2011年高考数学一轮精品题集:三角函数
高考数学一轮复习《三角函数》复习练习题(含答案)

高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题 1.函数tan2x y =是 A .周期为2π的奇函数 B .周期为2π的奇函数 C .周期为π的偶函数D .周期为2π的偶函数2.有一块矩形花圃ABCD 如图所示,其中10AB cm =,6BC cm =,现引进了新品种需将其扩大成矩形区域EFGH ,点A ,B ,C ,D 均落在矩形EFGH 的边上(不包括顶点),则扩大后的花圃的最大面积为( )A .2100mB .2128mC .2144mD .2196m3.已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><,其部分图象如图所示,则()f x 的解析式为( )A .1()3sin 26f x x π⎛⎫=+ ⎪⎝⎭B .1()3sin 26f x x π⎛⎫=- ⎪⎝⎭C .15()3sin 26f x x π⎛⎫=+ ⎪⎝⎭D .1()3sin 26f x x π⎛⎫=- ⎪⎝⎭或15()3sin 26f x x π⎛⎫=+ ⎪⎝⎭ 4.若α是第四象限角,则π-α是第( )象限角.A .一B .二C .三D .四5.若一个底面半径为1的圆锥侧面展开图是一个顶角为23π的扇形,则该圆锥的体积为( )A .353π B .223πC .35πD .22π 6.已知函数()()sin 0,2f x x A πωϕϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则tan ϕ=( )A 3B .1C 3D .37.下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+8.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若()f x m =在[0,)π上有两个实根a ,b ,且||3a b π->,则实数m 的取值范围是( ) A .1,02⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭二、多选题9.设0θπ<<,非零向量()sin 2,cos a θθ=,()cos ,1b θ=,则( ) A .若1tan 2θ=,则//a b B .若34πθ=,则a b ⊥ C .存在θ,使2a b =D .若//a b ,则1tan 2θ=10.关于函数()cos 23cos f x x x x =+,下列结论正确的有( ) A .函数()f x 有最小值2-B .存在12,x x 有12x x π-=时,()()12f x f x =成立C .函数()f x 在区间,36ππ⎡⎤-⎢⎥⎣⎦上单调递增D .函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭成中心对称11.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若AB >,则sin sin A B >B .若cos cos a B b A c -=,则ABC 为直角三角形 C .若cos cos a A b B =,则ABC 为等腰三角形D .若2cos 22A c b c+=,则ABC 为直角三角形 12.已知函数()2sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列说法正确的是( )A .若函数()f x 的最小正周期为π,则其图象关于直线8x π=对称B .若函数()f x 的最小正周期为π,则其图象关于点,08π⎛⎫⎪⎝⎭对称C .若函数()f x 在区间0,8π⎛⎫⎪⎝⎭上单调递增,则ω的最大值为2D .若函数()f x 在[]0,2π有且仅有5个零点,则ω的取值范围是192388ω≤< 三、填空题13.已知tan 312πα⎛⎫-=- ⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______.14.如图,某湖有一半径为1km 的半圆形岸边,现决定在圆心O 处设立一个水文监测中心(大小忽略不计),在其正东方向相距2km 的点A 处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B 以及湖中的点C 处,再分别安装一套监测设备,且90BAC ∠=︒,AB AC =.定义:四边形OACB 及其内部区域为“直接监测覆盖区域”,设AOB θ∠=.则“直接监测覆盖区域”面积的最大值为________.15.若1tan 3α=-,则3sin 2cos 2sin cos αααα+=-_______. 16.已知函数()sin 0,02y x πωϕωϕ⎛⎫=+><≤ ⎪⎝⎭的部分图像如图所示,则点(,)P ωϕ的坐标为___.四、解答题17.已知函数()sin 3cos 33x x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()1y f x =-的单调递增区间; (2)设函数()()()1sin g x x f x =+,求()g x 的值域.18.已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,22ππϕ-<<,x ∈R 其部分图象如图所示.(1)求函数()y f x =的解析式; (2)若23()f α=(0,)3πα∈,求cos2α的值.19.计算: (1)sin15︒;(2)sin cos cos sin 33ππαααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭;(3)sin13sin73cos13sin17︒︒+︒︒.20.已知函数()222sin 4cos 1f x x x =-+.(1)求()f x 的最小正周期;(2)求()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最大值与最小值.21.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且()3sin cos a bC C =+.(1)求B ;(2)已知23BC =,D 为边AB 上的一点,若1BD =,2ACD π∠=,求AC 的长.22.2020年一场突如其来的疫情让亿万中华儿女的心再一次凝结在一起,为控制疫情,让广大发热患者得到及时有效的治疗,武汉市某社区决定临时修建一个医院.医院设计平面图如图所示:矩形ABCD 中,400AB =米,300BC =米,图中DMN 区域为诊断区(M 、N 分别在BC 和AB 边上),ADN △、CDM 及BMN △区域为治疗区.受诊断区医疗设备的实际尺寸影响,要求MDN ∠的大小为4π.(1)若按照200AN CM ==米的方案修建医院,问诊断区是否符合要求?(2)按照疫情现状,病人仍在不断增加,因此需要治疗区的面积尽可能的大,以便于增加床位,请给出具体的修建方案使得治疗区面积S 最大,并求出最大值.23.已知向量,a b 满足2sin ,4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭(cos ,cos sin )b x x x =-,函数()()f x a b x R =⋅∈.(1)求函数()f x 的单调区间;(2)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且()222242cos a ac B a b c -=+-,求()f B参考答案1.A2.B3.B4.C5.B6.C7.C8.D 9.ABD10.ABC11.ABD12.ACD 13.12-14252km15.35 16.2,3π⎛⎫ ⎪⎝⎭17.(1)()2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)1,42⎡⎤-⎢⎥⎣⎦18.(1)()2sin()6f x x π=+(2)cos 2α=19.(1(2);(3)12.20.(1)π;(2)最小值是-3,最大值是32.21.(1)6B π=(2)AC =22.(1)不符合要求(2)按照tan 18ADN ADN π⎛⎫∠∠= ⎪⎝⎭修建,治疗区面积最大,最大值为240000-(平方米)23.(1)单调增区间为7,,1212k k ππππ⎡⎤--⎢⎥⎣⎦k Z ∈;单调减区间为5,,1212k kππππ⎡⎤-+⎢⎥⎣⎦k Z∈;(2)。
2011高考数学复习资料汇编:第3单元 三角函数(真题解析+最新模拟)

三角函数函数检测试题命题人赵洪福 审核人李玉斌一 选择题1. 【2010•上海文数】若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC( )A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形2. 【2010•湖南文数】在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C= 120°,a ,则( )A.a >bB.a <bC. a =bD.a 与b 的大小关系不能确定3. 【2010•浙江理数】设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 4. 【2010•四川理数】将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) A.sin(2)10y x π=-B.sin(2)5y x π=-C.1sin()210y x π=-D.1sin()220y x π=-5. 【2010•陕西文数】函数f (x )=2sin x cos x 是 ( )A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数 6. 【2010•辽宁文数】设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )A.23 B. 43 C. 32D. 3 7. 【2010•全国卷2文数】已知2sin 3α=,则cos(2)x α-=A. B.19- C.198. 【2010•江西理数】E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 349. 【2010•重庆文数】下列函数中,周期为π,且在[,]42ππ上为减函数的是( ) A.sin(2)2y x π=+ B.cos(2)2y x π=+ C.sin()2y x π=+ D.cos()2y x π=+ 10.【2010•重庆理数】已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A.ω=1 ϕ=6π B. ω=1 ϕ=- 6π C. ω=2 ϕ= 6π D. ω=2 ϕ= -6π11【2010•山东文数】观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A.()f xB.()f x - C .()g x D.()g x -12. 【2010•北京文数】某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A.2sin 2cos 2αα-+;B.sin 3αα+C.3sin 1αα+;D.2sin cos 1αα-+二 填空题13 【2010•重庆文数】如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .14 【2010•山东文数】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,2b =,sin cos B B +则角A 的大小为 .15【2010•福建文数】观察下列等式: ① cos2a=22cos a -1;② cos4a=84cos a - 82cos a + 1;③ cos6a=326cos a - 484cos a + 182cos a - 1;④ cos8a=1288cos a - 2566cos a + 1604cos a - 322cos a + 1;⑤ cos10a= m 10cos a - 12808cos a + 11206cos a + n 4cos a + p 2cos a - 1. 可以推测,m – n + p = . 16. 【2010•江苏卷】定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。
高考数学一轮复习《三角函数》复习练习题(含答案)

高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题1.已知(0,)θπ∈且满足cos 2cos θθ=,则tan θ=A .B .CD 2.在△ABC 中,7,5a c ==,则sin :sin A C 的值是( )A .75B .57C .712D .5123.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 24.函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭在下列区间内递减的是( ) A .,22ππ⎡⎤-⎢⎥⎣⎦B .[],0π-C .22,33ππ⎡⎤-⎢⎥⎣⎦D .232,ππ⎡⎤⎢⎥⎣⎦5.已知a =116116tan tan +︒-,b =⎝⎭,c a 、b 、c 的大小关系为( ) A .c a b >> B .c b a >>C .a c b >>D .b a c >> 6.函数f (x )=3sin(2x -6π)在区间[0,2π]上的值域为 A .[32-,32] B .[32-,3]C .[D .[,3] 7.将函数cos 2y x =的图象向左平移4π个单位长度,所得函数的解析式是( )A .cos 24y x π⎛⎫=+ ⎪⎝⎭B .cos 24y x π⎛⎫=- ⎪⎝⎭C .sin 2y x =-D .sin 2y x = 8.函数tan y x =周期为( )A .2πB .2πC .πD .3π9.在ABC 中,60A =︒,43a =,42b =,则B 等于( )A .45︒B .135︒C .45︒或135︒D .3010.函数()sin()f x A x b ωϕ=++的图象如下:则()f x 的解析式和(0)(1)(2)(2006)S f f f f =+++⋯+的值分别为A .1()sin 122f x x π=+,2006S = B .1()sin 122f x x π=+,120062S = C .1()sin 122f x x π=+,120072S = D .1()sin 122f x x π=+,2007S = 11.设函数f (x )=2sin(2πx +5x ).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .12 12.如图所示,在ABC 中,D 是边AC 上的点,且AB AD =,23AB BD =,2BC BD =,若2BD =,则sin C 的值为( )A .33B .23C .223D .66二、填空题13.函数()()sin 0,0,y A x A ωϕωϕπ=+>><的图象如图所示,则该函数的解析式为y =______.14.在ABC ∆中,如果lg lg lgsin 2a c B -==-,且B 为锐角,则三角形的形状是__________.15.已知()2cos 3f x x π⎛⎫= ⎪⎝⎭,则(1)(2)(2022)f f f +++的值为________.16.sin 73cos13sin167cos 73︒︒-︒︒=________.17.已知△ABC 中,3cot 4A =-,则cos A =______. 18.252525sin cos tan 634πππ⎛⎫++-= ⎪⎝⎭______. 19.已知扇形的半径为3cm ,圆心角为60︒,则扇形的面积为 2cm .20.若sin 41cos 5γγ=+,则1cos 2sin γγ-=______.三、解答题21.求下列各式的值(1)2log 342233log 9log 2log 3log 432-++⋅; (2)()()()sin 1071sin99sin 171sin 261-︒︒+-︒-︒.22.已知一扇形的面积S 为定值,求当扇形的圆心角为多大时,它的周长最小?最小值是多少?23.在ABC 中,a 、b 、c 分别是内角A 、B 、C 的对边,()cos sin cos cos A A a C c A =+; (1)求角A 的大小;(2)若a =ABC 14b c +的最小值.24.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,b =2B A =. (1)求sin A ;(2)求△ABC 的面积.25.(1)已知tan()22βα-=,tan()32αβ-=-,求)tan(βα+的值; (2)化简:21tan 9sin (12sin 99)︒︒-︒-.26.已知在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且有2cos (cos cos )C a B b A c +=. (1)求C ;(2)若3c =,求ABC ∆面积的最大值.27.已知函数()4cos sin()16f x x x π=+-. (1)求()f x 的最大值及此时的x 的集合;(2)求()f x 的单调增区间;(3)若1()2f α=,求sin(4)6πα-. 28.已知矩形纸片ABCD 中,AB=6,AD=12,将矩形纸片右下角折起,使该角的顶点B 落在矩形的边AD 上,且折痕的两端点M 、N 分别位于边AB ,BC 上,此时的点B 记为点P ,设MNB θ∠=,MN y =.(1)当15MNB ∠=时,判断N 的位置;(2)试将y 表示成θ的函数并求y 的最小值。
人教版高考总复习一轮数学精品课件 第五章 三角函数、解三角形-第二节 同角三角函数基本关系及诱导公式

故选C.
≠ .
(2)已知方程sin2 + 2sin cos − 2sin − 4cos = 0,则cos 2 − sin cos =
() B
4 3
3 4
A.− B. C.− D.
5 5
5 5
[解析]因为方程 + − − = ,
角
2π + ∈
π+
−
关于原点对称
______________
π
−
2
关于轴对称
_____________
π
+
2
图示
与角终边的关系
相同
______
角
π −
续表
角
2π + ∈
π+
图示
与角终边的关系
关于轴对称
关于直线 = 对称
−
三、诱导公式
组数
一
二
三
= ,即 = ,即 = .
因为 ∈ , ,所以 = , =
.故 − = −
C
=−
.故选C.
1
5
2或
(2)已知sin − cos = ,则tan =_____.
sin2 +cos2
=
2tan2 + 3tan − 1
=
2
tan + 1
=
sin +cos
[对点训练2](1)已知
sin −cos
宁南中学2011届高考数学复习—小题训练12 三角函数(二)

训练12 三角函数(二)一、选择题(方法:直接选择法、特殊化法、估算选择法、特征选择法、数形结合法、结论选择法) 1.(2009四川卷文)已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数C.函数)(x f 的图象关于直线x =0对称D. 函数)(x f 是奇函数 2.(2010陕西文)3.函数f (x)=2sinxcosx 是(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数(C)最小正周期为π的奇函数(D )最小正周期为π的偶函数3.(2009江西卷理)若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为A .1B .2C 1D 2 4.(2009全国卷Ⅰ理)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为( ) A .6πB.4πC.3πD.2π5.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是A.5[,],1212k k k Zππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Zππππ-+∈ D.2[,],63k k k Zππππ++∈6.(2009浙江理)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )7.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x =C.)42sin(1π++=x y D.22sin y x =8.(2009湖北卷理)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π9.(2009全国II 文,9)若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为( )A.61B.41 C.31 D.2110.(2010重庆理)(6)已知函数()sin 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如题(6)图所示,则A. ω=1 ϕ= 6π B. ω=1 ϕ=- 6πC. ω=2 ϕ=6πD. ω=2 ϕ= -6π11.(2009辽宁理,8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( )A.23-B. 23C.-12D.1212.(2010山东文)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=(A )()f x (B)()f x - (C) ()g x (D)()g x - 二、填空题(策略:快--运算要快;稳--变形要稳;全--答案要全;细--审题要细。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
高考数学一轮总复习第4章三角函数第4节函数y=Asinωx+φ的图象及简单应用教师用书

第四节 函数y =A sin(ωx +φ)的图象及简单应用考试要求:1.结合具体实例,了解函数y =A sin(ωx +φ)的实际意义.2.能借助图象理解参数A ,ω,φ的意义,了解参数的变化对函数图象的影响.3.会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型.一、教材概念·结论·性质重现1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0,x ≥0)振幅周期频率相位初相A T =f ==ωx + φ φ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )在一个周期内的简图时,要找五个特征点,如下表所示:ωx +φ0π2πxy =A sin(ωx+φ)0A 0-A 01.五点法作简图要取好五个关键点,注意曲线凹凸方向.3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径:由函数y =sin x 的图象经过变换得到y =sin(ωx +φ)的图象,如先伸缩,再平移时,要平移个单位长度,而不是|φ|个单位长度.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( × )(2)函数f(x)=A sin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )(3)若函数y=A sin(ωx+φ)(A≠0)为偶函数,则φ=kπ+(k∈Z).( √ )(4)函数y=A cos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( √ ) 2.(2021·常州一模)已知函数f(x)=2sin x,为了得到函数g(x)=2sin的图象,只需( )A.先将函数f(x)图象上所有点的横坐标变为原来的2倍,再向右平移个单位长度B.先将函数f(x)图象上所有点的横坐标变为原来的,再向右平移个单位长度C.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的D.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的2倍B 解析:将f(x)=2sin x的图象上各点的横坐标缩短到原来的,纵坐标不变,得到的函数解析式为f(x)=2sin 2x;再将函数f(x)=2sin 2x图象上所有的点向右平移个单位长度,得到函数f(x)=2sin.3.函数f(x)=cos(ω>0)的最小正周期是π,则其图象向右平移个单位长度后得到的图象对应函数的单调递减区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)B 解析:由题意知ω==2,将函数f(x)的图象向右平移个单位长度后得到函数g(x)=cos=cos=sin 2x的图象,由2kπ+≤2x≤2kπ+(k∈Z),解得函数的单调递减区间为(k∈Z).4.(2021·东城区一模)已知函数f(x)=A sin(2x+φ),其中x和f(x)部分对应值如表所示:x-0f(x)-2-2-222那么A=________.4 解析:由题意得f(0)=A sin φ=-2,f=-A cos φ=-2,所以A2(sin2φ+cos2φ)=16,因为A>0,所以A=4.5.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .3 解析:观察函数图象可得周期T=,故T==,所以ω=3.考点1 由图象确定y=A sin ωx+φ 的解析式——基础性1.(2022·银川模拟)已知函数y=sin(ωx+φ)的图象如图所示,则此函数的解析式可以是( )A.y=sinB.y=sinC.y=sinD.y=sinC 解析:由函数y=sin(ωx+φ)的图象知,T=2×=π,ω==2,由五点法画图知,是函数图象的第三个关键点,即2×+φ=π,解得φ=,所以此函数的解析式是y=sin.2.若函数f(x)=sin(ωx+φ)满足f=f(x),且f(x)的图象如图所示,则φ=( )A. B.-C. D.-D 解析:因为函数f(x)=sin(ωx+φ)满足f=f(x),所以函数f(x)的图象关于直线x=对称,结合图象,-=×,所以ω=2.结合五点法作图可得,2×+φ=,所以φ=-.3.(2021·全国甲卷)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则f =________.- 解析:由题意可得T=-=,所以T=π,ω==2,当x=时,ωx+φ=2×+φ=2kπ,所以φ=2kπ-π(k∈Z),令k=1可得φ=-,据此有f(x)=2cos,f =2cos=2cos=-.4.如图,某地一天6~14时的温度变化曲线近似满足函数T=A sin(ωt+φ)+b,则这段曲线对应的函数解析式为____________.y=10sin+20,x∈[6,14] 解析:从题图中可以看出,6~14时是函数y=A sin(ωx+φ)+b的半个周期,所以A=×(30-10)=10,b=×(30+10)=20.又×=14-6,所以ω=.又×10+φ=2π+2kπ,k∈Z,取φ=,所以y=10sin+20,x∈[6,14].1.由图象求解析式问题,求①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ=+kπ,k∈Z;“最小值点”(即图象的“谷点”)时ωx+φ=+kπ,k∈Z.考点2 函数y=A sin ωx+φ 的图象变换——综合性(1)(2021 ·全国乙卷)把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin的图象,则f(x)=( )A.sin B.sinC.sin D.sinB 解析:由已知的函数y=sin逆向变换,第一步:向左平移个单位长度,得到y=sin=sin的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象,即为y=f(x)的图象,所以f(x)=sin.(2)(2021·山西二模)将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度得到y =cos 2x的图象,则φ的值可能为( )A. B.C. D.A 解析:将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度,得到y=sin=sin=cos=cos=cos.若要得到y=cos 2x的图象,则-2φ-=2kπ,即φ=-kπ-,k∈Z.因为φ>0,所以当k=-1时,φ=.本例(1)若改为:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度得到函数y=f(x)的图象,则f(x)=________.sin 解析:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin,向右平移个单位长度得到函数f(x)=sin=sin.1.由函数y移后伸缩”与“先伸缩后平移”.要特别注意这两种情况下平移的单位长度.2.当变换前后解析式三角函数名称不同时,要注意利用诱导公式转化.1.(2022·泰安模拟)已知函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C上所有点的( )A.横坐标伸长到原来的2倍,纵坐标不变B.纵坐标缩短到原来的倍,横坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.横坐标缩短到原来的倍,纵坐标不变D 解析:函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C 上所有点横坐标缩短到原来的倍,纵坐标不变,即可.2.已知函数f(x)=cos是偶函数,要得到函数g(x)=sin 2x的图象,只需将函数f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度C 解析:因为函数f(x)=cos是偶函数,所以φ-=kπ(k∈Z).因为|φ|<,所以φ=,所以f(x)=cos 2x,要得到函数g(x)=sin 2x=cos的图象,只需将函数f(x)=cos 2x的图象向右平移个单位长度.考点3 三角函数模型及其应用——应用性(2021·上海模拟)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为( )A.5米B.(4+)米C.(4+)米D.(4+)米D 解析:以圆心O1为原点,以水平方向为x轴正方向,以竖直方向为y轴正方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一圈.设∠OO1P=θ,运动t(秒)后与地面的距离为f(t).又T=12,所以θ=t,所以f(t)=3-2cos t,t≥0;风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达点P,θ=6π+,P(,1),所以点P的高度为3-2×=4(米).因为A(0,-3),所以AP==,所以点P到点A的距离与点P的高度之和为(4+)米.三角函数模型的应用体现在两方面:一是已知函数模型求解数模型,再利用三角函数的有关知1.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用.假设在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O的半径为4 m,P0在水平面上,盛水筒M 从点P0处开始运动,OP0与水平面所成角为30°,且2分钟恰好转动1圈,则盛水筒M距离水面的高度H(单位:m)与时间t(单位:s)之间的函数关系式是( )A.H=4sin+2B.H=4sin+2C.H=4sin+2D.H=4sin+2A 解析:以O为原点,过点O的水平直线为x轴,建立如图所示平面直角坐标系,因为∠xOP0=30°=,所以OM在 t(s) 内转过的角度为t=t,所以以x轴为始边,以OM为终边的角为t-,则点M的纵坐标为4sin,所以点M距水面的高度H(m)表示为时间 t(s) 的函数是H=4sin+2.2.据市场调查,某种商品一年内每件出厂价在7 000元的基础上,按月呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份).已知3月份达到最高价9 000元,9月份价格最低,为5 000元,则7月份的出厂价格为________元.6 000 解析:作出函数简图如图:三角函数模型为y=A sin(ωx+φ)+B,由题意知A=(9 000-5 000)=2 000,B=7 000,T=2×(9-3)=12,所以ω==.将(3,9 000)看成函数图象的第二个特殊点,则有×3+φ=,所以φ=0,故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).所以f(7)=2 000×sin+7 000=6 000(元).故7月份的出厂价格为6 000元.考点4 三角函数图象与性质的综合问题——综合性(1)(多选题)将函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x),则下列结论正确的是( )A.函数g(x)的图象关于直线x=对称B.函数g(x)的图象关于点对称C.函数g(x)在上单调递减D.函数g(x)在[0,2π]上恰有4个极值点AD 解析:函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x)=2sin的图象,对于A:当x=时,g=2,故A正确.对于B:当x=时,g=2sin=,故B错误.对于C:当x∈时,2x-∈,故函数在该区间上单调递增,故C错误.对于D:令2x-=kπ+(k∈Z),解得x=+(k∈Z),当k=0,1,2,3时,x=,,,,正好有4个极值点,故D正确.(2)已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是( )A. B.(-2,2)C.(-2,-) D.(-2,-1)D 解析:方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,题目条件可转化为=sin t,t∈,有两个不同的实数根.所以y=和y=sin t,t∈的图象有两个不同交点,如图:由图象观察知,的范围为,故m的取值范围是(-2,-1).已知关于x的方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则实数m的取值范围是________.1≤m<2 解析:2sin2x-sin 2x+m-1=-cos 2x-sin 2x+m=-2sin+m.因为x∈,所以2x+∈.要使方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则2x+∈且2x +≠,此时2sin∈[1,2),所以1≤m<2.1.研究y=1.(2021·运城模拟)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论错误的是( )A.f(x)=2sinB.若把f(x)的横坐标缩短为原来的,纵坐标不变,则得到的函数在[-π,π]上是增函数C.若把函数f(x)的图象向左平移个单位长度,则所得图象对应的函数是奇函数D.函数y=f(x)的图象关于直线x=-4π对称B 解析:由图象可得T=-2π=,所以T=6π,所以ω==.因为f(2π)=2,所以f(2π)=2sin=2,即sin=1,所以+φ=2kπ+(k∈Z),所以φ=2kπ-(k∈Z).因为|φ|<π,所以φ=-.所以f(x)=2sin,故A正确.把f(x)的横坐标缩短为原来的,纵坐标不变,得到的函数为y=2sin.因为x∈[-π,π],所以-≤x-≤,所以y=2sin在[-π,π]上不单调递增,故B错误.把函数f(x)的图象向左平移个单位长度,得到的函数为y=2sin=2sin x,是奇函数,故C正确.f(-4π)=2sin=2,是最值,故x=-4π是f(x)的对称轴,故D正确.2.若将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后得到的图象关于y轴对称,则函数f(x)在上的最大值为( )A.2 B.C.1 D.A 解析:将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后,得到的y=2sin的图象关于y轴对称,所以φ=,函数f(x)=2sin.因为x∈,所以2x+∈,则当2x+=时,函数f(x)在上的最大值为2.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .[四字程序]思路参考:构造正弦型函数的解析式.B 解析:y =cos x +sin x =2sin ,函数的图象向左平移m (m >0)个单位长度,得y =2sin 的图象.由x +m +=k π+(k ∈Z ),得函数y =2sin 的图象的对称轴为x =-m +k π(k ∈Z ).因为所得的图象关于y 轴对称,所以-m +k π=0(k ∈Z ),即m =k π+(k ∈Z ),则m 的最小值为.思路参考:构造余弦型函数的解析式.B 解析:函数y =cos x +sin x =2cos 的图象向左平移m (m >0)个单位长度得到y =2cos 的图象.因为此函数图象关于y 轴对称,所以y =2cos 为偶函数,易知m 的最小值为.思路参考:根据图象对称轴与函数最值的关系.B 解析:由解法1,得y =2sin .因为所得的图象关于y 轴对称,可得当x =0时,y =±2,进而sin =±1,易知m 的最小值为.思路参考:利用函数图象.B 解析:y=cos x+sin x=2sin,可得此函数图象的对称轴为x=kπ+(k∈Z),可知离y轴最近的对称轴为x=和x=-.由图象向左平移m(m>0)个单位长度后关于y轴对称,易知m的最小值为.1.基于课程标准,解答本题一般需要提升运算求解能力、逻辑推理能力,体现逻辑推理、数学运算的核心素养.2.基于高考数学评价体系,本题涉及三角恒等变换、三角函数的图象与性质等知识,渗透了转化与化归思想方法,有一定的综合性,属于中低档难度题.将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在上的最大值为( )A.0 B.C. D.1D 解析:将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,可得函数g(x)=sin的图象.根据所得图象关于原点对称,可得+φ=kπ.因为|φ|<,所以φ=,f(x)=sin.在上,2x+∈,故当2x+=时,f(x)取得最大值为1.。
高考数学专题复习题:三角函数

高考数学专题复习题:三角函数1.下列函数中是奇函数,且最小正周期是π的函数是( )A .cos |2|y x =B .|sin |y x =C .sin 22y x π⎛⎫=+ ⎪⎝⎭D .3cos 22y x π⎛⎫=− ⎪⎝⎭2.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限3.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定 4.函数[]2sin 2,0,6y x x ππ⎛⎫=−∈ ⎪⎝⎭的增区间是( )A .0,3π⎡⎤⎢⎥⎣⎦B .7,1212ππ⎡⎤⎢⎥⎣⎦ C .5,36ππ⎡⎤⎢⎥⎣⎦ D .5,6ππ⎡⎤⎢⎥⎣⎦ 5.函数2sin cos ,36y x x x R ππ⎛⎫⎛⎫=−−+∈ ⎪ ⎪⎝⎭⎝⎭的最小值为( ) A .-3 B .-2 C .-1 D .6.函数y =|sin x |的一个单调增区间是( )A .⎝ ⎛⎭⎪⎫-π4,π4B .⎝ ⎛⎭⎪⎫π4,3π4C .⎝ ⎛⎭⎪⎫π,3π2D .⎝ ⎛⎭⎪⎫3π2,2π 7.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°8.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2) 9.函数2cos ,,363y x x πππ⎛⎫⎡⎤=−∈ ⎪⎢⎥⎝⎭⎣⎦的值域为________.10.如果x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,那么函数y =3-sin x -2cos 2x 的最小值为________,最大值为________.11.如果关于x 的不等式23sin 2cos 30x x m +++>在7,36ππ⎡⎤⎢⎥⎣⎦上恒成立,那么m 的取值范围为________. 12.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.13.如果函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,那么ω=________.14.函数)sin(cos x y =的定义域是________.15.sin 1,sin 2,sin 3按从小到大排列的顺序为________.16.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若⎝ ⎛⎭⎪⎫π8,5π8是f (x )的一个单调递增区间,则φ的值为________.17.已知函数()2sin 26f x x m π⎛⎫=−− ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围为________.18.x y 2cos log 21=的增区间为________.19.3cos 2−=x y 的增区间为________.20.已知函数,且. (1)求的解析式.(2)已知,且,求.()),02f x x πϕϕ=+<<(0)1f =()fx ()()44f f ππαα−++=322παπ<<sin cos αα−。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届高考数学一轮复习精品题集三角函数必修4 第1章三角函数§1.1任意角的概念、弧度制重难点:理解任意角的概念,掌握角的概念的推广方法,能在直角坐标系讨论任意角,判断象限角、轴线角,掌握终边相同角的集合.掌握弧长公式、扇形面积公式并能灵活运用.考纲要求:①了解任意角的概念.②了解弧度制概念,能进行弧度与角度的互化.经典例题:写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β<7200的元素β写出来:(1)600;(2)-210;(3)363014,当堂练习:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C2 下列各组角中,终边相同的角是()A.与 B.C.D.3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B.C.D.4.设角的终边上一点P的坐标是,则等于()A.B.C.D.5.将分针拨慢10分钟,则分钟转过的弧度数是()A.B.-C.D.-6.设角和的终边关于轴对称,则有()A.B.C.D.7.集合A={ ,B={ ,则A、B之间关系为()A.B.C.B A D.A B8.某扇形的面积为1 ,它的周长为4 ,那么该扇形圆心角的度数为()A.2°B.2 C.4°D.49.下列说法正确的是()A.1弧度角的大小与圆的半径无关B.大圆中1弧度角比小圆中1弧度角大C.圆心角为1弧度的扇形的弧长都相等D.用弧度表示的角都是正角10.中心角为60°的扇形,它的弧长为2 ,则它的内切圆半径为()A.2 B.C.1 D.11.一个半径为R的扇形,它的周长为4R,则这个扇形所含弓形的面积为()A.B.C.D.12.若角的终边落在第三或第四象限,则的终边落在()A.第一或第三象限B.第二或第四象限C.第一或第四象限D.第三或第四象限13.,且是第二象限角,则是第象限角.14.已知的取值范围是.15.已知是第二象限角,且则的范围是.16.已知扇形的半径为R,所对圆心角为,该扇形的周长为定值c,则该扇形最大面积为.17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1)(2)(318.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′.试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 21.已知集合A={求与A∩B中角终边相同角的集合S.必修4 第1章三角函数考纲总要求:①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出,,的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间的性质(单调性、最大和最小值与轴交点等),理解正切函数在区间的单调性.④理解同角三角函数的基本关系式.⑤了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.§1.2.1-2任意角的三角函数值、同角三角函数的关系重难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式;能利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来;掌握同角三角函数的基本关系式,三角函数值的符号的确定,同角三角函数的基本关系式的变式应用以及对三角式进行化简和证明.经典例题:已知为第三象限角,问是否存在这样的实数m,使得、是关于的方程的两个根,若存在,求出实数m,若不存在,请说明理由.当堂练习:1.已知的正弦线与余弦线相等,且符号相同,那么的值为()A.B.C.D.2.若为第二象限角,那么的值为()A.正值 B.负值 C.零D.为能确定3.已知的值为()A.-2 B.2 C.D.-4.函数的值域是()A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1}5.已知锐角终边上一点的坐标为(则=()A.B.3 C.3- D.-36.已知角的终边在函数的图象上,则的值为()A.B.-C.或-D.7.若那么2 的终边所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.、、的大小关系为()A.B.C.D.9.已知是三角形的一个内角,且,那么这个三角形的形状为()A.锐角三角形B.钝角三角形C.不等腰的直角三角形D.等腰直角三角形10.若是第一象限角,则中能确定为正值的有()A.0个B.1个C.2个D.2个以上11.化简(是第三象限角)的值等于()A.0 B.-1 C.2 D.-212.已知,那么的值为()A.B.-C.或-D.以上全错13.已知则.14.函数的定义域是_________.15.已知,则=______.16.化简.17.已知求证:.18.若,求角的取值范围.19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求的值.20.已知是恒等式. 求a、b、c的值.21.已知、是方程的两根,且、终边互相垂直. 求的值.必修4 第1章三角函数§1.2.3三角函数的诱导公式重难点:能借助于单位圆,推导出正弦、余弦的诱导公式;能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决求值、化简和恒等式证明问题;能通过公式的运用,了解未知到已知、复杂到简单的转化过程.经典例题:已知数列的通项公式为记求当堂练习:1.若那么的值为()A.0 B.1 C.-1 D.2.已知那么()A.B.C.D.3.已知函数,满足则的值为()A.5 B.-5 C.6 D.-64.设角的值等于()A.B.-C.D.-5.在△ABC中,若,则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形6.当时,的值为()A.-1 B.1 C.±1 D.与取值有关7.设为常数),且那么()A.1 B.3 C.5 D.78.如果则的取值范围是()A.B.C.D.9.在△ABC中,下列各表达式中为常数的是()A.B.C.D.10.下列不等式上正确的是()A.B.C.D.11.设那么的值为()A.B.-C.D.12.若,则的取值集合为()A.B.C.D.13.已知则.14.已知则.15.若则.16.设,其中m、n、、都是非零实数,若则.17.设和求的值.18.已知求证:19.已知、是关于的方程的两实根,且求的值. 20.已知(1)求的表达式;(2)求的值.21.设满足,(1)求的表达式;(2)求的最大值.必修4 第1章三角函数§1.3.1-2三角函数的周期性、三角函数的图象和性质重难点:理解周期函数的概念.能利用单位圆中的正弦线作正弦函数的图象;对正、余弦函数奇、偶性和单调性的理解与应用,能灵活应用正切函数的性质解决相关问题.经典例题:设(1)令表示P;(2)求t的取值范围,并分别求出P的最大值、最小值.当堂练习:1.若,则()A.α<βB.α>βC.α+β>3πD.α+β<2π2.函数的单调减区间为()A.B.C.D.3.已知有意义的角x等于()A.B.C.D.4.函数的图象的一条对称轴方程是()A.B.C.D.5.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C.D.与a有关的值6.下列函数中,以π为周期的偶函数是()A.B.C.D.7.在区间(-,)内,函数y=tanx与函数y=sinx图象交点的个数为()A.1 B.2 C.3 D.48.下列四个函数中为周期函数的是()A.y=3 B.C.D.9.在△ABC中,A>B是tanA>tanB的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.函数的定义域是()A.B.C.D.11.方程的解集为()A.B.C.D.12.函数上为减函数,则函数上()A.可以取得最大值M B.是减函数C.是增函数D.可以取得最小值-M13..14.若= .15.函数y=2arccos(x-2)的反函数是.16.函数的定义域为.17.求函数上的反函数.18.如图,某地一天从6时到11时的温度变化曲线近似满足函数(1) 求这段时间最大温差;(2) 写出这段曲线的函数解析式.19.若,求函数的最值及相应的x值.20.已知函数的最大值为1,最小值为-3,试确定的单调区间.21.设函数当在任意两个连续整数间(包括整数本身)变化时至少有两次失去意义,求k的最小正整数值.必修4 第1章三角函数§1.3.3函数的图象和性质重难点:函数的图像的画法和设图像与函数y=sinx图像的关系,以及对各种变换内在联系的揭示.经典例题:如图,表示电流强度I与时间t的关系式在一个周期内的图象.(1)试根据图象写出的解析式;(2)为了使中t在任意一段秒的时间内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?当堂练习:1.函数的图象()A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x= 对称2.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.如图,曲线对应的函数是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|4.已知f(1+cosx)=cos2x,则f(x)的图象是下图中的()5.如果函数y=sin2x+αcos2x的图象关于直线x=-对称,那么α的值为()A.B.-C.1 D.-16.已知函数在同一周期内,时取得最大值,时取得最小值-,则该函数解析式为()A.B.C.D.7.方程的解的个数为()A.0 B.无数个C.不超过3 D.大于38.已知函数那么函数y=y1+y2振幅的值为()A.5 B.7 C.13 D.9.已知的图象可以看做是把的图象上所有点的横坐标压缩到原来的1/3倍(纵坐标不变)得到的,则= ()A.B.2 C.3 D.10.函数y=-x•cosx的部分图象是()11.函数的单调减区间是()A.B.C.D.12.函数的最小正周期为()A.πB.C.2πD.4π13.若函数的周期在内,则k的一切可取的正整数值是. 14.函数的最小值是.15.振动量的初相和频率分别为,则它的相位是.16.函数的最大值为.17.已知函数(1)求的最小正周期;(2)求的单调区间;(3)求图象的对称轴,对称中心.18.函数的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1)求这个函数的解析式.19.已知函数=sin2x+acos2x在下列条件下分别求a的值.(1)函数图象关于原点对称;(2)函数图象关于对称.20.已知函数的定义域为,值域为[-5,1]求常数a、b的值.21.已知α、β为关于x的二次方程的实根,且,求θ的范围.必修4 第1章三角函数§1.3.4三角函数的应用重难点:掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简单函数模型;利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.经典例题:已知某海滨浴场的海浪高度是时间( ,单位:小时)的函数,记作.下表是某日各时的浪高数据:经长期观察, 的曲线可近似地看成是函数的图象.(1)根据以上数据,求出函数的最小正周期,振幅及函数表达式;(2)依据规定,当海浪高度高于时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午到晚上之间,有多少时间可供冲浪者进行活动?当堂练习:1.若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004北京西城一模)设0<|α|<,则下列不等式中一定成立的是( )A.sin2α>sinαB.cos2α<cosαC.tan2α>tanαD.cot2α<cotα3.已知实数x、y、m、n满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为( )A. B. C. D.4. 初速度v0,发射角为,则炮弹上升的高度y与v0之间的关系式为()A. B. C. D.5. 当两人提重为的书包时,夹角为,用力为,则为____时,最小()A. B. C. D.6.某人向正东方向走x千米后向右转,然后朝新的方向走3千米,结果他离出发点恰好千米,那么x的值为()A. B. C. D.7. 甲、乙两楼相距60米,从乙楼底望甲楼顶仰角为,从甲楼顶望乙楼顶俯角为,则甲、乙两楼的高度分别为____________________.8.一树干被台风吹断折成角,树干底部与树尖着地处相距20米,树干原来的高度是________.9.(2006北京海淀模拟)在△ABC中,∠A=60°,BC=2,则△ABC的面积的最大值为_________.10.在高出地面30 m的小山顶上建造一座电视塔CD(如右图),今在距离B点60 m的地面上取一点A,若测得C、D所张的角为45°,则这个电视塔的高度为_______________.11.已知函数的最小正周期为,最小值为,图象经过点,求该函数的解析式.12.如图,某地一天从时到时的温度变化曲线近似满足函数,(I)求这段时间的最大温差;(II)写出这段曲线的函数解析式.13.若x满足,为使满足条件的的值(1)存在;(2)有且只有一个;(3)有两个不同的值;(4)有三个不同的值,分别求的取值范围.14.如图,化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面1.2米)必修4 第1章三角函数§1.4三角函数单元测试1. 化简等于()A. B. C. 3 D. 12. 在ABCD中,设, ,, ,则下列等式中不正确的是()A.B.C. D.3. 在中,①sin(A+B)+sinC;②cos(B+C)+cosA;③;④,其中恒为定值的是()A、①②B、②③C、②④D、③④4. 已知函数f(x)=sin(x+ ),g(x)=cos(x-),则下列结论中正确的是()A.函数y=f(x)•g(x)的最小正周期为2B.函数y=f(x)•g(x)的最大值为1C.将函数y=f(x)的图象向左平移单位后得g(x)的图象D.将函数y=f(x)的图象向右平移单位后得g(x)的图象5. 下列函数中,最小正周期为,且图象关于直线对称的是()A.B.C.D.6. 函数的值域是()A、B、C、D、7. 设则有()A. B. C. D.8. 已知sin , 是第二象限的角,且tan( )=1,则tan 的值为()A.-7 B.7 C.-D.9. 定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为()A. B C D10. 函数的周期是()A.B.C.D.11. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于()A.1 B.C.D.12. 使函数f(x)=sin(2x+ )+ 是奇函数,且在[0,上是减函数的的一()A.B.C.D.13、函数的最大值是3,则它的最小值______________________14、若,则、的关系是____________________15、若函数f(χ)是偶函数,且当χ<0时,有f(χ)=cos3χ+sin2χ,则当χ>0时,f(χ)的表达式为.16、给出下列命题:(1)存在实数x,使sinx+cosx=; (2)若是锐角△的内角,则> ; (3)函数y=sin( x- )是偶函数;(4)函数y=sin2x的图象向右平移个单位,得到y=sin(2x+ )的图象.其中正确的命题的序号是.17、求值:18、已知π2 <α<π,0<β<π2 ,tanα=-34 ,cos(β-α)= 513 ,求sinβ的值.19、已知函数(1)求它的定义域、值域以及在什么区间上是增函数;(2)判断它的奇偶性;(3)判断它的周期性。