矩阵基本性质
线性代数中的矩阵:概念与基本性质

线性代数中的矩阵:概念与基本性质矩阵是线性代数中最基本、也是最常用的概念之一。
它是由若干个按照规定大小和次序排列的数构成的矩形阵列,常用大写字母表示。
下面将介绍矩阵的概念与基本性质。
一、矩阵的定义设有m行n列的数a_ij排成一个m×n的矩形阵列,则称这个m×n的阵列为一个矩阵,记作A=(a_ij),其中1≤i≤m,1≤j≤n。
在矩阵A中,a_ij称为矩阵A的第i行第j列的元素,第i行的元素排列在一起,构成了矩阵A的第i行,第j列的元素排列在一起,构成了矩阵A的第j列。
二、矩阵的基本性质1、矩阵的加法设矩阵A=(a_ij)与B=(b_ij)的大小及相对应的元素都相同,则A 与B的和C=A+B的元素c_ij=a_ij+b_ij,1≤i≤m,1≤j≤n。
矩阵加法具有结合律、交换律和分配律。
2、矩阵的数乘设k是一个数,矩阵A=(a_ij),则kA的元素为(k·a_ij),1≤i≤m,1≤j≤n。
矩阵数乘同样具有分配律和结合律。
3、矩阵的乘法设矩阵A=(a_ij)的大小为m×p,矩阵B=(b_ij)的大小为p×n,矩阵C=(c_ij)的大小为m×n,则称C=AB,如果c_ij=a_i1b_1j+a_i2b_2j+…+a_ipb_pj,1≤i≤m,1≤j≤n。
在矩阵C中,第i行第j列的元素c_ij是矩阵A的第i行的元素和矩阵B的第j列的元素的乘积和。
矩阵乘法不具有交换律。
4、矩阵的转置设矩阵A=(a_ij)的大小为m×n,则称A的转置矩阵为A^T=(b_ij),大小为n×m,其中b_ij=a_ji。
矩阵的转置具有分配律和结合律。
5、矩阵的逆设方阵A的大小为n×n,如果存在一个n×n的方阵B,使得AB=BA=E,其中E是n阶单位矩阵,那么称矩阵A是可逆的。
矩阵B称为矩阵A的逆矩阵,记作A^(-1)。
如果矩阵A是可逆的,则其逆矩阵唯一。
矩阵基本性质

矩阵的基本性质矩阵A的第A第A列的元素为A AA。
我们A A或(A)表A×A的单位矩阵。
1.矩阵的加减法(1)A=A±A,对应元素相加减(2)矩阵加减法满足的运算法则a.交换律:A+A=A+Ab.结合律:(A+A)+A=A+(A+A)c.A+A=Ad.A−A=A2.矩阵的数乘(1)A=A A,各元素均乘以常数(2)矩阵数乘满足的运算法则a.数对矩阵的分配律:A(A+A)=A A+A Ab.矩阵对数的分配律:(A+A)A=A A+A Ac.结合律:(AA)A=A(A A)d.A?A=A3.矩阵的乘法(1)A=A A×A A A×A,左行右列对应元素相乘后求和为C的第A行第A列的元素(2)矩阵乘法满足的运算法则a.对于一般矩阵不满足交换律,只有两个方正满足且有AA=AA=Ab.分配律:A(A+A)=AA+AAc.结合律:(AA)A=A(AA)d.数乘结合律:A(AA)=A(A A)4.矩阵的转置A A, (A A)AA=A AA(1)矩阵的幂:A1=A,A2=AA,…,A A+1=A(A A)(2)矩阵乘法满足的运算法则a. (A A)A=Ab. (A+A)A=A A+A Ac. (A A)A=A(A A)d. (AA)A=A A A A5.对称矩阵:A A=A即a AA=a AA;反对称矩阵:A A=−A即a AA=−a AA (1)设A,A为(反)对称矩阵,则A±A仍是(反)对称矩阵。
(2)设A,A为对称矩阵,则AA或AA仍是对称矩阵的充要条件AA=AA。
(3)设A 为(反)对称矩阵,则A A ,A A 也是(反)对称矩阵。
(4)对任意矩阵A ,则A ≡12(A +A A ),A ≡12(A +A A )分别是对称矩阵和反对称矩阵且A =A +A . (5)(A A )A =A6. Hermite 矩阵:A A =A 即a AA =a AA ̅̅̅̅̅̅̅;反Hermite 矩阵,A A =−A 即a AA =−aAA ̅̅̅̅̅̅̅ a.A A =(A̅)Ab. (A +A )A =A A +A Ac. (A A )A =A ̅̅̅(A A )d. (AA )A =A A A Ae. (A A )A =Af. (A A )−A =(A −A )A (当A矩阵可逆时)7.正交矩阵:若A A A =A A A =A ,则A ,(A )∈A A ×A 是正交矩阵 (1)A −A =A A ∈A A ×A (2)det A =±1(3)AA , AA ∈A A ×A8.酉矩阵:若A A A =A A A =A ,则A ,(A )∈A A ×A 是酉矩阵 (1)A −A =A A ∈A A ×A(2)|det A |=1(3)AA , AA ∈A A ×A (4)A A ∈A A ×A9.正规矩阵:若A A A =A A A ,则A 是正规矩阵;若A A A =AA A ,则A 是实正规矩阵10.矩阵的迹和行列式(1)AA (A )=∑A AA A A =A =∑A A A A =A 为矩阵A 的迹;|A |或det ?(A )为行列式(2)AA (AA )=AA (AA );注:矩阵乘法不满足交换律 (3)AA (AAA )=AA (AAA )=AA (AAA ) (4)A =AAA ?, A 为酉矩阵,则AA (A )=AA (A ) (5)|A A +AA A |=|A A +A A A | (6)|A A +AA A |=|A A +A A A | (7)|A A |=|A | (8)|A A |=A A |A | (9)|AA |=|A ||A |(10)det ?(A +AA )=det ?(A +AA ) (11)|A |=∏A A A A =A(12)A=log[det(A A+AAA∗)],A=AA A A,则A=∑log(1+AAA A)AA=1其中A A为AA∗奇异分解值的特征值11.矩阵的伴随矩阵A∗(1)设A={A AA}由行列式|A|的代数余子式A AA所构成的矩阵(2)AA∗=A∗A=|A|A12.矩阵的逆(逆矩阵是唯一的)(1)A的逆矩阵记作A−A,AA−A=A−A A=A;(2)|A|≠0(A为非奇矩阵)时,A−A=A|A|A∗(3)|A|≠0且A≠0,则(A A)−A=1AA−A(4)由AAA−A A−A=A,得(AA)−A=A−A A−A(5)(A A)−A=(A−A)A(6)若|A|≠0,|A−A|=A|A|(7)若A是非奇上(下)三角矩阵,则A−A也上(下)三角矩阵(8)A−A=(A−A)A(9)(A−A+A A A−A A)−A A A A−A=AA A(AAA A+A)−A (10)(A+AA)−A A=A(A+AA)−A(11)Woodbury 恒等式 :(A +AA −A A )−A=A −A −A −A A (A +AA −A A )−A AA −A (12)A −A =A ∧−1A A12.对角矩阵,矩阵A 为对称矩阵,A 正交矩阵,则A −A AA =AAAA (A A ?,A A )为对角矩阵或A −A AA =A A AA =AAAA (A A ?,A A )=∧,则A =A ∧A A =∑A A A A A A A A A =A ; A −A =A ∧−1A A =∑1A AA A A A A A A =A13.矩阵的导数(1)??A (AA )=?A?A A +A ?A?A (2)??A (A −A )=−A −A ?A?A A −A (3)??A AA |A |=AA (A −A ?A?A ) (4)??AAAAA (AA )=A AA(5)?AA (AA )=A A (6)??A AA (A A A )=A (7)??A AA (A )=A(8)??A AA (AAA A )=A (A +A A ) (9)??A AA |A |=(A −A )A。
矩阵的基本性质和运算法则

矩阵的基本性质和运算法则矩阵是线性代数中的一个重要概念,是一个由数数组成的矩形阵列。
矩阵不仅有丰富的应用,比如在物理、经济、统计等领域中,还有着自身的基本性质和运算法则。
下面我们来谈谈矩阵的基本性质和运算法则。
一、矩阵的基本性质1.维数和元素矩阵的维数是指矩阵有多少行和多少列。
用矩阵的行数和列数来表示,如m×n的矩阵表示有m行,n列。
矩阵中的元素就是矩阵中的每一个数。
2.矩阵的转置矩阵的转置就是将矩阵的行和列交换,所得到的新矩阵称为原矩阵的转置矩阵。
如下所示:3 2 1 3 5A = 5 4 6 A^T = 2 47 8 9 1 6矩阵的转置可以表示为Aij = Aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n。
3.矩阵的行列式矩阵的行列式是矩阵的一个标量值,它是由矩阵的元素按照某一特定的规律计算得到的。
矩阵的行列式常用来描述矩阵线性方程组的解的情况。
如果一个矩阵的行列式为0,则该矩阵是一个奇异矩阵。
二、矩阵的运算法则1.矩阵的加法矩阵的加法必须满足两个矩阵的维数相同,即都是m×n的矩阵才能进行加法运算。
对于矩阵A和矩阵B,它们的和可以表示为C=A+B,即在矩阵A和矩阵B的对应元素上相加得到矩阵C。
如下所示:1 2 4 5 5 7C = 3 4 +D = 1 3 =E = 4 76 7 5 4 11 112.矩阵的减法矩阵的减法也必须满足两个矩阵的维数相同。
对于矩阵A和矩阵B,它们的差可以表示为C=A-B,即在矩阵A和矩阵B的对应元素上相减得到矩阵C。
如下所示:1 2 4 5 -3 -3C = 3 4 -D = 1 3 =E = 2 16 7 5 4 1 33.矩阵的数乘矩阵的数乘指的是一个矩阵的每一个元素与一个数相乘所得到的新矩阵。
如下所示:1 2 2 42A = 3 4 -3B= -6 -126 7 -9 -154.矩阵的乘法矩阵的乘法是指由两个矩阵相乘所得到的新矩阵。
矩阵的性质与运算

矩阵的性质与运算矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。
本文将从矩阵的基本性质入手,探讨矩阵的运算规则及其应用。
一、矩阵的基本性质矩阵是由数个数按照一定规则排列成的二维数组。
我们一般用大写字母表示矩阵,比如A、B等,矩阵的元素用小写字母表示,如a11、a12等。
1. 矩阵的阶:一个矩阵A有m行n列,我们称其为m×n阶矩阵,记作A(m,n)。
2. 矩阵的相等:两个矩阵A和B相等,当且仅当它们的对应元素相等,即A(i,j) = B(i,j)。
3. 矩阵的转置:将矩阵A的行与列对调得到的新矩阵称为A的转置矩阵,记作A^T。
其中转置矩阵的元素满足(A^T)(i,j) = A(j,i)。
二、矩阵的运算规则矩阵的运算包括矩阵的加法、减法和数乘运算。
下面我们将详细介绍这些运算。
1. 矩阵的加法:若矩阵A和B的阶数相同,即A(m,n)和B(m,n),则定义矩阵的加法为A+B = (a(i,j) + b(i,j))。
其中加法满足交换律和结合律。
2. 矩阵的减法:与矩阵的加法相对应,矩阵的减法定义为A-B = (a(i,j) - b(i,j))。
同样地,减法也满足交换律和结合律。
3. 矩阵的数乘:若矩阵A有m行n列,k是一个实数,我们可以定义矩阵A的数乘kA为kA = (k * a(i,j))。
数乘也满足结合律和分配律。
4. 矩阵的乘法:若矩阵A是一个m×n阶矩阵,矩阵B是一个n×p 阶矩阵,则定义矩阵的乘法为C = AB,其中C是一个m×p阶矩阵,C 的元素满足C(i,j) = Σa(i,k)b(k,j)。
三、矩阵运算的应用矩阵的运算在实际问题中有着广泛的应用。
下面我们通过几个具体的例子来说明矩阵运算的应用。
1. 线性方程组的求解:对于一个m个方程、n个未知数的线性方程组,可以用矩阵的表示形式AX = B来求解,其中A是一个m×n阶系数矩阵,X是一个n×1阶未知数矩阵,B是一个m×1阶列向量。
矩阵的基本运算与性质

矩阵的基本运算与性质矩阵是线性代数中重要的数学结构,它广泛应用于统计学、物理学、计算机科学等领域。
本文将介绍矩阵的基本运算和性质,包括矩阵的加法、减法、数乘、乘法以及转置等运算。
一、矩阵的加法和减法矩阵的加法和减法是指将两个矩阵进行逐元素地相加或相减的运算。
假设我们有两个矩阵A和B,它们的维度相同,即有相同的行数和列数。
矩阵的加法运算可以表示为C = A + B,其中C的每个元素等于A和B对应元素的和。
同理,矩阵的减法运算可以表示为D = A - B,其中D的每个元素等于A和B对应元素的差。
二、矩阵的数乘运算矩阵的数乘运算是指将一个实数或复数与矩阵的每个元素相乘的运算。
假设我们有一个矩阵A和一个实数k,矩阵A的数乘运算可以表示为B = kA,其中B的每个元素等于k乘以A对应元素的值。
三、矩阵的乘法运算矩阵的乘法运算是指将两个矩阵相乘得到一个新的矩阵的运算。
矩阵乘法的定义要求第一个矩阵的列数等于第二个矩阵的行数。
假设我们有两个矩阵A和B,A的维度为m×n,B的维度为n×p,那么矩阵的乘法运算可以表示为C = AB,其中C的维度为m×p。
矩阵乘法的元素计算方式为C的第i行第j列元素等于A的第i行与B的第j列对应元素乘积的和。
四、矩阵的转置运算矩阵的转置运算是指将矩阵的行转换为列,将列转换为行的操作。
假设我们有一个矩阵A,A的转置可以表示为A^T。
A^T的第i行第j 列元素等于A的第j行第i列元素,即A^T的维度为n×m,其中A的维度为m×n。
矩阵的基本性质:1. 矩阵的加法和减法满足交换律和结合律,即A + B = B + A,(A +B) + C = A + (B + C)。
2. 矩阵的乘法满足结合律,即(A × B) × C = A × (B × C)。
3. 矩阵的加法和数乘运算满足分配律,即k(A + B) = kA + kB,(k + l)A = kA + lA。
矩阵的基本性质与变换

矩阵的基本性质与变换矩阵是线性代数中的重要概念之一,它在各个工程领域和科学研究中都有广泛的应用。
本文将介绍矩阵的基本性质及其在数学变换中的应用。
一、矩阵的基本性质矩阵是由数字排成的矩形阵列,其中的数字称为元素。
矩阵由m行和n列组成,记作m×n的矩阵。
矩阵中的元素通常用小写字母表示,如a、b、c等。
以下是矩阵的一些基本性质:1. 矩阵的加法与减法对于两个相同维度的矩阵A和B,可以进行矩阵的加法和减法运算。
加法运算定义如下:A + B = C,其中C的每个元素等于A与B对应元素之和。
减法运算的定义与加法类似。
2. 矩阵的乘法矩阵乘法是一种矩阵之间的运算。
对于一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积记作AB,得到的结果是一个m×p的矩阵C。
C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。
3. 矩阵的转置矩阵的转置是指交换矩阵的行与列,得到的新矩阵记作A^T。
即A^T的第i行第j列的元素等于A的第j行第i列的元素。
4. 矩阵的逆对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
B称为A的逆矩阵,记作A^(-1)。
只有方阵才存在逆矩阵。
二、矩阵的变换矩阵不仅可以进行基本的加法、减法和乘法运算,还可以用来进行各种数学变换,包括线性变换和仿射变换。
1. 线性变换线性变换是指将一个向量空间V里的向量x映射到另一个向量空间W里的向量y的变换。
对于一个m×n的矩阵A和一个n×1的向量x,线性变换的计算公式为y=Ax。
矩阵A定义了向量x在变换过程中的缩放、旋转和剪切等操作。
2. 仿射变换仿射变换是指将一个向量空间V里的向量x映射到另一个向量空间W里的向量y的变换。
对于一个m×n的矩阵A和一个n×1的向量x,仿射变换的计算公式为y=Ax+b,其中b是一个常向量。
仿射变换可以进行平移、旋转、缩放和错切等操作。
矩阵及其性质知识点及题型归纳总结

矩阵及其性质知识点及题型归纳总结
1. 矩阵基本概念
- 矩阵是一个二维数组,由行和列组成。
- 矩阵的元素可以是实数、复数或其他数域中的元素。
2. 矩阵的性质和运算
- 矩阵的转置:交换矩阵的行和列, 记作A^T。
- 矩阵的加法:对应位置元素相加。
- 矩阵的数乘:将矩阵的每个元素乘以一个数。
- 矩阵的乘法:满足左乘法则和右乘法则。
- 矩阵的逆:对于可逆方阵,存在逆矩阵使得矩阵乘法满足乘法逆的要求。
3. 矩阵的特殊类型和性质
- 单位矩阵:一个方阵的主对角线上元素为1,其他元素为0。
- 零矩阵:所有元素都为0的矩阵。
- 对角矩阵:只有主对角线上元素非零,其他元素为0。
- 对称矩阵:矩阵的转置等于它本身。
- 上三角矩阵:主对角线及其以下的元素都不为0。
- 下三角矩阵:主对角线及其以上的元素都不为0。
4. 矩阵的题型归纳
- 矩阵的基本运算:加法、数乘、乘法和转置操作。
- 矩阵的性质判断:检查矩阵是否为对称矩阵、上三角矩阵、下三角矩阵等。
- 矩阵的逆和行列式:求逆矩阵、计算行列式的值等。
- 矩阵的方程求解:解线性方程组、求矩阵的特征值和特征向量等。
以上是矩阵及其性质的基本知识点及题型归纳总结。
通过掌握这些知识,你将能够更好地理解和应用矩阵在数学和工程等领域的相关问题。
矩阵的基本运算与性质

矩阵的基本运算与性质一、矩阵的定义与表示矩阵是由若干数字按照行和列排列成的矩形阵列,通常用方括号表示。
例如,一个m行n列的矩阵可以表示为[A]m×n,其中每个元素a_ij表示矩阵A中第i行第j列的数字。
二、矩阵的基本运算1. 矩阵的加法:若A和B是同阶矩阵,即行数和列数相等,那么A 和B的和C=A+B是一个同阶矩阵,其中C的任意元素c_ij等于A和B对应元素的和。
示例:[A]m×n + [B]m×n = [C]m×n,其中c_ij = a_ij + b_ij。
2. 矩阵的数乘:若A是一个矩阵,k是一个常数,那么kA就是将A的每个元素乘以k得到的矩阵。
示例:k[A]m×n = [B]m×n,其中b_ij = k * a_ij。
3. 矩阵的乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么它们的乘积C=AB是一个m行p列的矩阵,其中C的任意元素c_ij等于A的第i行与B的第j列对应元素的乘积之和。
示例:[A]m×n × [B]n×p = [C]m×p,其中c_ij = Σk=1^n (a_ik *b_kj)。
三、矩阵的运算法则1. 加法的交换律:矩阵的加法满足交换律,即A+B=B+A。
2. 加法的结合律:矩阵的加法满足结合律,即(A+B)+C=A+(B+C)。
3. 数乘的结合律:数乘与矩阵的乘法满足结合律,即k(A+B)=kA+kB。
4. 数乘的分配律:数乘与矩阵的乘法满足分配律,即(k+m)A=kA+mA,k(A+B)=kA+kB。
5. 乘法的结合律:矩阵的乘法满足结合律,即(A*B)*C=A*(B*C)。
6. 乘法的分配律:矩阵的乘法满足分配律,即(A+B)*C=AC+BC。
四、矩阵的性质1. 矩阵的转置:若A是一个m行n列的矩阵,在A的上方写A的名字的转置符号T,表示A的转置矩阵。
A的转置矩阵是一个n行m 列的矩阵,其中A的第i行被用作A的转置矩阵的第i列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的第⾏第列的元素为。
我们⾏或()表⾏的单位矩阵。
1.矩阵的加减法
(1),对应元素相加减
(2)矩阵加减法满足的运算法则
a.交换律:
b.结合律:
c.
d.
2.矩阵的数乘
(1),各元素均乘以常数
(2)矩阵数乘满足的运算法则
a.数对矩阵的分配律:
b.矩阵对数的分配律:
c.结合律:
d.
3.矩阵的乘法
(1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则
a.对于一般矩阵不满足交换律,只有两个方正满足且有
b.分配律:
c.结合律:
d.数乘结合律:
4.矩阵的转置,
(1)矩阵的幂:,,…,
(2)矩阵乘法满足的运算法则
a.
b.
c.
d.
5.对称矩阵:即;反对称矩阵:即
(1)设为(反)对称矩阵,则仍是(反)对称矩阵。
(2)设为对称矩阵,则或仍是对称矩阵的充要条件=。
(3)设为(反)对称矩阵,则,也是(反)对称矩阵。
(4)对任意矩阵,则分别是对称矩阵和反对称矩阵且.
(5)
6. Hermite矩阵:即;反Hermite矩阵,即
a.
b.
c.
d.
e.
f.(当矩阵可逆时)
7.正交矩阵:若,则是正交矩阵
(1)
(2)
(3),
8.酉矩阵:若,则是酉矩阵
(1)
(2)
(3),
(4)
9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵
10.矩阵的迹和行列式
(1)为矩阵的迹;或为行列式
(2);注:矩阵乘法不满足交换律
(3)
(4),为酉矩阵,则
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12),,则其中为奇异分解值的特征值
11.矩阵的伴随矩阵
(1)设由行列式的代数余子式所构成的矩阵
(2)
12.矩阵的逆(逆矩阵是唯一的)
(1)A的逆矩阵记作,;
(2)(为非奇矩阵)时,
(3)且,则
(4)由,得
(5)
(6)若
(7)若是非奇上(下)三角矩阵,则也上(下)三角矩阵
(8)
(9)
(10)
(11)Woodbury恒等式 :
(12)
12.对角矩阵,矩阵为对称矩阵,正交矩阵,则为对角矩阵
或,则
;
13.矩阵的导数
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)。