文科数学2009卷
2009北京高考数学真题(文科)及答案

2009北京高考数学真题(文科)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合,,则 1{|2}2A x x =-<<2{|1}B x x =≤A B = A. B. {12}x x -≤<1{|1}2x x -<≤C. D.{|2}x x <{|12}x x ≤<2.已知向量,,,不共线,,.如果(1a = 0)(0b = 1))(R k b a k c ∈+= b a d -=,那么d c //A.且与同向 B.且与反向1k =c d 1k =c d C.且与同向 D.且与反向1k =-c d 1k =-c d3.若,为有理数),则4(1a a +=+b a b +=A.33 B.29 C.23 D.194.为了得到函数的图象,只需把函数的图象上所有的点 3lg 10x y +=lg y x =A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为A .8B .24C .48D .1206.“”是“”的 6πα=1cos 22α=A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.若正四棱柱的底面边长为1,与底面成60°角,则1111ABCD A B C D -1AB ABCD 到底面的距离为11A C ABCD8.设是正及其内部的点构成的集合,点是的中心,若集合D 123PP P ∆0P 123PP P ∆,,1,2,3,则集合表示的平面区域是{|S P P D =∈0||||i PP PP ≤i =}S A.三角形区域 B.四边形区域C.五边形区域D.六边形区域二、填空题:本大题共6小题,每小题5分,共30分.把答案填写在题中横线上.9.若,,则____________. 4sin 5θ=-tan 0θ>cos θ=10.若数列满足:,,则_______;前8项的和{}n a 11a =12()n n a a n N *+=∈5a =8S =____________.(用数字作答)11.若实数、满足,则的最大值为_____________.x y 2045x y x x +-≥⎧⎪≤⎨⎪≤⎩s x y =+12.已知函数,若,则_____________.3(1)()(1)x x f x x x ⎧≤=⎨->⎩()2f x =x =13.椭圆的焦点为、,点在椭圆上,若,则________;22192x y +=1F 2F P 1||4PF =2||PF =的大小为_____________.12F PF ∠14.设是整数集的一个非空子集.对于,如果且,那么称是A k A ∈1k A -∉1k A +∉k 的一个“孤立元”,给定1,2,3,4,5,6,7,8,由的3个元素构成的所A {S =}S 有集合中,不含“孤立元”的集合共有____________个.三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(本小题共12分)已知函数.()2sin()cos f x x x π=-⑴求的最小正周期;()f x⑵求在区间,上的最大值和最小值.()f x [6π-2π16.(本小题共14分)如图,四棱锥的底面是正方形,底面,点在棱上. P ABCD -PD ⊥ABCD E PB ⑴求证:平面平面;AEC ⊥PDB⑵当且为的中点时,求与平面所成的角的大小.PD =E PB AE PDB17.(本小题共13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. 13⑴求这名学生在上学路上到第三个路口时首次遇到红灯的概率;⑵这名学生在上学路上因遇到红灯停留的总时间至多是4min 的概率18.(本小题共14分)设函数.3()3(0)f x x ax b a =-+≠⑴若曲线在点,处与直线相切,求、的值;()y f x =(2(2))f 8y =a b ⑵求函数的单调区间与极值点.()f x 19.(本小题共14分)已知双曲线:,,右准线方程为C 22221(0x y a a b-=>0)b >x =⑴求双曲线的方程;C ⑵已知直线与双曲线交于不同的两点、,且线段的中点在圆0x y m -+=C A B AB 上,求的值.225x y +=m20.(本小题共13分) 设数列的通项公式为,.数列定义如下:对于正整{}n a (n a pn q n N *=+∈0)p >{}n b 数,是使得不等式成立的所有中的最小值. m m b n a m ≥n ⑴若,,求; 12p =13q =-3b ⑵若,,求数列的前项和公式; 2p =1q =-{}m b m 2⑶是否存在和,使得?如果存在,求和的取值范围;如p q 32()m b m m N *=+∈p q 果不存在,请说明理由.参考答案。
2009高考文科数学全国一卷

2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题(1)o585sin 的值为(A) 2- (B)2(C)2- (D) 2【解析】本小题考查诱导公式、特殊角的三角函数值,基础题。
解:2245sin )45180sin()225360sin(585sin -=-=+=+=oo oo oo,故选择A 。
(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B = ,则集合()U A B ð中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个 【解析】本小题考查集合的运算,基础题。
(同理1)解:{3,4,5,7,8,9}A B = ,{4,7,9}(){3,5,8}U A B A B =∴= ð故选A 。
2009年北京高考数学文科试卷带详解

2009年普通高等学校招生全国统一考试数 学(文史类)(北京卷)1.设集合21{2},{1}2A x xB x x =-<<=…,则A B = ( ) A.{12}x x -<… B .1{1}2x x -剟C .{2}x x <D .{12}x x剟【测量目标】集合的基本运算.【考查方式】通过求解不等式从而得到集合,再对两个不同的集合比较大小. 【参考答案】A 【试题解析】∵21{2},{1}{11}2A x xB x x x x =-<<==-剟?,∴{12}A B x x =-< …,故选A.2.已知向量(1,0),(0,1),(),,k k ===+∈=-R a b c a b d a b ,如果c d ,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 【测量目标】向量的基本运算.【考查方式】给出目标向量之间的关系,再根据系数判断目标向量是否同向. 【参考答案】D 【试题解析】∵(1,0),(0,1)==a b ,若1k =,则=(1,1)c a b =+,-=(1,-1)d a b =,显然,a 与b 不平行,排除A 、B.若1k =-,则c d ,-=(-1,1)d a b =+,即c d 且c 与d 反向,排除C ,故选D.3.若4(1+2)=+2(,)a b a b 为有理数,则a b += ( ) A .33 B . 29 C .23D .19【测量目标】二项式定理.【考查范围】通过系数来考查对二项式展开式的掌握. 【参考答案】B【试题解析】 ∵4(12)+=1421282417122++++=+, ∴17122+2a b +=.故选B..k s.5.u.c4.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度【测量目标】对数函数图像的平移变化.【考查方式】要求从基本函数变化到目标函数. 【参考答案】C 【试题解析】 A .lg(3)+1lg10(+3)y x x =+=,B .lg(3)+1lg10(3)y x x =-=-,C .(3)lg(+3)1lg10x y x +=-=, D .(3)lg(3)1lg 10x y x -=--=.故应选C.5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A .8B .24C .48D .120 【测量目标】考查排列组合以及分布计算原理知识. 【考查方式】给出案例求解答案. 【参考答案】C 【试题解析】2和4排在末位时,共有12A 2=种排法,其余三位数从余下的四个数中任取三个有34A 43224=⨯⨯=种排法, 于是由分步计数原理,符合题意的偶数共有22448⨯=(个).故选C. 6.“π6α=”是“1cos 22α=”的 ( )A . 充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件【测量目标】三角函数及简易逻辑的概念.【考查方式】先求出三角函数特殊值再来考查简易逻辑. 【参考答案】A 【试题解析】 当π6α=时,π1cos 2cos ,32α==反之,当1cos 22α=时,有ππ22ππ()36k k k αα=+⇒=+∈Z ,或ππ22ππ()36k k k αα=-⇒=-∈Z ,故应选A.7.若正四棱柱的底面边长为1111ABCD A BC D -,1AB 与底面ABCD 成60°角,则11AC 到底面ABCD 的距离为 ( )A .33B . 1C .2D .3【测量目标】直线到面的距离计算.【考查方式】通过考查线到面的距离进一步考查对几何体性质的掌握. 【参考答案】D 【试题解析】依题意,160B AB ∠= ,1tan603B B == ,故选D.8.设D 是正123P P P △及其内部的点构成的集合,点0P 是123PP P △的中心,若集合0{,,1,2,3}i S P P D PP PP i =∈=…,则集合S 表示的平面区域是 ( ) A . 三角形区域 B .四边形区域C . 五边形区域D .六边形区域 【测量目标】平面几何的基础知识.【考查方式】通过对题目的理解来考察几何体的知识. 【参考答案】D 【试题解析】大光明() ()如图,,,,,,A B C D E F 为各边,,,,,A B C D E F 三等分点,答案是集合S 为六边形ABCDEF ,其中,02(1,3)i P A P A PA i ==…,即点P 可以是点A .第Ⅱ卷(110分)注意事项:1.用铅笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.题号二三总分1516 17 18 19 20 分数二、填空题:本大题共6小题,每小题5分,共30分.把答案填写在题中横线上. 9.若4sin ,tan 0,cos =5θθθ=->则 . 【测量目标】三角函数的运算.【考查方式】给出正弦和正切求出余弦.【参考答案】35-【试题解析】由已知,θ在第三象限,∴2243cos 1sin1()55θθ=--=---=-,∴应填35-.10.若数列{}n a 满足:*111,2()n n a a a n +==∈N ,则5a = ;前8项的和8s =.(用数字作答)【测量目标】数列的递推和数列的求和.【考查方式】给出数列的递推公式,从而求前n 项和. 【参考答案】255 【试题解析】12132451,22,24,8,16,a a a a a a a ======= 易知882125521S -==-,∴应填255.11.若实数,x y 满足204,5x y x x +-⎧⎪⎨⎪⎩………则S x y =+的最大值为 . (T2)【测量目标】线性规划的基础知识.【考查方式】给出三条直线方程,求目标曲线的最大值和最小值. 【参考答案】9 【试题解析】如图,当459s x y =+=+=,4,5x y ==时,459s x y =+=+=为最大值.故应填9.12.已知函数3,1(),,1x x f x x x ⎧=⎨->⎩…若()2f x =,则x = . 【测量目标】指数函数的基本运算.【考查方式】已知分段函数表达式,给出函数值求解对应函数.【参考答案】23log【试题解析】.w.w.由31log 2,32xx x ⎧⇒=⎨=⎩ (1)2x x >⎧⎨-=⎩无解,故应填3log 2. 13.椭圆22+192x y =的焦点为12,F F ,点P 在椭圆上,若14PF =,则2PF = ;12F PF ∠的大小为 .【测量目标】椭圆基本要素之间的基本关系.【考查方式】给出椭圆的标准方程,考查椭圆长短轴之间的关系. 【参考答案】2,120° 【试题解析】 ∵229,2a b ==,∴227c a b =-=,∴1227F F =,又OE AO ⊥,1124,26,PF PF PF a =+==,∴26PF =,又由余弦定理,得2221224(27)1cos 2242F PF +-∠==-⨯⨯,∴12120F PF ∠=,故应填2,120 .14.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A的一个“孤立元”,给定{1,2,3,4,5,6,7,8}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个. 【测量目标】集合间的关系.【考查方式】给出定义,利用已知定义解题. 【参考答案】6 【试题解析】什么是“孤立元”?依题意可知,必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.故所求的集合可分为如下两类:因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个. 故应填6.15.(本小题共12分)已知函数()2sin(π)cos f x x x =-.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间ππ[,]62-上的最大值和最小值. 【测量目标】考查学生的运算能力.【考查方式】通过考查特殊角的三角函数值,诱导公式,三角函数在闭区间上的最值的基本知识,来考查学生的运算能力. 【试题解析】(Ⅰ)∵()2sin(π)cos 2sin cos sin 2f x x x x x x =-==,∴函数()f x 的最小正周期为π. (步骤1)(Ⅱ)由πππ2π623x x -⇒-剟剟,∴3sin 212x -剟,∴()f x 在区间ππ[,]62-上的最大值为1,最小值为32-. (步骤2)16.(本小题共14分)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. (Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【测量目标】几何体的证明与二面角的计算.【考查方式】给出条件证明面与面的关系以及线与面的夹角. 【试题解析】【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力.(Ⅰ)∵四边形ABCD 是正方形,∴AC BD ⊥,∵PD ABCD ⊥底面,∴PD AC ⊥,∴AC ⊥平面PDB ,∴平面AEC PDB ⊥平面. (步骤1)(Ⅱ)设AC BD O = ,连接OE , 由(Ⅰ)知AC ⊥平面PDB 于O , ∴AEO ∠为AE 与平面PDB 所的角, ∴O ,E 分别为DB 、PB 的中点, ∴1,2OE PD OE PD =,又∵PD ABCD ⊥底面, ∴OE ABCD ⊥底面 (步骤2)∴(,0,0),(,,0),(0,,0),(0,0,0),(0,0,),A a B a a C a D P h OE AO ⊥.在AOE Rt △中,1222OE PD AB AO ===, ∴45AOE ∠=,即AE 与平面PDB 所成的角的大小为45︒. (步骤3) 【解法2】,以D 为原点建立空间直角坐标系D xyz -,设,,AB a PD h ==则(,0,0),(,,0),(0,,0),(0,0,0),(0,0,),A a B a a C a D P h ,(Ⅰ)∵2cos ,2EA EO AEO EA EO∠==(,,0),(0,0,),(,,0),AC a a DP h DB a a =-==,∴0,0AC DP AC DB ∙=∙=,∴,,AC DP AC DB ⊥⊥∴AC ⊥平面PDB ,∴平面AEC PDB ⊥平面. (步骤1)(Ⅱ)当2PD AB =,且E 为PB 的中点时,2(002),(,,),222a a aP a E ,,,设,连接OE ,AC BD O = , 由(Ⅰ)知AC ⊥平面PDB 于O , ∴为AEO ∠与平面PDB 所的角,∵22(,,),(0,0,),2222a a a a EA EO =--=- ,∴45AEO ∠=, (步骤2) 即AE 与平面PDB 所成的角的大小为45︒. (步骤3)17.(本小题共13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min . (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min 的概率.【测量目标】考查独立事件的概率.【考查方式】通过生活中的实例来考查数学中的概率. 【试题解析】 (Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为1114()(1)(1)33327P A =-⨯-⨯=. (Ⅱ)设这名学生在上学路上因遇到红灯停留的总时间至多是4min 为事件B ,这名学生在上学路上遇到k 次红灯的事件()0,1,2k B k =.则由题意,得40216381P=()=()B , 13222142412321224C ,C 33813381P P ==()=()()()=()()B B . 由于事件B 等价于“这名学生在上学路上至多遇到两次红灯”,∴事件B 的概率为.0128()())9P B P B PP =++(()=B B 18.(本小题共14分)设函数2()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点.【测量目标】曲线的切线方程以及导数的应用.【考查范围】利用点在直线上求系数以及考查函数分类讨论的单调区间.【试题解析】(Ⅰ)()0()(,)0(,+)f x x a f x a x a '<⇒=--∞+∞>∈∞∵曲线()y f x =在点(2,())f x 处与直线8y =相切,∴(2)04,(2)824f a f b '==⎧⎧⇒⎨⎨'==⎩⎩(Ⅱ)∵2()3()(0),f x x a a '=-≠,当0a <时,()0f x '>,函数()f x 在(,)-∞+∞上单调递增, 此时函数()f x 没有极值点.当0a >时,由()0f x x a '<⇒=±,当(,)x a ∈-∞-时,()0f x '>,函数()f x 单调递增, 当(,)x a a ∈-时,()0f x '<,函数()f x 单调递减, 当(,+)x a ∈∞时,()0f x '>,函数()f x 单调递增, ∴此时x a =是()f x 的极大值点,x a =是()f x 的极小值点.19.(本小题共14分)已知双曲线00,21x m y m ==+,2222:1(0,0)x y C a b a b-=>>的离心率为3,右准线方程为33x =. (Ⅰ)求双曲线C 的方程;(Ⅱ)已知直线0x y m -+=与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,求m 的值.【测量目标】双曲线的基础知识【考查方式】给出基本要素求标准方程,再根据标准方程确定与目标直线之间的关系.【试题解析】(Ⅰ)由题意,得,解2333a c c a⎧=⎪⎪⎨⎪=⎪⎩得1,3a c ==, (步骤1) ∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=. (步骤2) (Ⅱ)设A 、B 两点的坐标分别为1122(,),(,)x y x y ,线段AB 的中点为00(,)M x y ,由22120y x x y m ⎧-=⎪⎨⎪++=⎩得22220x mx m ---=(判别式0∆>), ∴00,2x m y m ==, (步骤3)∵点00(,)M x y 在圆225x y +=上,∴22(2)5m m +=, 1m ∴=±. (步骤4) 20.(本小题共13分)设数列{}n a 的通项公式为(,0)n a pn q n p =+∈>*N . 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m …成立的所有n 中的最小值.(Ⅰ)若11,23p q ==-,求3b ;(Ⅱ)若,1,12p q ==-求数列{}m b 的前2m 项和公式; (Ⅲ)是否存在p 和q ,使得32()m b m m =+∈*N ?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.【测量目标】数列的基本性质.【考查方式】给出限制条件,分别求出所问的问题.【试题解析】 (Ⅰ)由题意,得111120,3,23233n a n n n =--解得厖. ∴11323n -…成立的所有n 中的最小整数为7,即37b =. (步骤1) (Ⅱ)由题意,得21n a n =-,对于正整数,由21n a n =-,得12m n +…. (步骤2) 根据m b 的定义可知 当21=()m m k b k k =-∈*N 时,;当2m k =时,=1(*)m b k k +∈N .∴1221321242()()m m m b b b b b b b b b -++=+++++=2(123)[24(1)]2m m m m +++++++++=+ (步骤3). (Ⅲ)假设存在p 和q 满足条件,由不等式121,333p q =-<-…pn q m +…及0p >得m q n p-…. 3+132m q m m p-<+…,即2(31)p q p m p q ---<--…对任意的正整数m 都成立. 当310p ->(或310p -<)时,得31p q m p +<--(或231p q m p +--…), 这与上述结论矛盾! (步骤4) 当310p -=,即13p =时,得21033q q --<--…,解得2133q -<-…. ∴ 存在p 和q ,使得32()m b m m =+∈*N ;p 和q 的取值范围分别是121,333p q =-<-…. (步骤5)。
2009文科数学高考真题全国卷Ⅱ试卷

2009年普通高等学校招生全国统一考试试卷文科数学第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径 ()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一.选择题(1)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( MN )=(A) {5,7} (B ) {2,4} (C ){2.4.8} (D ){1,3,5,6,7}(2)函数(x ≤0)的反函数是(A )2y x =(x ≥0) (B )2y x =-(x ≥0) (B )2y x =(x ≤0) (D )2y x =-(x ≤0) (3) 函数y=22log 2xy x-=+的图像 (A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称 (4)已知△ABC 中,12cot 5A =-,则cos A = (A) 1213 (B) 513 (C) 513- (D) 1213-(5) 已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为(A 15 (D) 35(6) 已知向量a = (2,1), a ·b = 10,︱a + b ︱= b ︱=(A(B)(C )5 (D )25 (7)设2lg ,(lg ),a e b e c ===(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>(8)双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r= (A )3 (B )2 (C )3 (D )6 (9)若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为(A)61 (B)41 (C)31 (D)21(10)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 (A )6种 (B )12种 (C )24种 (D )30种(11)已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
2009年全国高考文科数学试题及答案-新课标卷

的各个数的和等于(Fra bibliotek)10EF
1 2
(D)既无最小值,也无最大值
,则下列结论中
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2009高考数学文科真题带答案

一、选择题:本大题12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M=﹛x|-3<x 5﹜,N=﹛x|x<-5或x>5﹜,则M N=
(A)﹛x|x<-5或x>-3﹜(B)﹛x|-5<x<5﹜(C)﹛x|-3<x<5﹜(D)﹛x|x<-3或x>5﹜
(I)若CD=2,平面ABCD⊥平面DCEF,求直线MN的长;(II)用反证法证明:直线ME与BN是两条异面直线。 (19)解(Ⅰ)取CD的中点G连结MG,NG.因为ABCD,DCEF为正方形,且边长为2所以MG⊥CD,MG=2, .因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF,可得MG⊥NG.所以 …6分(Ⅱ)假设直线ME与BN共面,..8分则 平面MBEN,且平面MBEN与平面DCEF交于EN,由已知,两正方形不共面,故 平面DCEF.又AB∥CD,所以AB∥平面DCEF.而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与 矛盾,故假设不成立。所以ME与BN不共面,它们是异面直线。……..12分
数学(文科类)
第II卷
二填空题:本大题共4小题,每小题5分。
(13)在平面直角坐标系xoy中,四边形ABCD的边AB∥DC,AD∥BC,已知点A(-2,0),B(6,8),C(8,6),则D点的坐标为___________.
【解析】平行四边形ABCD中, ∴ =(-2,0)+(8,6)-(6,8)=(0,-2)
三.解答题:本大题共6小题,共70分。解答应用写出文字说明,证明过程或演算步骤。
(17)(本小题满分10分)
等比数列{ }的前n项和为 ,已知 , , 成等差数列(1)求{ }的公比q;(2)求 - =3,求
2009年高考文科数学(全国)卷(I)

2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)o 585sin 的值为(A) 2- (B)2(C) (D) (2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B = ,则集合()U A B ð中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个(3)不等式111<-+x x 的解集为 (A ){}}{011x x x x 〈〈〉 (B ){}01x x 〈〈(C ) }{10x x -〈〈 (D )}{0x x 〈(4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713- (5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A (B )2 (C (D(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D )345种(8)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,(A )150° (B )120° (C )60° (D )30°(9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(B) (C) (D) 34 (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 (A)6π (B) 4π (C) 3π (D) 2π(11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到βQ到α的距离为P 、Q 两点之间距离的最小值为(B)2 (C) (D)4(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)

2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共 12小题,每小题 5分,满分 60分)1.(5分)sin585°的值为( )A .B .C .D .2.(5分)设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A ∪B ,则集合∁(A ∩B )中的元素共有( )U A .3个B .4个C .5个D .6个3.(5分)不等式 <1的解集为( )A .{x |0<x <1}∪{x |x >1}C .{x |﹣1<x <0}B .{x |0<x <1}D .{x |x <0}4.(5分)已知 tana=4,cotβ=,则 tan (a +β)=( )A .B .﹣C .D .﹣5.(5分)已知双曲线 ﹣ =1(a >0,b >0)的渐近线与抛物线 y=x +1相2切,则该双曲线的离心率为( )A .B .2C .D .6.(5分)已知函数 f (x )的反函数为 g (x )=1+2lgx (x >0),则 f (1)+g (1)=( )A .0B .1C .2D .47.(5分)甲组有 5名男同学,3名女同学;乙组有 6名男同学、2名女同学.若从甲、乙两组中各选出 2名同学,则选出的 4人中恰有 1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种8.(5分)设非零向量、、满足,则=( )A .150°B .120°C .60°D .30°9.(5分)已知三棱柱 ABC ﹣A B C 的侧棱与底面边长都相等, A 在底面 ABC 1111上的射影D为BC的中点,则异面直线AB与CC所成的角的余弦值为( )1A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )A.B.C.D.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )A.112.(5分)已知椭圆C:+y交C于点B,若=3,则||=( )A.B.2C.B.2C.D.42=1的右焦点为F,右准线为l,点A∈l,线段 AFD.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)的展开式中,x的系数与 x107y33y7的系数之和等于 .14.(5分)设等差数列{a}的前n的和为S,若S =72,则a+a+a = .n n924915.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 .16.(5分)若直线m被两平行线l:x﹣y+1=0与l:x﹣y+3=0所截得的线段的12长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 (写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{a}的前n项和为S,公比是正数的等比数列{b}的前n n nn项和为T,已知 a =1,b =3,a+b =17,T﹣S =12,求{a},{b}的通项公n113333n n式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a﹣c =2b 2 2,且sinAcosC=3cosAsinC,求b.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.21.(12分)已知函数f(x)=x﹣3x+6.4 2(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求Ⅰ讨论f(x)的单调性;l的方程.22.(12分)如图,已知抛物线E:y =x与圆M:(x﹣4)+y =r(r>0)相交2 2 2 2于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为( )A.B.C.D.【考点】GE:诱导公式.【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁(A∩B)中的元素共有( )UA.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁(A∩B)={3,5,8}故选A.U也可用摩根律:∁(A∩B)=(∁A)∪(∁B)U U U故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为( )A.{x|0<x<1}∪{x|x>1}D.{x|x<0}B.{x|0<x<1} C.{x|﹣1<x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x+2x+1<x﹣2x+1.2 2x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知tana=4,cotβ=,则tan(a+β)=( )A.B.﹣C.D.﹣【考点】GP:两角和与差的三角函数.【专题】11:计算题.【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案.【解答】解:∵tana=4,cotβ=,∴tanβ=3∴tan(a+β)=故选:B.==﹣【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中 β角的余切值,根据同角三角函数的基本关系公式,求出 β角的正切值是解答本题的关键.5.(5分)已知双曲线 ﹣ =1(a >0,b >0)的渐近线与抛物线 y=x +1相2切,则该双曲线的离心率为( )A .B .2C .D .【考点】KC :双曲线的性质;KH :直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于 0,找到 a 和 b 的关系,从而推断出 a 和 c 的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为 ,代入抛物线方程整理得 ax 2﹣bx +a=0,﹣4a =0,因渐近线与抛物线相切,所以 b 即 ,故选:C .22【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.6.(5分)已知函数 f (x )的反函数为 g (x )=1+2lgx (x >0),则 f (1)+g (1)=( )A .0B .1C .2D .4【考点】4R :反函数.【专题】11:计算题.【分析】将 x=1代入即可求得 g (1),欲求 f (1),只须求当 g (x )=1时 x 的值即可.从而解决问题.【解答】解:由题令 1+2lgx=1得 x=1,即 f (1)=1,又 g (1)=1,所以 f (1)+g (1)=2,故选:C .【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力.7.(5分)甲组有 5名男同学,3名女同学;乙组有 6名男同学、2名女同学.若从甲、乙两组中各选出 2名同学,则选出的 4人中恰有 1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O :排列组合.【分析】选出的 4人中恰有 1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有 C 51•C 32 1 1(2)乙组中选出一名女生有 C 5 •C 6 •C 2 =120种选法.故共有 345种选法.故选:D .•C 6 =225种选法;1 2【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=( )A .150°B .120°C .60°D .30°【考点】9S:数量积表示两个向量的夹角.【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形.【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等∴、可构成菱形的两条相邻边,∵∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120,°故选:B.【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体.9.(5分)已知三棱柱ABC﹣A B C的侧棱与底面边长都相等,A在底面 ABC1111上的射影D为BC的中点,则异面直线AB与CC所成的角的余弦值为( )1A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC所成的角(如∠A AB);而欲求其余弦值11可考虑余弦定理,则只要表示出 A B的长度即可;不妨设三棱柱ABC﹣A B C1111的侧棱与底面边长为 1,利用勾股定理即可求之.【解答】解:设 BC 的中点为 D ,连接 A D 、AD 、A B ,易知 θ=∠A AB 即为异面111直线 AB 与 CC 所成的角;1并设三棱柱 ABC ﹣A B C 的侧棱与底面边长为 1,则|AD |= ,|A D |=,|A B |=11111,由余弦定理,得 cosθ=故选:D .=.【点评】本题主要考查异面直线的夹角与余弦定理.10.(5分)如果函数 y=3cos (2x +φ)的图象关于点( ,0)中心对称,那么|φ|的最小值为( )A .B .C .D .【考点】HB :余弦函数的对称性.【专题】11:计算题.【分析】先根据函数 y=3cos (2x +φ)的图象关于点 中心对称,令 x=代入函数使其等于 0,求出 φ的值,进而可得|φ|的最小值.【解答】解:∵函数 y=3cos (2x +φ)的图象关于点 中心对称.∴ ∴ 由此易得 .故选:A .【点评】本题主要考查余弦函数的对称性.属基础题.11.(5分)已知二面角 α﹣l ﹣β为 60°,动点 P 、Q 分别在面 α、β内,P 到β的距离为,Q 到 α的距离为 ,则 P 、Q 两点之间距离的最小值为( )A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)已知椭圆C:+y =1的右焦点为F,右准线为l,点A∈l,线段 AF 2交 C 于点 B ,若 =3,则||=( )A .B .2C .D .3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点 B 作 BM ⊥x 轴于 M ,设右准线 l 与 x 轴的交点为 N ,根据椭圆的性质可知 FN=1,进而根据 ,求出 BM ,AN ,进而可得|AF |.【解答】解:过点 B 作 BM ⊥x 轴于 M ,并设右准线 l 与 x 轴的交点为 N ,易知 FN=1.由题意 ,故 FM=,故 B 点的横坐标为,纵坐标为±即 BM=,故 AN=1,∴ .故选:A .【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共 4小题,每小题 5分,满分 20分)13.(5分)(x ﹣y )的展开式中,x y 的系数与 x y 的系数之和等于 ﹣240 10 7 3 3 7.【考点】DA :二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:( a +b )n =C n +C n +C n ++C n ++C n a b ,各项的通项公式为:0a n b 01a n ﹣1b 12a n ﹣2b 2r a n ﹣r b r n 0 n a b .然后根据题目已知求解即可.T =C nr n ﹣r rr +1【解答】解:因为( x ﹣y )10的展开式中含 x y 的项为 C 10 x y (﹣1)7 3 3 10﹣3 33=﹣C 10 x y ,3 7 3含 x3y 7的项为 C 107x 10﹣7y 73(﹣1) =﹣C 10 x y .7 7 3 7由 C 103=C 10 =120知,x 77y 与 x y 的系数之和为﹣240.3 7故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:( a +b )=C n +C n +C n ++C n ++C n a b ,属于重点考点,同学们需n 0 n n 0n a b 01a n ﹣1b 12a n ﹣2b 2r n ﹣r a b r 要理解记忆.14.(5分)设等差数列{a }的前 n 的和为 S ,若 S =72,则 a +a +a = 24 .n n 9249【考点】83:等差数列的性质.【分析】先由 S =72用性质求得 a ,而 3(a +4d )=3a ,从而求得答案.9515【解答】解:∵∴a =85又∵a +a +a =3(a +4d )=3a =2424915故答案是 24【点评】本题主要考查等差数列的性质及项与项间的内在联系.15.(5分)已知 OA 为球 O 的半径,过 OA 的中点 M 且垂直于 OA 的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 16π .【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R = R+3,∴R =3,∴R =4.2 2 2 2∴S =4πR2=16π.球故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.16.(5分)若直线m被两平行线l:x﹣y+1=0与l:x﹣y+3=0所截得的线段的12长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 ①或⑤ (写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理.【专题】11:计算题;15:综合题;16:压轴题.【分析】先求两平行线间的距离,结合题意直线m被两平行线l与l所截得的12线段的长为,求出直线m与l的夹角为30°,推出结果.1【解答】解:两平行线间的距离为,由图知直线m与l的夹角为30°,l的倾斜角为45°,11所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°.故填写①或⑤故答案为:①或⑤【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a}的前n项和为S,公比是正数的等比数列{b}的前n n nn项和为T,已知 a =1,b =3,a+b =17,T﹣S =12,求{a},{b}的通项公n113333n n式.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题.【分析】设{a}的公差为d,数列{b}的公比为q>0,由题得n n,由此能得到{a},{b}的通项公式.n n【解答】解:设{a}的公差为d,数列{b}的公比为q>0,n n由题得,解得 q=2,d=2∴a =1+2(n ﹣1)=2n ﹣1,bn=3•2n ﹣1n .【点评】本小题考查等差数列与等比数列的通项公式、前 n 项和,基础题. 18.(12分)在△ABC 中,内角 A 、B 、C 的对边长分别为 a 、b 、c ,已知 a ﹣c =2b 2 2,且 sinAcosC=3cosAsinC ,求 b .【考点】HR :余弦定理.【分析】根据正弦定理和余弦定理将 sinAcosC=3cosAsinC 化成边的关系,再根据a ﹣c =2b 即可得到答案.2 2【解答】解:法一:在△ABC 中∵sinAcosC=3cosAsinC ,则由正弦定理及余弦定理有:,化简并整理得:2(a 又由已知 a ﹣c =2b ∴4b=b 解得 b=4或 b=0(舍);法二:由余弦定理得:a又 a ﹣c =2b ,b ≠0.2﹣c2)=b 2.222.2﹣c 2=b 2﹣2bccosA .22所以 b=2ccosA +2①又 sinAcosC=3cosAsinC ,∴sinAcosC +cosAsinC=4cosAsinCsin (A +C )=4cosAsinC ,即 sinB=4cosAsinC 由正弦定理得 ,故 b=4ccosA ②由①,②解得 b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在 RT △MNE 中由 ME =NE +MN ∴3x =x +22 2 2 2 2解得 x=1,从而 ∴M 为侧棱 SC 的中点 M .(Ⅰ)证法二:分别以 DA 、DC 、DS 为 x 、y 、z 轴如图建立空间直角坐标系 D ﹣xyz,则.设 M (0,a ,b )(a >0,b >0),则, ,由题得 ,即解之个方程组得 a=1,b=1即 M (0,1,1)所以 M 是侧棱 SC 的中点.(I )证法三:设 ,则又故即,,解得 λ=1,所以 M 是侧棱 SC 的中点.(Ⅱ)由(Ⅰ)得,又 , ,设分别是平面 SAM 、MAB 的法向量,则 且 ,即 且分别令 得 z =1,y =1,y =0,z =2,1122即∴,二面角 S ﹣AM ﹣B 的大小 .【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值; 20.(12分)甲、乙二人进行一次围棋比赛,约定先胜 3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为 0.6,乙获胜的概率为 0.4,各局比赛结果相互独立.已知前 2局中,甲、乙各胜 1局.(Ⅰ)求再赛 2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】12:应用题.【分析】根据题意,记“第i局甲获胜”为事件A(i=3,4,5),“第j局甲获胜”i为事件B(j=3,4,5),i(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案.【解答】解:记“第i局甲获胜”为事件A(i=3,4,5),i“第j局甲获胜”为事件B(j=3,4,5).i(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A •A+B •B,3434由于各局比赛结果相互独立,故P(A)=P(A •A+B •B)=P(A •A)+P(B •B)=P(A)P(A)+P(B)P34343434343(B)=0.6×0.6+0.4×0.4=0.52.4(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A •A+B •A •A+A •B •A,34345345由于各局比赛结果相互独立,故P(H)=P(A •A+B •A •A+A •B •A)34345345=P(A •A)+P(B •A •A)+P(A •B •A)34345345=P(A)P(A)+P(B)P(A)P(A)+P(A)P(B)P(A)34345345=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.21.(12分)已知函数f(x)=x﹣3x+6.4 2(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求Ⅰ讨论f(x)的单调性;l的方程.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题.【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程.【解答】解:(Ⅰ)令f′(x)>0得或;令f′(x)<0得或因此,f(x)在区间和为增函数;在区间和为减函数.(Ⅱ)设点P(x,f(x)),00由l过原点知,l的方程为y=f′(x)x,因此f(x)=f′(x)x,即x04﹣3x02+6﹣x(4x03﹣6x)=0,000002+1)(x0﹣2)=0,解得或.整理得(x2所以的方程为y=2 x或y=﹣2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握.22.(12分)如图,已知抛物线E:y =x与圆M:(x﹣4)+y =r(r>0)相交2 2 2 2于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y =x与圆M:(x﹣4)+y =r(r>0)相交于A、B、C、D四个点的充2 2 2 2要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y =x代入圆M:(x﹣4)+y =r(r>0)的方2 2 2 2程,消去 y2,整理得 x2﹣7x+16﹣r2=0(1)+y抛物线E:y2=x与圆M:(x﹣4)2=r(r>0)相交于A、B、C、D四个点的2 2充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.=则直线AC、BD的方程分别为y﹣=•(x﹣x),y+(x﹣x),1解得点P的坐标为(,0),则由(I)根据韦达定理有x+x =7,x x =16﹣r,12 1 22则∴令,则S =(7+2t)(7﹣2t)下面求S的最大值.2 2 2由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 若⎪⎪
⎩
⎪
⎪⎨
⎧<=>+=0
1sin 00
sin )(x x x x b x a x x x f 在其定义域内连续,则=a ,____=b . 2.已知1)1(='f ,则=--→1
)1()(lim
3
1
x f x f x .
3.x x x y 962
3
+-=的单调减少区间为 . 4.若2
x
e
-为)(x f 的一个原函数,则
='⎰
1
)(dx x f x .
5. 微分方程056=+'-''y y y 的通解为 . 1.求极限x
x x x cos 11sin 1lim
--+→.
2.已知函数)(x f y =由方程x xy e y
2+=所确定,求该曲线在点)0,(2
1
处的切线方程.
3. 计算
⎰+-dx e
e x
x
1
1
.
4.设)2(arcsin 2
++=x x y ,求dy .
5.用换元法计算⎰
-12
11
2dx e
x
6. 求
x
e
y dx
dy -=+的通解.
三、计算题(每小题6分,共10个小题,总共60分)
7.已知x
xe y -=,求.y ''
8.若矩阵⎪⎪⎭⎫ ⎝⎛=1111A ,矩阵⎪⎪⎭
⎫
⎝⎛=4321
B ;求B A ⋅和A B ⋅
9.判断广义积分
dx x
x ⎰+∞
2
2
ln
1
的敛散性,若收敛,求其值;
10.求解线性方程组⎪⎩⎪
⎨⎧=++=-=++5
33212
2321
32321x x x x x x x x
四、综合题(每小题5分,共10分)
1. 设由2
x y =与x y =围成的平面图形为D ,则(1)画出D 的图形; (2)求D 的面积D S ; (3)求D 绕x 轴旋转而成的旋转体的体积x V .
2. 经销商王先生以每条10元的价格买进一批围巾,设王先生每天的销量为Q,零售价为每条P 元。
王先生发现销量Q 与零售价P 的关系为 Q=40-2P 。
问:①当P=20元/条时,王先生能卖出几条?②为了使利润L(L=Q(P-10))最大,王先生应当以什么价格卖出?。