α已被列为猪脂肪沉积及肉品质的候选基因,且在藏猪上的研究表明PGC-1α与肌内脂肪沉积密切相关[36]㊂在鸡上的研究也证实,PGC-1α多态性与鸡腹部脂肪的沉积显著相关[50-51]㊂然而,在牛上的研究表明,肌内脂肪含量及嫩度等品质与PGC-1α存在一定的相关性,但是未达到显著水平[52]㊂以上研究表明由于遗传背景的差异,不同畜禽PGC-1α在调控肌肉脂质代谢方面可能存在着差异㊂但是当前研究大多停留在分析推测层面,并未对其作用的机理及信号通路作用方式进行深入研究,因此需要对PGC-1α调控肌肉代谢,尤其是调控脂肪代谢开展深入的研究,为优质肉品的生产提供研究基础㊂4 4㊀PGC-1α与机体的适应性产热适应性产热是机体应对外界刺激以产热的形式消耗能量的生理过程,对于动物在特定环境下,维持正常体温和生命活动是必须的,主要发生在骨骼肌和棕色脂肪组织㊂其中小型动物,如小鼠,大鼠等主要依靠棕色脂肪组织进行适应性产热,而畜禽则以肌肉适应性产热为主㊂棕色脂肪的分化形成需要PPARγ发挥作用,但其发挥作用需要PGC-1α的辅助,PGC-1α结合并激活PPARγ后才能刺激棕色脂肪细胞分化过程中基因的转录[15,53-54]㊂PGC-1α还可通过另外两个方面来加快适应性产热,首先是促进适应性产热原料的摄取,促进棕色脂肪和肌肉对产热原料,如葡萄糖和脂肪的摄取;促进适应性产热过程中关键因子的合成及表达,主要是为了适应性产热过程的顺利进行,如促进线粒体的生物合成,促进呼吸链相关基因的表达,促进氧化磷酸化相关基因的表达等[55-56]㊂当前未见PGC-1α调控畜禽适应性产热与肉品质的相关研究,但宰后迅速科学降低屠体的温度,防止肉品质因为过热而出现变质是当前肉品科学领域的一个重要的研究方向㊂5㊀PGC-1α与生物钟相互反馈调控畜禽骨骼肌代谢㊀㊀生物钟是生物机体生命活动的内在节律性㊂体温㊁血压㊁睡眠㊁内分泌㊁肝脏代谢㊁行为等重要生命活动均受到生物钟相关基因的调控[57-59],研究表明生物钟还可参与调控细胞周期[60]㊂其中昼夜节律及光照是调节生物钟基因表达的最常见的外部环境因素,这些因素的变化会影响畜禽的生长发育和动物性产品的质量㊂生物钟相关调控规律已在畜禽生产领域得到了应用,其可用于改善动物的生长,提高动物性产品的质量㊂Tao等[61]的研究表明,生物钟基因在蛋鸭卵巢的表达水平与产蛋量密切相关㊂光刺激可通过影响生物钟基因的表达,提高肉仔鸡生长期体重和胸肌产量,改善饲料转化率[62]㊂生物钟基因与奶山羊乳腺代谢密切相关,饲喂不同饲料可改变调生物钟基因表达,调控奶山羊的泌乳[63]㊂畜禽骨骼肌中存在着生物钟基因,骨骼肌的生命活动受到生物钟基因的调控,PGC-1α是连接生物钟和能量代谢的关键调控因子[64]㊂研究表明,PGC-1α在骨骼肌中的表达呈现明显的昼夜节律性,且PGC-1α敲除小鼠在能量代谢方面出现异常的生理节律㊂PGC-1α与生物钟基因形成反馈调节回路,首先PGC-1α是生物时钟基因的上游调节因子,PGC-1α能够诱导生物时钟关键基因的表达,如脑和肌肉芳香烃受体核转运样蛋白1基因(Bmal1)㊁时钟基因(Clock)和反向成红细胞增多症基因(Rev-erba)等㊂此外,PGC-1α还可以和视黄酸受体相关的孤儿受体(RORα/γ)协同作用,使染色质的局部结构活化,从而激活Bmal1的转录[65]㊂此外,SIRT1对PGC-1α的去乙酰化是导致Bmal1激活的关键事件[66]㊂其次,Clock1a:Bmal1b复合体又能参与调控PGC-1α的表达㊂在畜禽骨骼肌中生物钟基因与PGC-1α共同调节骨骼肌的糖脂和能量代谢等生命活动,对于畜禽骨骼肌的生长发育具有重要的意义㊂当前缺乏PGC-1α与生物钟基因联合作用调控畜禽肉品质的相关入研究,这可能会成为肉品领域新的研究方向㊂6 小结与展望综上所述,PGC-1α作为一种多效转录调控因子,除参与调控肌肉脂肪生长发育及能量代谢外,还参与骨骼肌脂肪的沉积㊁肌纤维类型转化等生理活动,不仅能够在转录水平上调控骨骼肌能量代谢,而且还与生物钟基因相互作用反馈调节肌肉脂肪的生长发育㊂近年来随着我国人民水平的提高和饮食结构的改善,对于肉品质提出了更高的要求,例如肉品嫩度㊁多汁性和大理石花纹等,这些品质与肌纤维类型和肌内脂肪含量密切相关㊂如何生产肌纤维类型比例合适㊁肌内脂肪适中的肉品,是当前动物营养领域和肉品科学领域的研究热点㊂这与骨骼肌和脂肪生长代谢显著相关,且PGC-1α在其中发挥了重要作用㊂尽管针对PGC-1α调节骨骼肌生长发育㊁肌纤维类型转换㊁脂肪沉积㊁能量代谢的分子机制,已进行了大量的系统研究,也取得了一些重大进展,但还存在许多问题,诸如PGC-1α如何精细调节肌内脂肪沉积,PGC-1α调控肌纤维转换和能量代谢的详细信号通路,以及PGC-1α与脂肪因子瘦素㊁脂联素㊁抵抗素等的相互激活转录机制,特别是如何通过有效地干预PGC-1α调控肌肉脂肪沉积及靶向控制PGC-1α介导肌纤维类型转换等㊂今后需对这些问题进行深入探索,以期通过PGC-1α调控畜禽肌肉的生长发育㊁脂肪代谢㊁能量代谢等生理过程来提高肉品质㊂参考文献:[1]㊀MITRAR,NOGEEDP,ZECHNERJF,etal.Thetranscriptionalcoactivators,PGC-1αandβ,cooperatetomaintaincardiacmito⁃chondrialfunctionduringtheearlystagesofinsulinresistance[J].JMolCellCardiol,2012,52(3):701-710.[2]㊀JANNIGPR,DUMESICPA,SPIEGELMANBM,etal.Regula⁃tionandbiologyofPGC-1α[J].Cell,2022,185(8):1444.[3]㊀ESTERBAUERH,OBERKOFLERH,KREMPLERF,etal.Humanperoxisomeproliferatoractivatedreceptorγcoactivator1(PPARGC1)gene:cDNAsequence,genomicorganization,chro⁃mosomallocalizationandtissueexpression[J].Genomics,1999,62(1):98-102.[4]㊀PUIGSERVERP,RHEEJ,LINJ,etal.Cytokinestimulationofenergyexpenditurethroughp38MAPkinaseactivationofPPARγco⁃activator-1[J].MolCell2001,8:971-982.[5]㊀TCHEREPANOVAI,PUIGSERVERP,NORRISJD,etal.Modu⁃lationofestrogenreceptor-αtranscriptionalactivitybythecoactivatorPGC-1[J].BiolChem,2000,275(21):16302-16308.㊀[6]㊀BHALLAS,OZALPC,FANGS,etal.Ligand-activatedpregnaneXreceptorinterfereswithhnf-4signalingbytargetingacommonco⁃activatorPGC-1α:functionalimplicationsinhepaticcholesterolandglucosemetabolism[J].BiolChem,2004,279(43):45139-45147.㊀[7]㊀RHEEJ,INOUEY,YOONJC,etal.RegulationofhepaticfastingresponsebyPPARγcoactivator-1α(PGC-1α):requirementforhepatocytenuclearfactor4αingluconeogenesis[J].ProcNatlAcadSciUSA,2003,100(7):4012-4017.[8]㊀马燕.藏羚羊和藏系绵羊PGC-1α基因编码区的克隆与分析[D].西宁:青海大学,2012.[9]㊀张林.超表达猪源PGC-1α促进小鼠和猪肌纤维类型转变的研究[D].武汉:华中农业大学,2014.[10]RODGERSJT,LERINC,HAASW,etal.Nutrientcontrolofglu⁃cosehomeostasisthroughacomplexofPGC-1αandSIRT1[J].Nature,2005,434(7029):113-118.[11]WANGW,WUD,DINGJ,etal.Modifiedrougandecoctionatten⁃uateshepatocyteapoptosisthroughamelioratingmitochondrialdys⁃functionbyupregulatedSIRT1/PGC-1αsignalingpathway[J].PoultSci,2023,102(10):1-19.[12]LERINC,RODGERSJT,KALUMEDE,etal.GCN5acetylrans⁃ferasecomplexcontrolsglucosemetabolismthroughtranscriptionalrepressionofPGC-1α[J].CellMetab,2006,3(6):429-438.[13]YEF,WUL,LIH,etal.SIRT1/PGC-1αisinvolvedinarsenic-inducedmalereproductivedamagethroughmitochondrialdysfunction,whichisblockedbytheantioxidativeeffectofzinc[J].EnvironPollut,2023,320:121084-121086.[14]NETOIVS,PINTOAP,MUNOZVR,etal.Pleiotropicandmulti-systemicactionsofphysicalexerciseonPGC-1αsignalingduringtheagingprocess[J].AgeingResRev,2023,87:101935-101954.㊀[15]PUIGSERVERP,WUZ,PARKCW,etal.Acold-inducibleco⁃activatorofnuclearreceptorslinkedtoadaptivethermogenesis[J].Cell,1998,92(6):829-39.[16]LIL,LUZ,WANGY,etal.Genisteinalleviateschronicheatstress-inducedlipidmetabolismdisorderandmitochondrialenergeticdys⁃functionbyactivatingtheGPR30-AMPK-PGC-1αsignalingpath⁃waysintheliversofbroilerchickens[J].PoultSci,2023,103(1):1-12.[17]GARNIERA,FORTIND,ZOLLJ,etal.Coordinatedchangesin。

盐胁迫——精选推荐

盐胁迫——精选推荐

外界环境的胁迫作用使植物的生理特征发生改变,本文通过盐胁迫研究生菜生理指标的变化,采用盆栽实验,选用两个品种的生菜作为实验材料,对两个品种的生菜进行盐胁迫处理,分别用0.05、0.1、0.15、0.2、0.25、0.3mol/LNacl 溶液处理生菜幼苗,处理两次以后开始采样测量生菜的叶绿素、可溶性糖、SOD、CAT、蛋白质等含量,在盐胁迫条件下,两个品种的生菜叶绿素含量随着盐浓度的增加出现先升高后降低的变化趋势,叶绿素是植物进行光合作用的重要原料,叶绿素的含量减少不仅影响蔬菜的光合作用,还有蔬菜的有机物的积累,如糖类和蛋白质等。

在盐胁迫下,生菜的蛋白质含量逐渐降低,而可溶性糖的含量则是先升高后降低的变化,在低盐浓度胁迫下(0.05-0.15mol/L),意大利生菜的抗氧化酶(SOD,CAT)活性随着盐浓度的升高而增强。

但盐浓度超过一定范围之后,抗氧化酶的活性会明显的下降。

AbstractExternal environment of the stress effect cause changes in thephysiological characteristics of plants, in this article, through salt stress changes on the lettuce physiological indexes, using pot experiment, the selection of two varieties of lettuce as experiment material, to salt stress the two varieties of lettuce, respectively 0.05, 0.1, 0.15, 0.2, 0.25, 0.2 mol/LNacl solution treatment lettuce seedlings, start sampling after processing two lettuce of chlorophyll, soluble sugar, such as SOD, CAT, protein content, under salt stress conditions, two varieties of lettuce chlorophyll content increased with the increase of salt concentration appear first decreases after change trend, the chlorophyll is an important raw material of plant photosynthesis, chlorophyll content reduced not only affect the photosynthesis of vegetable, and vegetable of the accumulation of organic matter, such as sugar and protein, etc. Under salt stress, the protein content of lettuce, reduced gradually, and the soluble sugar content is higher before the change of the lower, under the stress of low salt concentration (0.05 to 0.15 mol/L), Italian lettuce antioxidant enzymes (SOD, CAT) activity enhanced with the increase of salt concentration. But after salt concentration over a certain range, the activity of antioxidant enzymes can drop obviously.Keywords: Salt stress ;Physiological indexes ;Superoxide dismutase ;catalase目录TOC \o "1-3" \h \u HYPERLINK \l _T oc17837 第一章前言1HYPERLINK \l _T oc12014 1.1研究的目的和意义1HYPERLINK \l _T oc24418 1.2植物盐胁迫的研究进展1HYPERLINK \l _T oc26592 第二章实验材料和实验设计2HYPERLINK \l _T oc31767 2.1实验材料2HYPERLINK \l _T oc13197 2.2.1 实验方案设计2HYPERLINK \l _T oc18677 2.2.2实验方法3HYPERLINK \l _T oc28385 2.2.3数据统计分析方法3HYPERLINK \l _T oc7843 第三章实验指标测量方法4HYPERLINK \l _T oc28418 3.1丙二醛含量的测量4HYPERLINK \l _T oc21089 3.2叶绿素含量测定4HYPERLINK \l _T oc4221 3.3植物体内可溶性糖含量的测定—蒽酮法4HYPERLINK \l _T oc11380 3.4植物体内可溶性蛋白质含量的测定—考马斯亮蓝G—250染色法测定6HYPERLINK \l _T oc26846 3.5超氧化物歧化酶(SOD)活性测定—氮蓝四唑(NBT)法测定7HYPERLINK \l _T oc2337 3.6过氧化氢酶(CAT)活性的测定—高锰酸钾滴定法测8HYPERLINK \l _T oc21630 3.7脯氨酸含量的测定8HYPERLINK \l _T oc10214 第四章实验结果分析10HYPERLINK \l _T oc8033 4.1盐胁迫对生菜叶绿素含量的影响10HYPERLINK \l _T oc27974 4.2盐胁迫对生菜丙二醛(MDA)含量的影响10HYPERLINK \l _T oc29727 4.3盐胁迫对生菜可溶性蛋白质的影响11HYPERLINK \l _T oc13616 4.4盐胁迫对生菜可溶性糖的影响12HYPERLINK \l _T oc29360 4.5盐胁迫对生菜脯氨酸含量的影响12HYPERLINK \l _T oc710 4.6盐胁迫对保护酶活性的影响13HYPERLINK \l _T oc22702 4.6.1 盐胁迫对生菜过氧化氢酶(CAT)活性的影响13HYPERLINK \l _T oc25767 4.6.2盐胁迫对生菜超氧化物歧化酶(SOD)的影响14HYPERLINK \l _T oc30490 第五章讨论15HYPERLINK \l _T oc15964 第六章结论16HYPERLINK \l _T oc18359 参考文献:18HYPERLINK \l _T oc15728 谢辞19第一章前言近年来土壤盐渍化问题日益突出,对农业生产带来很多困难,生菜是人们生活中重要的一种蔬菜,研究盐胁迫对生菜抗氧化酶活性的影响有着重要的意义。

国家级大学生创新创业训练计划

国家级大学生创新创业训练计划
齐昱婷
刘汉兰
20000
项目编号
项目名称
项目类型
项目负责
人姓名
指导教
师姓名
项目经费
(元)
201610504079
Bi/rGO/Bi2WO6三元复合材料的合成及光催化
性能研究
创新训练项目
刘文成
瞿阳
20000
201610504080
多孔金棒的生物模板合成方法研究
创新训练项目
梁晨楠
鲁哲学
20000
201610504081
20000
201610504050
白斑病毒分子蛋白A的分子研究
创新训练项目
李卓聪
兰江风
20000
201610504051
团头鲂颗粒溶素NK-lysin的生物学活性研究
创新训练项目
黄浩
袁改玲
20000
201610504052
光照和温度对蚤状溞生殖转化的诱导作用研究
创新训练项目
刘思甜
刘香江
20000
201610504053
创新训练项目
耿佩赟
பைடு நூலகம்刘睿
15000
201610504076
基于矩阵理论的亏损系统灵敏度模型
创新训练项目
黄文琳
沈婧芳
15000
201610504077
后基因组时代农药一基因相互作用数据库构建
创新训练项目
徐芳婷
位灯国,
郑芳
20000
201610504078
醚基离子液体的制备及其对纤维素溶解性能的
研究
创新训练项目
刘灵芝
20000
201610504090
大学生参与和使用众筹创业意愿及其影响因素 研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一卷心菜中过氧化物酶热稳定性的初步研究一、实验原理果蔬中的过氧化物酶(peroxidase)往往具有较高的热稳定性,对果蔬进行热烫处理时,常以过氧化物酶是否失活作为热烫是否充分的标准。

许多研究表明果蔬中的过氧化物酶有热稳定和热不稳定两部分。

这两部分的比例取决于果蔬的品种和热烫处理的温度。

过氧化物酶催化的典型反应为:H2O2+AH2→A+2H2O。

AH2是无色的还原性化合物,如果它经过氧化转变成有色的A,那么反应体系在特定波长下的吸光值就会随反应进行而增加。

因此,可以用分光光度法测定过氧化物酶的活力。

二、试剂和仪器试剂:0.05mol/L磷酸盐缓冲液pH7.0,含1.0mol/L NaCl(缓冲液Ⅰ)、0.1mol/L磷酸盐缓冲液pH7.0(缓冲液Ⅱ)、1%邻苯二胺-乙醇溶液、0.3%过氧化氢溶液仪器:组织捣碎机、抽滤装置、水浴锅、721分光光度计(含比色皿)、秒表、常规玻璃仪器三、实验步骤1、从卷心菜中提取过氧化物酶125g卷心菜+125mL缓冲液Ⅰ↓均质(20000rpm,2min)匀浆↓抽滤液体↓离心(8000rpm,15min,4℃)↓¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯↓残渣滤过液(粗酶液)2、过氧化物酶热处理将从卷心菜中萃取得到的过氧化物酶粗酶液置于试管中。

取适量酶液稀释5倍左右,过滤后测定酶活。

另取适量酶液分别置于已编号的试管中,将试管在60℃水浴中保温1 min,然后移至85℃水浴锅中,分别处理0.5min、1min、1.5 min、2 min、3 min、5 min、7 min和10 min,然后立即将试管转移至冰浴中,快速冷却至0℃。

再取适量酶液分别置于已编号的试管中,并将试管在60℃水浴中保温1 min,然后在100℃下分别处理15s、30 s、45 s、1 min、1.5 min、2 min 和3 min,然后在冰浴中快速冷却,测定残余过氧化物酶活力。

3、过氧化物酶活力测定如果热处理后酶液中产生混浊,应在比色前过滤去除沉淀。

向比色皿中加入2.6mL缓冲液Ⅱ,0.1mL邻苯二胺-乙醇溶液,0.2mL过氧化氢溶液,然后加入0.1mL酶液,并立即搅匀计时,在430 nm下测定反应混合物的吸光值随时间的变化。

空白以缓冲液代替酶液。

根据吸光值变化情况调节加酶量,保持酶液和缓冲液体积之和恒定。

四、数据记录与处理1、粗酶液活力测定数据/S吸光度0.1050.1870.2620.342 0.4270.508 0.5940.6820.7730.8670.966 1.062用Excel处理数据,得到下图,加酶量0.1mL,稀释倍数为5(1mL原酶液+4mL 蒸馏水)。

由图可知:直线的斜率为0.5198,也就是说每分钟吸光度值上升0.5198。

由于稀释倍数为5倍,加酶量为0.1mL,因此计算得出酶活力为0.5198×50=25.99U/mL。

2、85℃热处理后残余酶活测定数据热处理时间不同的几组样品在不同稀释倍数及加酶量条件下分别测定了消光值,如下表:热处理消光值时间/s10 20 30 40 50 60 70 80 90 100 110 12085℃ 0.5min 0.0450.0880.1380.1880.240.2930.3480.4050.4640.5230.5850.649 85℃1.0min 0.0470.0910.1360.1810.2290.2780.3270.3790.4320.4860.5410.599 85℃ 1.5min 0.010.030.050.070.090.110.140.160.180.210.230.2552 4 5 7 9 1 5 8 1 4985℃ 2.0min 0.042 0.0780.1170.1550.1930.2340.2750.3170.3610.4060.4520.49985℃ 3.0min 0.006 0.0120.0180.0250.0310.0380.0440.0520.0590.0660.0740.08285℃5.0min 0.004 0.0040.0050.0060.0080.0090.0110.0130.0150.0170.0190.02185℃ 7.0min 0.004 0.0030.0040.0040.0040.0030.0040.0040.0040.0040.0040.00485℃10.0min 0.0030.0030.0030.0030.0030.0030.0030.0030.0030.0030.0030.003数据处理如下图:(85℃,30秒,稀释4倍,加酶量0.1mL)(85℃,60秒,稀释3倍,加酶量0.1mL)(85℃,90秒,稀释2倍,加酶量0.1mL)(85℃,120秒,稀释1倍,加酶量0.1mL)(85℃,180秒,稀释1倍,加酶量0.1mL)(85℃,300秒,稀释1倍,加酶量0.1mL)(85℃,420秒,稀释1倍,加酶量0.1mL)(85℃,600秒,稀释1倍,加酶量0.1mL)3、100℃热处理后残余酶活测定热处理时间不同的几组样品在不同加酶量条件下分别测定了消光值,如下表:数据处理如下面一系列图:(100℃,15秒,稀释4倍,加酶量0.1mL)(100℃,30秒,稀释3倍,加酶量0.1mL)(100℃,45秒,稀释2倍,加酶量0.1mL)(100℃,60秒,稀释1倍,加酶量0.1mL)(100℃,90秒,稀释1倍,加酶量0.1mL)(100℃,120秒,稀释1倍,加酶量0.1mL)(100℃,180秒,稀释1倍,加酶量0.1mL)4、酶活计算Excel处理数据所的斜率热处理条件酶液稀释倍数加酶量/mL酶活/[U/mL]相对残余活力(%)相对残余活力对数0.5198 无 5 0.1 25.99 100.0 2.000 0.3303 85℃热处理0.5´ 4 0.1 13.212 50.835 1.706 0.3005 85℃热处理1´ 3 0.1 9.015 34.686 1.482 0.1341 85℃热处理1.5´ 2 0.1 2.682 10.319 1.0136 0.2488 85℃热处理2´未0.1 0.2488 0.957 -0.0191 0.0413 85℃热处理3´未0.1 0.0413 0.1589 -0.7989 0.0098 85℃热处理5´未0.1 0.0098 0.0377 -1.4237 0.0002 85℃热处理7´未0.1 0.0002 0.0000077 -5.114 0.0000 85℃热处理10´未0.1 0.0000 0 - 0.4435 100℃热处理0.25´ 4 0.1 17.74 68.257 1.834 0.3810 100℃热处理0.5´ 3 0.1 11.43 43.978 1.643 0.0261 100℃热处理0.75´ 2 0.1 0.522 2.0085 0.3029 0.0201 100℃热处理1´未0.1 0.0201 0.0773 -1.1118 0.0256 100℃热处理1.5´未0.1 0.0256 0.0985 -1.0066 0.0069 100℃热处理2´未0.1 0.0069 0.0265 -1.577 0.0013 100℃热处理3´未0.1 0.0013 0.00005002-4.30095、相对残余活力—热处理时间曲线和相对残余活力对数—热处理时间曲线在相对残余活力—热处理时间曲线中,最初的直线部分代表酶的热不稳定部分失活,中间曲线部分可以认为是过渡区域,而最后的直线部分表示耐热部分的失活,拟合最后平缓部分并延长(取最后三个点)可以得出它与纵坐标的交点,由此可以估算出耐热部分活力占酶的总活力的比例。

曲线如下图:由图中可知,85℃热处理时,卷心菜中过氧化物酶耐热部分所占比例约为-0.0397 ,而100℃热处理时,其比例仅占-0.0508.五、讨论1、根据文献报道,卷心菜中过氧化物酶的最适pH接近中性。

2、过氧化物酶经热处理失活,当温度下降时失活的酶能部分再生,此种再生现象在室温条件下(25℃~35℃)表现得较为明显,当温度接近0℃时酶的再生受到抑制。

3、在一些植物中的过氧化物酶的热失活遵循一级动力学。

相关文档
最新文档