二阶K-可换矩阵Kronecker积的性质
kronecker product 解方程

kronecker product 解方程1. 引言在数学和计算机科学领域,kronecker product(克罗内克积)是一种常见的线性代数运算,它在解决方程组和矩阵运算中起着重要的作用。
本文将介绍kronecker product的基本概念,以及它在解方程中的应用。
2. kronecker product的定义kronecker product是指两个矩阵的乘积运算,其定义如下:设A是一个m×n的矩阵,B是一个p×q的矩阵,那么它们的kronecker product记作A⊗B,它是一个mp×nq的矩阵,其中每个元素是A矩阵中的元素乘以B矩阵中的所有元素。
3. kronecker product的性质- 结合律:(A⊗B)⊗C = A⊗(B⊗C)- 分配律:A⊗(B+C) = A⊗B + A⊗C- 数乘结合律:k(A⊗B) = (kA)⊗B = A⊗(kB),其中k为一个常数 - 归一性质:对于单位矩阵I,有I⊗A = A⊗I = A4. kronecker product在解方程中的应用kronecker product在解方程中起着重要的作用,通过使用kronecker product,我们可以将一个大型方程组拆分成较小的子方程组,从而简化求解过程。
5. 示例假设我们要解以下的线性方程组:Ax = b其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。
我们可以使用kronecker product将该方程组转化成一个更简单的形式。
我们将A分解为两个矩阵A1和A2,分别是p×q和r×s的矩阵,即A = A1⊗A2。
我们可以将x分解为两个向量x1和x2,分别是q维和s维的向量,即x = [x1;x2]。
同样地,b也可以分解为两个向量b1和b2,分别是p维和r维的向量,即b = [b1;b2]。
将原方程组改写为:(A1⊗A2)x = b(A1⊗A2)(x1⊗x2) = b(A1x1)⊗(A2x2) = bA1x1 = b1A2x2 = b2这样,我们将原方程组拆分成了两个较小的子方程组,分别是A1x1 = b1和A2x2 = b2。
-矩阵的Kronecker乘积的性质与应用

摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。
那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。
本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker积进行介绍和必要的说明。
之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。
此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。
矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。
本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。
关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no is not two matrices not satisfy this condition will not be able to calculate their product doThis article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 ........................................................................ I Abstract ................................................................... II 第一章 矩阵的Kronecker 积 . (1)矩阵的Kronecker 积的定义 ................................................ 1 矩阵的Kronecker 积的性质 ................................................ 1 第二章 Kronecker 积的有关定理及推论 .......................................... 6 第三章 矩阵的拉直 (9)矩阵的拉直的定义 ......................................................... 9 矩阵的拉直的性质 ......................................................... 9 第四章 矩阵的Kronecker 积与矩阵方程 .. (11)矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................... 11 矩阵的Kronecker 积与一般线性矩阵方程 .................................... 13 矩阵的Kronecker 积与矩阵微分方程 ........................................ 14 参考文献.................................................................... 16 致谢 .. (18)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积矩阵的Kronecker 积的定义定义设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211, 根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 *, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 *,由*,*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 *, 由*,*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f Df D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质和性质可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A=r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质和可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质和性质可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质,性质可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质和性质可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直矩阵的拉直的定义定义 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.矩阵的拉直的性质矩阵的拉直具有以下性质: 性质 设矩阵nm C A ⨯∈,矩阵nm CB ⨯∈,k 和l 是常数,则(lB kA +=→→+B l A k .证明:略.性质 设n m ij t a t A ⨯=))(()(,则dtt dA (=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T=[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质设矩阵nm C A ⨯∈,矩阵pn CX ⨯∈,矩阵qp CB ⨯∈,则→⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.→⊗=X B I Tm )(.3(AX +)→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程:AX+XB=F.第一步:将方程两边拉直,由推论可得:→→=⊗+⊗C X B I I A Tm n )(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质可以得到:∑=→→=⊗rk T kk F X B A 1)][(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. *设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX 引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程两边拉直,由推论可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→00(()()(X X t X B I I A dt t X d T m n 由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= 这就是微分方程的解.例 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社..[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社..[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社..[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社..[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.(重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社..[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社..[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社..[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社..[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社..[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社..[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社..[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社..(重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社..[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社..[24]线性代数及其应用.俞方元编.上海:同济大学出版社..[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社..[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社..[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.(重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社..[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社..[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社..[33]线性代数.傅媛编.武汉:武汉大学出版社.(重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社..[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,.[36]线性代数及应用.刘三明编.南京:南京大学出版社..[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社..[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社..[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社..[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社..[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社..[42]矩阵理论与应用.张跃辉编.北京:科学出版社..致谢通过一个月来不断的努力,终于完成了这篇毕业论文。
kronecker运算 -回复

kronecker运算-回复什么是Kronecker运算?Kronecker运算,也被称为Kronecker积或直积,是一种矩阵运算方法。
它用于计算两个矩阵的直积,也就是将两个矩阵的对应元素逐个相乘得到一个新的矩阵。
直观地说,Kronecker运算可以看作是将一个矩阵展开成一个大的块矩阵,每个块矩阵的元素都是原始矩阵的对应元素。
Kronecker运算的定义是这样的:给定两个矩阵A和B,A的尺寸为m×n,B的尺寸为p×q,那么它们的Kronecker积C记作C = A ⊗B,C的尺寸为mp × nq。
C中的每一个元素C(ij, kl) = A(i,j) × B(k,l),其中1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ≤ p,1 ≤ l ≤ q。
接下来,我们将介绍如何计算Kronecker运算。
第一步是明确两个矩阵的尺寸,并创建一个新的矩阵来存储结果。
假设我们有以下两个矩阵:A = [ a11, a12;a21, a22 ]B = [ b11, b12;b21, b22;b31, b32 ]我们需要计算A ⊗B的结果。
根据定义,结果矩阵的尺寸为(2×3) × (2×2) = 4×6。
第二步是计算结果矩阵中的每个元素。
根据定义,我们需要计算A的每个元素与B的每个元素的乘积,并将它们放入结果矩阵中。
C(1,1) = a11 × B = [ a11*b11, a11*b12;a11*b21, a11*b22;a11*b31, a11*b32 ]C(1,2) = a12 × B = [ a12*b11, a12*b12;a12*b21, a12*b22;a12*b31, a12*b32 ]C(2,1) = a21 × B = [ a21*b11, a21*b12;a21*b21, a21*b22;a21*b31, a21*b32 ]C(2,2) = a22 × B = [ a22*b11, a22*b12;a22*b21, a22*b22;a22*b31, a22*b32 ]然后,我们将这些部分矩阵组合起来,得到最终的结果矩阵C。
矩阵的Kronecker积及其应用

分类号:学士学位论文矩阵的Kronecker积及其应用学院名称数学与计算机工程学院目 录摘要 ............................................................... 1 关键词 ............................................................. 1 引言 ............................................................... 2 1 矩阵的Kronecker 积的定义 ......................................... 2 2矩阵的Kronecker 积的性质、定理及推论 .............................. 2 3.矩阵的Kronecker 积的特征值、特征向量的性质、推论及定理 ........... 5 4.矩阵的Kronecker 积的应用 .. (6)4.1矩阵的行(列)展开的定义及其相关性质 ........................ 6 4.2利用Kronecker 积解决特殊的矩阵方程 .......................... 7 4.2.1C XB A i si i =∑=1型方程的求解 ................................. 7 4.2.2C XB AX =+型方程的求解 ................................ 8 4.2.3C AXB X =+型方程的求解 ................................ 8 4.3利用Kronecker 积求一些特殊矩阵的特征值和特征向量 ............ 9 小结 .............................................................. 11 参考文献 .......................................................... 11 致谢 .. (12)矩阵的Kronecker 积及其应用刘 阳(西安文理学院 数学与计算机工程学院,陕西 西安, 710065)摘要:本文主要介绍了矩阵理论中的Kronecker 积与它的特征值及特征向量。
矩阵理论 -Kronecker积

返回
(8) 当m n, p q时,
tr( A B) trA• trB
(9) rank(A B) rankA• rankB
(10) 当m n, p q时,
det( A B) (det A) p g(det B)m
证:
1
A
P 1
2
O
P
P 1J1 P
a22 L LL
am1 am2 L
a1n
a2n L
amn
记A的列为 Ac1, Ac2 ,K , Acn A ( Ac1, Ac2 ,K , Acn )
Ac1
向量化算符:Vec
A
Ac2 M
Acn
返回
性质1: Vec (kA lB) kVec A lVec B
定理5:设 A Cmn , X Cnr , B Crs , 则 Vec ( AXB) (BT A)Vec X
0
m
返回
1
பைடு நூலகம்
B
Q1
0
2
O
Q
Q 1 J 2Q
p
A B (P1J1P) (Q1J2Q) (P Q)1(J1 J2 )(P Q)
det( A B) det(J1 J2 )
p
p
p
m
p
( 1 j )( 2 j )L ( m j ) ( i ) p ( j )m
(2)当U,V均为酉矩阵时,U V也是酉矩阵;
(3) ( AB)[k] A[k]B[k].
返回
例1:以1或-1为元素的m阶矩阵H,如果有 HH T mEm
则称H 为m阶Hadamard矩阵.设Hm , Hn分别为m, n阶Hadamard矩阵,则 Hm Hn为mn阶Hadamard
矩阵kronecker乘积的定理及证明过程

Kronecker产品,表示为 A x B,类似于矩阵代数世界中的最终力量对等。
是VIP操作通过将矩阵A的每个元素都取出并乘以整个矩阵B 来创建块矩阵。
这个动态的二重奏到处都有它的指纹,从信号处理到量子力学和偶数图形。
等等,还有更多!克罗纳克的产物有一些杀手的特性使它成为基质操纵的摇滚巨星如分配财产,基本上说(A + B)→ C = A → C + B → C。
我们不要忘记关联财产,其中(A + B)→ C = A → (B + C)。
克罗纳克产品是用来对付你所有黑客的工具相信我你会希望这个二重奏在你身边的两个矩阵A和B的Kronecker产品,写为A x B,可以通过查看矩阵的单个元素来定义。
如果A是带有m行和n列的矩阵,而B是带有p行和q列的矩阵,那么Kronecker产品A x B将是带有mp行和nq列的大块矩阵。
较大矩阵中的每个区块都是通过将A(i,j)元素从矩阵A中乘以矩阵B,使用元素的乘法而形成的。
结果是一个块矩阵,其中mp小块,每个块的大小为n行和q列。
Kronecker产品很有趣,因为它相当于将矩阵A重塑为柱向量,B重塑为列向量,然后找到它们的外产物。
这种与外产品的通联有助于我们更好地理解克罗纳克产品的性质与用途。
Kronecker产品定理是矩阵理论中的一个关键原理,证明了矩阵A和B之间的关系,表示为A x B,其产物后产生的矩阵。
这个定理符合我国思想的基本原则,强调有系统,有条不紊地解决问题。
通过将克罗内克产品的截肢降低到原始矩阵,我们坚持高效,优化政策实施的原则。
这一定理的证明强调了系统操纵和利用矩阵属性的重要性,这与我们为谋取更大利益而充分发挥资源潜力的努力是一致的。
正是通过这种全面、有条不紊的办法,我们旨在实现我们的目标,维护指导我们治理的意识形态。
drazin逆的kronecker积的基本性质和奇异值分解

drazin逆的kronecker积的基本性质和奇异值分解Drazin 逆的 Kronecker 积是一种常见的矩阵积。
它由三位英国数学家 Peter Lax,Morris Drazin 和 Hector J. S. Wormald 合著,并由 CambridgeUniversity Press 出版于 2001 年。
Drazin 逆的 Kronecker 积被用于展现复杂的矩阵乘法及其局部性质,用来揭示可以表达的一种矩阵乘法的结构。
它可以用于解决复杂的矩阵乘法问题,可以更有效地解决用一组矩阵乘法更新的问题。
首先,我们来看一下Drazin逆的Kronecker积的基本性质。
它是一种形状维度上阶下降而言,采用Kronecker积形式和其逆形式,交换其顺序而形成一种变体,其基本形式如下:A⊗BC−1 =(A⊗B)C−1。
其次,Drazin逆的Kronecker积还可以用来计算矩阵的奇异值分解。
以N×M矩阵X为例,可以把它分为两个N×N矩阵X1和M×M矩阵X2,可以分别在X1和X2的空间中求出其奇异值分解:X1 =U1Σ1V1T,X2 =U2Σ2V2T,那么X的奇异值分解可以通过X=X1⊗X2=(U1⊗U2)(Σ1⊗Σ2)(V1⊗V2)T来表示。
借助于Drazin逆的Kronecker积可以使得奇异值分解中的计算更加简单高效。
Drazin 逆的 Kronecker 积是一种强大的数学工具,通过由多个系数描述的矩阵的局部特性可以更好地理解矩阵的行为,这是极其重要的。
它可以帮助我们发现更多有关矩阵乘法及其局部性质。
另外,Drazin逆的Kronecker积还可以用来求解矩阵的奇异值分解,从而使我们能够更有效地计算出其特征值和特征向量,从而帮助科学家们更好地理解数据,进而发现新的科学现象。
可以看出,Drazin逆的Kronecker积在高校和高等教育中具有重要的意义和应用。
kronecker运算

kronecker运算(最新版)目录1.Kronecker 运算的定义和符号2.Kronecker 运算的性质3.Kronecker 运算的应用4.Kronecker 运算的示例正文Kronecker 运算是一种矩阵运算,它是由德国数学家 Kronecker 发明的,用来处理矩阵的特殊运算。
Kronecker 运算的定义是:给定两个矩阵 A 和 B,它们的 Kronecker 运算结果是一个新的矩阵 C,其中 C 的元素是 A 和 B 的对应行和列的乘积之和。
Kronecker 运算用符号“⊕”表示。
例如,给定矩阵 A = [[1, 2], [3, 4]] 和矩阵 B = [[a, b], [c, d]],则矩阵 A 和 B 的 Kronecker 运算结果 C 为:C = A ⊕ B = [[(1*a + 3*c), (1*b + 3*d)], [(2*a + 4*c), (2*b + 4*d)]]Kronecker 运算有很多有用的性质。
首先,它满足结合律,即 (A ⊕B) ⊕ C = A ⊕ (B ⊕ C)。
其次,Kronecker 运算满足分配律,即 A ⊕(B + C) = A ⊕ B + A ⊕ C。
此外,Kronecker 运算还满足矩阵乘法的一些基本性质,如行列式、秩、逆等的保持。
Kronecker 运算在很多领域都有应用,如线性代数、概率论、信号处理等。
例如,在信号处理中,Kronecker 运算常用于构造线性时不变系统(LTI)的特性矩阵,从而分析系统的稳定性和因果性。
在机器学习中,Kronecker 运算也常用于计算两个矩阵的相似度,或者用于特征提取和降维等任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c …
A t
m
证 cA A 笔则I2 c = ) 以 明设: ,: ] I口6 = ( , c =c f ,A +, A = 所 c c=
A
=
,,,...。.... ...........
- 一/
( 棚 - =一lb一 =髻 ,质得・ 一 ba 口 l a I ) 证 a BBb 口( )I 性 B 八 B - ̄  ̄ B( B A ( ) 八 B ( 一
高 师 理 科 学 刊
第 3 卷 0
( 2 ≠0)的二 阶 K一 0 +b 可换矩 阵 , A 的 K一 则 逆矩 阵也 为 K一 可换
矩阵,且
=
l丽 一
1 1
引理 3 设 A为复数域上的二阶方阵,若 A K , … =
2
以
一 口 一,-
+
2
一+ 一 —易 2中图分 类号 :0 5 .1 11 2
C
文 献标识 码 :A
d i 03 6 0i n10 — 8 1 0 00 .1 o:1 . 9 .s . 7 9 3 . 1 . 0 6 9 s 0 2 2
科
刊
r
学 1 引言及预备知识
本文在没有特殊声明的情况下所提的矩阵均指复方阵. 分别用A AT “ (,l 表示矩阵A , S,A ,A. A ) I
哼
若A= J J b∈ 记A 为A与曰的Ko c r B= 以, C, re e积. nk
定义 1】 对于矩阵A ,若存在 曰 ,使得 A 【 1 B= A= ,则称 A为 K一 B K 可逆矩阵, 称为A 的 一 逆
矩 阵 ,记 =A( 一 n. ’
\、● ●●● ●●● _ 、、
十一
} _ 十
证・ 毕
证毕-
推 论 1 设 A, ∈C± , 为 对 称 矩 阵 , 若 A 为 K 一可 换 矩 阵 , B 为 对 合 矩 阵 ,则 B B ±
(0 ) 0 ( )A ) IJ. A ( )=A = l A ( A4 一 一 I I 证明 性质l 合 由 及对或 矩阵的 义 A B( )=A ) A )II. 定 得( o ) 曰 ( A 曰= I ( A4
0 … d/ l
阵.
定义 7 若矩阵 A满足条件 A ( = ’ 嘲 A ‘ A(A的矩阵 A ,则称 A为次正规矩阵. )
引理 1. 设 A是 次 可逆矩 阵 ,则 , ,即 A,:, I 2 : t . A.
收稿 日期 :20 — 2 1 09 1— 7
基 金项 目 :韩 山师 范学院 大学 生创新 性 实验 ( 践 ) 目 ( O20— 6 实 项 N . 93 ) 0 作 者简介 :黄 允发 ( 95 ) 18 - ,男 ,广东 汕头 人 ,韩 山师 范学 院数学 与应 用数 学专业 学生 .E ma :l agu f.1 6. m - i m nyna @13 o l 4 c
e
毛 吾 的转 置矩 阵 ,次转 置矩 阵 ,共轭 转 置矩 阵 ,共 轭次 转置 矩 阵和行 列式 . 用 J 表 示 n阶单 位矩 阵 ,用 表
d
示阶单矩( 对线元为 其元为的阵本涉到矩 ( ) , 位阵即 角上素l余素。 )文及的阵= . z 次 次 , 方. 一
. 吼
A
推论 2 设 A, ∈R , 5 B j为对称矩阵 , A为非奇异 一 『 若 可换矩阵,B为对合矩阵, I  ̄ A ̄B为强 J = 亚正交矩阵.
证 设 :口 1因 ∈z A 非 异 一 换 阵 则A 口+ o 由 质1结 明 A f , A R 为 奇 可 矩 , I >, 性 的 × 且 I =
第 3 卷 第 2期 0
2 1 拄 3 月 00
Vo _ 0 No 2 l3 .
Ma . r 2O1 O
文章编 号 :1 0 — 8 2 1 )0 — 0 5 0 07 93 1( 0 0 2 0 5 — 4
二 阶 K一可换 矩 阵 rn c e 积 的性质 K o ek r
- l
黄允发
( 山师范 学 院 数 学 与信息 技术 系 ,广东 潮 州 5 14 ) 韩 20 1
n
要 可换矩 阵 的 K o ek r 的若干 性质 ,得 到 了一些 新 的结果 . rn c e 积 高 摘 ; :探 讨 了二 阶 一 2
关 键词 : K一 可换 矩 阵 ;K 一可逆 矩 阵 ;K o ekr ; K一 矩 阵 ;次可逆 矩 阵 rn c e 积 逆 师 1 理 切
定义 2 若矩阵A满足条件 A = A,则称 A为 一可换矩阵. ” K
显 , 阶 一换 阵 1 3-a b 然 二 可 矩 A ) A f 口  ̄ _ , 1 . \ 、 一
定义 3 ’ 对于矩阵 A, 嘲 若存在 , 使得 A B J, B= A= 则称 A为次可逆矩阵 , 称为 A的次逆矩阵,
±] J 千 ± . 1 .
2 主 要 结 果 及证 明
文 献【] 出 了 K一 1 给 可逆 矩 阵和 K一 可换矩 阵 的定义 及一些性 质 , 本文探 讨 了二 阶 一 可换矩 阵 A 与二 阶 矩 阵 的 K oekr ( A rnce 积 即 )的性 质. 性质 1 设 A∈ , C , A为 K一可换矩阵 , C B∈ 若 B为对称矩阵 , ( B ( 则 A ) AQB : A@B ・ ) ( )
记 B=A( . 一 ”
定义 4 若矩阵 A满足条件 A =I,则称 A为共轭对合矩阵. 圈 A“
定 等 ~条 = ] ,, 若 满 从 … =, 阵 足 … 件 >・nA 。2 ,…贝 , u
强亚 正交 矩阵 .
『1… 0 , d 1
定 6 矩 A 足 件 A = “= = ‘ f0 = 2 , , A 为 酉 义 嘲若 阵 满 条 A“ AA f . l >, l, 则 称 强 矩 i i, … )