矿井提升设备的选型设计
矿井提升机技术参数介绍及设备选型过程PPT课件

12
7、电机
电机型号:YRJ315-8 Y:异步电动机; R:绕线式电机; J:绞车专用; 315:电机底座平面到电 机轴中心距离;8:电机极数。
13
8、变位质量
提升机或绞车旋转运动部分的转动惯量换算 到卷筒直径上的质量。 为了计算总的惯性力,提升系统中把各运动部分 的质量都变位(折算)到滚筒缠绕圆周上,使其 与滚筒缠绕圆周的速度和加速度相等,条件是变 位前后的动能相等,这种变位后的质量,叫作变 位质量,全系统各个变位质量的总和为提升系统 的总变位质量∑m。 变位质量在计算提升机的运动学、动力学、 电阻等的计算中需要用到,属于理论计算。
求且滚筒边缘高度符合本规程第四百二十条规定,可按本条第一款第(一) 项、第(二)项所规定的层数增加1层。 移动式的或辅助性的专为升降物料的(包括矸石山和向天桥上提升等)以 及凿井时期专为升降物料的,准许多层缠绕。
11
6、减速器
减速器作用:增加力矩,降低速度。 减速器速比:内部大小齿轮的总的齿数比。反映增
7
双钩提升时,滚筒上有两条钢丝绳,重载钢丝绳的拉力大, 轻载钢丝绳的拉力小,两根钢丝绳拉力的差值就是静张力差。 最大静张力差就是静张力差的最大值,是绞车强度所允许的, 滚筒上两根钢丝绳拉力差的最大值。
通过以பைடு நூலகம்分析,我们可以这样来理解二者。
对于单滚筒绞车,只有最大静张力,没有最大静张力差。 最大静张力就是绞车强度所允许的容器、钢丝绳、提升载荷自 重的总和。单位为重力单位:KN,最大静张力的值除9.8就为 上述三者的质量。即为提升量的质量,单位为:kg。
径和容绳量。
5
2、两卷筒中心距离
双卷筒提升机:活动卷筒与固定卷筒中心 之间的距离。
矿井提升设备的选型设计

摘要为了防止提升机过卷事故的发生,人们在电控安全回路中设置了大、小过卷双重保护开关,但是由于人为的操作失误以及设备故障等原因,仍然会发生过卷事故,给企业造成了重大的损失。
本设计就是为了防止矿井提升机重大事故之一—箕斗过卷后断绳下坠的发生而进行的。
在设计中充分分析了事故发生的原因,应用物理学、力学等理论知识,经过分析,方案比较、校核验算等步骤,设计出有效防止这一事故发生的装置——箕斗逆止器。
箕斗逆止器就是为了防止箕斗断绳下坠的装置。
将其安装于正常的卸载位置以上处,当箕斗过卷时,逆止器快速动作,伸出承接装置,将下落的箕斗托于井架上,避免更大的事故的发生,等待事故处理完毕后,又可恢复正常工作。
所以本设计是本着安全、可靠、灵活、简单的原则来进行设计的。
关键词:提升机;安全系数;强度目录绪论 (1)1 矿井提升设备的选型设计 (2)1.1副井提升机的选型设计 (2)1.1.1 设计依据 (2)1.1.2设备类型的确定 (2)1.1.3 提升钢丝绳的选型 (3)1.1.4 提升机的选型 (5)1.1.5 校验提升机强度 (5)1.1.6 井塔高度的确定 (6)1.1.7预选电动机 (6)1.1.8天轮的选型计算 (7)1.1.9提升机与井筒相对位置的计算 (7)1.1.10运动学参数计算 (9)1.2主井提升机的选型设计 (10)1.2.1设计依据 (11)1.2.2设备类型型的确定 (11)1.2.3箕斗的选型 (12)1.2.4提升钢丝绳的选型 (13)1.2.5选择电动机 (14)1.2.6井塔高度的确定 (14)1.2.7 预选电动机 (15)1.2.8 提升系统总变位质量 (15)1.2.9 提升机加减速度的确定 (16)1.2.10 运动学参数的计算 (16)1.2.11 动力学参数计算 (18)1.2.12 电动机功率校验 (19)1.2.13 防滑校验 (19)1.2.14提升电耗及效率 (21)2 罐笼逆止器的设计 (22)2.1 方案的确定 (23)2.2 托爪设计 (27)2.3 复位弹簧的设计算 (32)2.4 收爪油缸的设计 (33)2.5 缓冲油缸的设计 (38)2.6 底坐设计及计算 (41)2.7 托梁强度校核 (43)3 提升机信号联锁系统的改造 (45)3.1原信号联锁系统的缺陷 (45)3.2改造后的电路及工作原理 (46)3.3主要元器件的选择 (47)后记 (48)参考文献 (50)绪论矿山提升机是矿山大型固定机械之一,矿山提升机从最初的蒸汽机拖动的单绳缠绕式提升机发展到今天的交——交变频直接拖动的多绳摩擦式提升机和双绳缠绕式提升机已经历了170多年的发展历史,它是矿山井下生产系统和地面工业广场相连接的枢纽,被喻为矿山运输的咽喉。
(完整版)矿井提升设备选型设计

第三章矿井提升设备选型设计第一节提升方式的确定及提升设备选型依据一、矿并提升设备的作用矿井提升设备是矿井重要的大型机电设备之一,它是联系矿井井下与地面时主要生产设备.矿井提升设备的任务是提升有益矿物(煤炭、矿石等)和矸石,升降人员和设备,下放材料等。
矿井提升设备的工作特点是在一定的距离内,以变速和匀速作往复直线运动,而且起动和停止频繁,因此它须具有良好的控制系统和完善的保护装置,以保证安全可靠地运转。
矿井提升设备的合理选型和正确的维护、管理和使用,对确保矿井提升设备的经济与安全运转具有重大的意义.二、矿井提升设备的组成部分矿井提升设备一般包活捉升机、电动机、提升钢丝绳、提升容器、天轮、井架、装卸载设备,以及电控设备与安全保护装置等.矿井提升机主要由缠绕机构(或主导轮)、减速器、联铀器、离合器、制动系统、深度指示器、液压站及操纵台等部分组成。
三、矿井提升系统根据提升方式的不同,矿井提升系统可分为以下几种:(1)竖并普通罐笼提升系统(2)竖井箕斗提升系统(3)斜井箕斗提升系统(4)斜井串车提升系统四、矿井提升设备的分类(一)按用途分类(1)主井提升设备,专供提升煤炭用的提升设备。
在特大、大和中型矿井,提升容器多采用箕斗,小型矿井多采用罐笼或矿车;(2)副井提升设备,专供提升歼石、升降人员、运送材料和设备的提升设备。
提升容器多为普通罐笼或翻转罐笼。
(二)按缠绳机构的型式分类(1)单绳缠绕式提升机,即等直径圆柱形卷筒提升机,多用于井深在350m以下的大、中、小型矿井提升,此外还有变直径圆柱圆锥形卷筒提升机;(2)多绳摩擦式提升机,适用于井筒较深、产量较大的矿井提升.(三)按井筒倾角分类(1)竖并提升设备;(2)斜井提升设备.(四)按提升容器分类(1)罐笼提升设备;(2)箕斗提升设备;(3)串车提升设备;斜井串车提升(5)吊桶提升设备。
(五)按拖动装置分类(1)交流感应电动机施动的提升设备;(2)直流电动机施动的提升设备;(3)液压传动的提升设备。
立井提升设备选型设计

立井提升设备选型设计4 课时第一节 竖井提升容器的选择一、提升容器的比较及其应用范围提升容器主要是底卸式箕斗和普通罐笼。
箕斗的优点是:质量轻,所需井筒断面积小,装卸载可自动化,且时间短,提升能力大。
箕斗的缺点是:井底及井口需要设置煤仓和装卸载设备,只能提升煤炭,不能升降人员、设备和材料,井架较高,需要另设一套辅助提升设备。
罐笼的优点是:井底及井口不需设置煤仓,可以提升煤炭、矸石,下放材料,升降人员和设备,井架较矮,有利于煤炭分类运输,罐笼的缺点是:质量大,所需井筒断面积大,装卸载不能自动化,而且时间较长,生产效率较低。
选择箕斗还是选择罐笼,需要根据多方面的技术、经济指标来确定。
二、主井箕斗规格的选择进行提升设备选型设计时,矿井年产量A n 和矿井深度H s 为已知条件。
当提升容器的类型确定后,还要选择容器的规格。
在提升任务确定之后,选择提升容器的规格有两种情况:一是选择较大规格的容器,一次提升量较大,则提升次数少。
这样,因为一次提升量较大,所需的提升钢丝绳直径和提升机直径较大,因而初期投资较多。
但提升次数较少,运转费用较少。
二是选择较小规格的容器,情况和上述的相反,因而初期投资较少,而运转费用则较多。
那么,应该如何选择提升容器的规格才是合理的呢?其原则是:一次合理提升量应该使得初期投资费和运转费的加权平均总和最小。
为了确定一次合理提升量,从而选择标准的提升容器,可按以下步骤计算:(1)确定合理的经济速度V j 与一次合理提升量相对应的,有一个合理的经济速度。
经研究证明,合理的经济速度V j 可用下式计算:H V j )5.0~3.0(= (1-1) 式中:H 为提升高度,m ,H=H z +H s +H x ;H z 为装载的高度,m ,H z =18~25m ,H s 为矿井的深度,m ,H x 为卸载高度,m ,H x =15~25m 。
(2)估算一次提升循环时间XT ' θμ+++='a V V H T j j X (1-2) 式中:a 为提升加速度,一般a=0.8m/s2;μ为箕斗低速爬行时间,一般取μ=10s ;θ为箕斗装卸载休止时间,一般取θ=10s 。
矿井提升机选型设计汇总

矿井提升机选型设计汇总一、选型设计原则1.根据矿井特点选择合适的提升机型号和规格。
不同的矿井具有不同的特点,例如矿山的井径、提升深度、产煤量等都会影响到提升机的选型。
因此,在选型设计过程中应根据矿井具体情况选择合适的提升机型号和规格。
2.不仅考虑提升能力,还要考虑安全性能。
提升机的主要功能是提升煤炭或矿石等物料,因此提升能力是选型设计的主要指标。
但是,为了保障矿工的安全,选型过程中还应考虑提升机的安全性能,如防爆、防腐蚀等。
3.考虑维修和运维的便利性。
二、选型设计步骤1.收集矿井的相关数据。
首先,需要收集矿井的相关数据,包括井径、提升深度、产煤量、矿石硬度等。
这些数据将为后续的选型过程提供依据。
2.确定提升能力需求。
根据矿井的产煤量和提升深度,确定提升机的提升能力需求。
一般来说,提升机的提升能力应超过矿井的产煤量,以确保生产过程的顺畅进行。
3.选择合适的型号和规格。
根据提升能力需求和矿井特点,选择合适的提升机型号和规格。
可以参考相关的技术资料和矿山设备供应商的建议,做出选择。
4.考虑安全性能。
在选型设计过程中,要考虑提升机的安全性能,如防爆和防腐蚀等。
可以选择具有安全认证和良好口碑的品牌和型号。
5.考虑维修和运维的便利性。
为方便后续的维修和运维工作,要考虑提升机的维修和运维的便利性。
例如,可以选择易损件更换方便、维修作业空间大等特点的提升机。
三、案例分析以一些矿山为例,该矿山的井径为4米,提升深度为1000米,产煤量为5000吨/天,需要选取一台提升机进行矿石的提升。
四、总结矿井提升机的选型设计是矿山生产中的重要环节。
在选型过程中,应根据矿井的特点选择合适的提升机型号和规格,同时考虑提升能力、安全性能和维修运维的便利性。
通过合理的选型设计,可以提高矿山工作效率,保障矿工的安全生产。
提升系统选型计算

提升系统选型及验算方法一、提升井架井筒利用矿建用凿井井架施工,凿井井架必须能承载井筒装备安装施工荷载,且其天轮平台满足提升悬吊天轮布置的要求。
必要时可采用永久井架施工。
二、提升机井筒装备安装用的提升机,应根据井筒安装的提升方式及提升量进行选择。
必要时可采用矿永久提升机施工。
列出提升机技术参数表(表3.4.3)。
三、提升系统选型验算根据矿建所用提升机或矿永久提升机进行提升能力验算。
(1)、提升绞车凿井提升计算①滚筒直径(D)D≥60ds D≥900δ式中:ds—钢丝绳直径,mm;δ—钢丝绳最粗钢丝直径,mm;②选定提升机型号DT≥D DT—所选提升机的滚筒直径,Mm;③校验滚筒宽度B={[(H0+30)/3.14DT]+3}(ds+ε)≤BT式中:30—钢丝绳试验长度,m;DT—提升机名义直径,mm ;3—摩擦圈数;BT—提升机滚筒宽度,mm;ε—钢丝绳绳圈间隙,取2~3mm ;④计算提升高度H0=H1+H2+H3+H4,m。
其中:H1—井筒深度,mH2—井架高度,mH3—提升天轮半径,mH4—提升天轮梁高度,取0.75m⑤设计选用多层股不旋转钢丝绳作为提升绳,绳重Ps= kg/m,钢丝绳最小破断拉力Q断为kg,配提升钩头,提升钩头应与提升荷载配套。
⑥提升容器自重:吊桶:Q Z=G1+ G2+ G3+ G4;其中:G1—吊桶重量,kgG2—钩头重量,kgG3—滑架重量,kgG4—滑架缓冲器重量,kg⑦提升载荷:Q=最大提升重量,kg;Q绳:提升钢丝绳重:提升高度绳重,kg⑧提升钢丝绳静张力:Q总= Q + Q绳,kg;其中:Q—最大提升重量,kgQ绳—提升高度的钢丝绳重量,kg提升人员时:Q人总= Q Z +n Q人+ Q绳,kg其中:Q1—提升容器总重量,kgQ人—吊桶乘人总重量,取75kg/人Q绳—提升高度的钢丝绳重量,kgn—吊桶乘人数,根据吊桶容积确定以上计算的钢丝绳静张力Q总应小于绞车最大静张力差,可以满足使用。
矿井提升机的选型设计

!
县
C h i n a C h e o r i c a l T r a d e
堂堂
矿井提升机 的选型设计
方 光 阴 乌鲁木齐潞源浩 昌矿 业技术咨询服务有限公司
摘要 :矿井提升机在矿井 中就担 负着升 降人 员、提 升间物 料、运 送材料 以及升 降设备 、工具等任务 ,它 是联系矿 井地面与井下 的重要运输设备 ,是矿 井重要运输设备之一 。 本文主要 内容是针对立井箕斗提升系统的单绳式缠绕提升 的设计选型 。设计主要 内容有六个部分;①提升容器 的计算与选择:②钢丝绳的计算与选择; ③ 提升机的选择与计算;④提升系统变位质量的计算;⑤提升系统运动学和动力学的计算⑥提升 电动机等效容量计算 关键词:提升机 选型
m 3 )
ቤተ መጻሕፍቲ ባይዱ
肚 (
+ 3 ) 刊 =
+ 3 ) ( 3 2 + 3 ) _ l 7 9 O h m
经计算 选择提 升机 先择 2 J K _ 3 / n. 5双 卷简 矿用提 升绞车 。钢丝 强在 卷 筒 上双 层 缠绕 。滚 筒直 径 D g = 3 0 0 0 m m : 滚 筒 宽度 B = 1 5 0 0 m m : 滚 筒 间距 b = 9 0 m Ⅲ : 最 大 静 张力 F = I 3 0 K N; J最 大静 张 力 差 F c = 8 0 K N;最 大提 升 速 度
( od r +q  ̄ Ht ) g=( 9 0 0 9 +3 . 7 4 x4 2 3 . 5 ) 9 . 8 :1 0 4 / 0 V( 1 3 O Ⅳ
1 . 1 _ 2一次提升时间的估算 钢 丝绳 作用在 卷筒上的最大静张力差
… +
=
第十一章2-矿井提升设备选型计算

②重尾绳
Fjm (m mz n1mph0 n2mq H0 )g Fjc mg H
③轻尾绳
Fjm [m mz n1mp (h0 H ) n2mq Hh ]g Fjc Q H
19:51
天轮的选择计算
13
2、天轮的选择
根据《煤矿安全规程》规定,天轮直径Dt按以下条件确定:
设计依据
1
⑴主井提升 ①矿井年产量An,t/年; ②工作制度:年工作日br,日工作小时t。《煤矿工业设计规 范》规定,br=300天,t=14h; ③矿井开采水平数、各水平井深Hs及各水平的服务年限; ④提升方式:箕斗或罐笼; ⑤卸载水平与井口的高差(卸载高度)Hx,m; ⑥装载水平与井下运输水平的高差(装载高度)Hz,m; ⑦煤的松散密度,t/m3; ⑧矿井电压等级。
3
提升容器计算和选择 提升钢丝绳计算和选择 提升机滚筒直径的计算和选择 天轮直径的计算和选择 电动机功率初选 提升机与井筒相对位置计算 运动学及动力学计算 初选电动机功率的验算 主井提升吨煤电耗及效率计算 副井提升最大班作业时间平衡表制定
19:51
提升钢丝绳的选择计算
4
1.提升钢丝绳的安全系数 根据《煤矿安全规程》的规定,按最大静载荷并
选择卷筒(或摩擦轮)直径D的主要原则是使钢丝绳在卷筒
(或摩擦轮)上缠绕时不致产生过大的弯曲应力,以保证钢 丝绳的一定承载能力和使用寿命。
理论和实践都证明,绕经卷筒和天轮的钢丝绳弯曲应力大小
及其使用寿命,取决于卷筒与钢丝绳直径的比值。《煤矿安全
规程》规定:
缠绕式提升机地面安装DD
80d
1200
井下安装DD
游动天轮轮体制成整体铸钢结构型式,采用光轴,其两端 装有滚动轴承使其轮体既能在轴上滑动,又能随轴一起转 动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录绪论 (1)1 矿井提升设备的选型设计 (2)1.1副井提升机的选型设计 (2)1.1.1 设计依据 (2)1.1.2设备类型的确定 (2)1.1.3 提升钢丝绳的选型 (3)1.1.4 提升机的选型 (5)1.1.5 校验提升机强度 (5)1.1.6 井塔高度的确定 (6)1.1.7预选电动机 (6)1.1.8天轮的选型计算 (7)1.1.9提升机与井筒相对位置的计算 (7)1.1.10运动学参数计算 (9)1.2主井提升机的选型设计 (10)1.2.1设计依据 (11)1.2.2设备类型型的确定 (11)1.2.3箕斗的选型 (12)1.2.4提升钢丝绳的选型 (13)1.2.5选择电动机 (14)1.2.6井塔高度的确定 (14)1.2.7 预选电动机 (15)1.2.8 提升系统总变位质量 (15)1.2.9 提升机加减速度的确定 (16)1.2.10 运动学参数的计算 (16)1.2.11 动力学参数计算 (18)1.2.12 电动机功率校验 (19)1.2.13 防滑校验 (19)1.2.14提升电耗及效率 (21)2 罐笼逆止器的设计 (22)2.1 方案的确定 (23)2.2 托爪设计 (27)2.3 复位弹簧的设计算 (32)2.4 收爪油缸的设计 (33)2.5 缓冲油缸的设计 (38)2.6 底坐设计及计算 (41)2.7 托梁强度校核 (43)3 提升机信号联锁系统的改造 (45)3.1原信号联锁系统的缺陷 (45)3.2改造后的电路及工作原理 (46)3.3主要元器件的选择 (47)后记 (48)参考文献 (50)绪论矿山提升机是矿山大型固定机械之一,矿山提升机从最初的蒸汽机拖动的单绳缠绕式提升机发展到今天的交——交变频直接拖动的多绳摩擦式提升机和双绳缠绕式提升机已经历了170多年的发展历史,它是矿山井下生产系统和地面工业广场相连接的枢纽,被喻为矿山运输的咽喉。
因此矿山提升设备在矿山生产的全过程占有重要的地位。
一个现代化的矿井在提升设备的选型上尤为重要。
因为提升设备选型的合理与否,直接关系到矿井的安全和经济性,因此确定合理的提升系统时,必须经过多方面的技术经济比较,结合矿井的具体条件选择合适的设备。
根据矿井提升机工作原理和结构的不同,可分为缠绕式提升机和摩擦式提升机。
单绳缠绕式提升机是较早出现的一种,它工作可靠,结构简单,但是仅适用于浅井及中等深度的矿井,而对于井深超过300米的矿井,宜选用多绳摩擦式绞车。
在国内外,多绳摩擦式绞车飞跃发展,其发展速度远远超过单绳缠绕式提升机,这是因为它有着许多单绳缠绕式提升机无法比拟的优点,如提升钢丝绳直径较小,主导轮直径及整个机器的尺寸都相应缩小了,设备重量也减轻了,不需要设置防坠器等。
下面是我针对不同的矿井的地质、煤层等情况,进行综合计算分析后,本着安全、经济等原则对这两种提升设备系统进行的选型设计。
本设计充分贯彻以下设计原则:根据国家现有的设备生产状况,结合某些使用中的具体情况,以及经济角度出发尽量选用国产设备并力求在条件基本相当的情况下进行技术的方案比较,选择即经济又合理的设备。
由于本人水平有限,设计中难免出现错误和不足之处,敬请各位老师指正。
1 矿井提升设备的选型设计1.1副井提升机的选型设计1.1.1设计依据卧牛山煤矿位于徐州市西郊九里山大彭镇境内,东郊与九里山煤田比邻,矿层界限下石盒子组和山西组以F23断层分割,太原组以F27断层为界。
西与新河煤矿相连。
矿层开采上限为-40m水平,开采下限为-550水平。
井下采煤方法主要为单一长壁采煤,以倾斜煤层为主,开拓方式为立井石门开拓,是央对角式通风。
全矿区共划分为二个水平,-150水平,-310水平。
,其具体的数据为:1)原煤的密度:煤ρ=0.9 吨/米32)矸石的密度: ρ矸=1.35 吨/米33)含矸率: 10%4)一水平井深: -190米5)二水平井深:-350米6)最大班下井人数: 260人7)坑木消耗: 9 米3/千吨煤根据以上情况,假如先进行第一水平的开采年产量定为40万t,现对其进行副井提升设备的选型设计。
1.1.2设备类型的确定由于第一水平井不深,且年产量不大,决定采用单绳缠绕式提升系统。
罐笼的选定(1)吨位的确定:罐笼的吨位按井下运输使用的矿井名义载重量确定。
卧牛矿拟选定矿车的名义载重量为1t。
因而选用罐笼的吨位为1t。
(2)层数的选择:层数的选择应根据运送最大班下井工人时间不超过40min或总作业时间是否超过5小时来确定。
卧牛山煤矿最大班下井人数为260,显然选择一层罐笼不能够满足工作的要求。
故选用二层罐笼。
其具体的技术参数如下:型号:GLSY—1×2/2G—罐笼 L---立井单绳 S---钢丝绳罐道Y—异側进出车 1—煤车吨位 2—煤车数 2—层数自重:3000 Kg允许乘人数:24每层底有效面积: 2.3m 3罐笼总高度 4550 ㎜ 罐笼宽度: 1246 ㎜ 罐笼长度: 2550 ㎜ 罐笼质量:3667Kg 罐笼装载量:3235Kg最小井筒允许直径 3800㎜ 采用1 t 标准矿车,型号为 MG1.1—6自重 q c =6000N名义载煤量 1 t有效容积 1.1m 3 1.1.3提升刚丝绳的选型 选择原则:钢丝绳在运转中受到许多应力的作用和各种因素的影响,如静应力、动应力、弯曲应力、扭转应力和挤压应力等。
磨损和锈蚀也将损害钢丝绳的性能,综合考虑以上应力因素的计算是困难的,目前国内外都是按静载荷近似计算的。
我国是按《煤矿安全规程》的规定来设计的,其原则是:钢丝绳应按最大静载荷考虑一定的安全系数来进行计算的。
在经常性作业中,以提升作业载荷最重,故以此条件选择钢丝绳。
(1)次提矸量Q:Q=2r q v=2×1350×1.1=2970 (kg)R q ——— 矸石容量1350kg/m 3V ——— 矿车有效容积 V=1.1m 3(2)计算钢丝绳每米重P P≥caBz x H m gQ g Q -+σ11.0图1-1 钢丝绳计算示意图其中 H c =H j +H s +H z =14.13+190.14=204.27 mQ x 一次提升的Q X g 一次提升的最大载荷,N; Q z 容器的重量,NB σ 钢丝绳的抗拉强度Q X g=2×r 矸×V=2×1350×1.1=2970 (kg)代入数字计算得: P ′=caBz x H m g Q g Q -+σ11.0=86.3127.204917000011.029703000=-⨯+ N/m 根据上述计算值,从钢丝绳规格表中选取每米钢丝绳重量等于或大于P 值的钢丝绳,选型号为:D —6×19+1直径为31mm 的钢丝绳。
有关数据为:d=31㎜ , 0.2max =δ㎜, =ρ33.83 N/m ,170=B σKN/cm 2,Q q =690 KN由于实际所选钢丝绳的r 0(钢丝绳的比重)不一定是0.09N/cm 3,因而对所选钢丝绳是否满足安全系数的要求必须按实际所选每米绳重按下式进行验算,即所选钢丝绳的实际安全系数为:m a =cz qpH g Q Qg Q ++ (N/m)式中: Q q 为所选钢丝绳所有钢丝拉断力之和N P 为所选钢丝绳的每米重力,N/m.。
经计算: m a =cz qpH g Q Qg Q ++=14.903383.027.2047.2930690=⨯++>9所以所选钢丝绳可用。
1.1.4选择提升机提升机的主要参数有:图3-2 改进后信号联锁电路图当井口发出停车信号,或XC 只动作一次时,XC 的常开触点闭合,这时的正电压经R 1、XC 触点、J2-1、J1-1、R 4,给BG2一个正向电压,同时给C 2充电,BG2饱和导通,其集电极电位下降,BG3导通,J1得电吸合。
同时J1-1触点打开,J1-2闭合,为J2吸合做准备。
此时信号停止,XC 断开。
这时BG1的基极电位降低而导通,J2吸合,J2-1触点转换,J2-2闭合,为第二次信号的到来做准备。
因为未发出第二次信号,J3不动作,SJJ 不吸合,绞车制动手柄不能敞开闸,起信号联锁作用。
当连续发出第二或多次信号时,给BG4一个正向电压,同时给C3电容充电,BG4、BG5导通,J3有电吸合,其J3-1打开,利用C3放电维持J3的吸合,约5秒。
J3-2闭合,接通原电路中的J6,使SJJ 得电吸合,设在安全回路的SJJ 触点闭合。
GZJ 动作后,允许绞车正常运行。
3.3主要元器件的选择3.2.1整流二极管选用型号IN4007,峰值反压为1000V ,正向平均电流为1A ,正向压降为1.1V,最大反向电流为10uA. 3.2.2三极管选用型号3DG6C 高频小功率三极管,3CG23C 高频高反压三极管。
参数如下表:3.2.3继电器的选用继电器选用JQ-4F型,线包电阻为450欧姆,吸合电流为25mA,吸合电压为12V,实测小于9V,触点容量为220V、3A。
3.2.4安装调试本电路是装在10cm×10cm的电路板上,元器件经过严格的筛选,保证了其工作的可靠性。
如要调整J1和J3的吸合时间,只需要改变C2和C3的电容量的大小,或者电阻R4或R5阻值的大小。
延时时间整定在5秒左右即可。
后记在实习老师陈军、张有忠、蒋玉强、丁保华等老师的帮助指导下,从实习确定方案到设计完成经过二个月的努力,设计终于完成了。
在实习期间还得了卧牛矿机电科葛肇云等工程师的帮助,在此深表感谢!通过这次实习设计,使我充分融汇了几年来所学习的知识,提高了认识分析解决问题的能力,锻炼了计算机使用和计算机绘图能力,为以后工作打下了良好的基础。
当然,由于所学有限,设计中难免会出现这样那样的错误,敬请各位老师批评指正,谢谢!参考文献[1] 周乃荣等.矿山固定机械手册.北京:煤炭工业出版社,1986[2] 马新民.矿山机械.徐州:中国矿业大学出版社,1999[3] 于忠升,宋伟刚.矿山运输提升.沈阳东北大学出版社,1992[4] 孙玉蓉,周法礼.矿井提升设备.北京:煤炭工业出版社,1995[5] 葛成远.煤矿提升设备的改造.煤炭工业出版社,2002[6] 葛世荣.矿井提升机可选靠性技术.徐州: 中国矿业大学出版社,2001[7] 马建民等.现代提升机数字控制系统.徐州:中国矿业大学出版社,2002[8] 容观海.煤矿电工手册.北京:煤炭工业出版社,1980[9] 章宏甲等.液压传动.北京:机械工业出版社,2000,9[10] 张景松.流体力学与流体机械.徐州:中国矿业大学出版社,2001[11] 洪晓华.矿井运输提升.徐州:中国矿业大学出版社,2005[12] 潘英.矿山提升机械设计.中国矿业大学出版社,1989[13] 顾惠琳,徐烈煊,王斌耀.工程力学.同济大学出版社,2002[14] 范家骏.矿井多绳提升机造型设计.北京:煤炭工业出版社,1981[15] 徐灏.机械设计手册.北京:机械工业出版社,1992[16] 程居山.矿山机械.徐州:中国矿业大学出版社,1997[17] 能源部编.煤矿安全规程.北京:煤炭工业出版社,1992。