连铸坯内部质量

合集下载

连铸坯质量控制

连铸坯质量控制

连铸坯质量控制连铸坯质量控制引言连铸坯质量是决定钢铁产品质量的重要因素之一。

在连铸过程中,通过控制连铸坯的凝固结晶形貌、尺寸尺寸以及内部缺陷等,可以保证最终钢铁产品的质量稳定性。

本文将介绍连铸坯质量控制的基本原则和常用技术手段。

1. 连铸坯凝固结晶形貌控制1.1 凝固路径设计连铸坯的凝固路径设计是影响凝固结晶形貌的关键因素。

凝固路径包括主要凝固温度区间、凝固速度以及凝固过程中应有的温度梯度等要点。

通过科学合理地设计凝固路径,可以控制连铸坯的凝固结晶形貌,提高产品的均匀性和致密性。

1.2 凝固浸没深度控制凝固浸没深度是指连铸坯在铸机中浸没的深度。

凝固浸没深度的调整可以通过调整浇注速度、浇注高度和结晶器深度等因素来实现。

恰当地控制凝固浸没深度可以优化凝固结构,减少坯壳厚度和缩孔等缺陷的发生。

2. 连铸坯尺寸控制2.1 坯型设计连铸坯的尺寸控制需要科学合理地设计坯型。

坯型设计要考虑连铸机的性能和工艺条件,以及产品需要达到的尺寸要求。

有效的坯型设计可以保证连铸坯尺寸的精确控制,减少修磨损失并提高铸坯产量。

2.2 坯型换边控制连铸坯在连铸过程中,由于挤压力和引拉力的作用,容易发生坯型换边的情况。

坯型换边会导致铸轧过程中尺寸控制困难,甚至导致产品尺寸不合格。

通过控制连铸机的工艺参数和优化设备结构,可以有效地控制坯型换边,提高铸坯质量。

3. 连铸坯内部缺陷控制3.1 结晶器设计结晶器是连铸过程中控制坯内部缺陷的关键设备。

结晶器的设计应考虑到坯内部的流动状态,并通过合理的传热和传质方式,控制连铸坯内的气体和夹杂物等缺陷。

合理的结晶器设计可以有效减少坯内部夹杂物和气体等缺陷的产生。

3.2 液相线保护措施液相线是连铸过程中凝固结构变化的关键位置。

液相线的形成过早或过晚都会导致内部缺陷的产生。

通过合理的冷却水设定和轧制工艺,可以保证液相线的稳定形成,有效控制坯内部缺陷。

结论连铸坯质量控制是保证钢铁产品质量稳定的关键环节。

提高连铸坯内部质量的方法

提高连铸坯内部质量的方法

提高连铸坯内部质量的方法
提高连铸坯内部质量的方法有以下几点:
1. 优化铸造工艺:合理控制浇注温度、浇注速度和冷却条件,确保铸造过程中连铸坯内部温度均匀,并避免温度梯度过大造成的结构变化。

2. 提高连铸机设备性能:增加转速变换频率、提高铸坯拉速和调整结晶器倾斜角度等,能够使连铸坯的结晶过程更加均匀,减少内部缺陷的产生。

3. 控制铸态组织:合理选择铸态结构和组织控制技术,避免连铸坯内部产生大片偏析、夹杂物等缺陷。

可以采用定向凝固技术、过冷等离子体熔炼技术、空载预轧等方法,减少组织缺陷。

4. 优化坯料质量:对坯料进行合理选择和处理,确保坯料化学成分和内部缺陷达到要求,减少连铸坯内部产生缺陷的概率。

5. 加强质量控制:加强连铸过程中的在线监测和控制,及时发现和处理连铸坯内部质量问题,避免次品的产生。

可以利用各种无损检测手段对连铸坯进行检测,如超声波检测、X射线检测等。

总之,提高连铸坯内部质量需要从铸造工艺、设备性能、铸态组织、坯料质量和质量控制等方面共同改进和优化。

连铸坯的缺陷及控制

连铸坯的缺陷及控制

二冷段和末端区的电磁搅拌可有效抑制枝晶搭桥形成封闭 的液窝。
连铸主要工艺参数
① 拉坯速度及其控制 ② 铸坯的冷却(结晶器冷却、二次冷却)
连铸坯的内部凝固是在出结晶器后进行的,后继的二次水冷、 弯曲矫直等直接影响内部质量。
连铸坯的缺陷及控制
提高连铸坯内部质量的工艺措施:
① 控制二冷段的传热,使铸坯均匀凝固,提高等轴晶率; 偏析、缩孔、缩松
② 降低浇钢的过热度; ③ 使用性能好的保护渣,防止钢水二次氧化和污染; ④ 控制拉速,保证连铸机正常运行; ⑤ 电磁搅拌(二冷段和末端区)。 偏析、缩孔、缩松
连铸坯的缺陷及控制
提高连铸坯表面质量的工艺措施:
① 控制结晶器的传热,使初凝固壳均匀; 裂纹、凹陷
② 控制结晶器的振动;
振痕、横裂纹
③ 使用性能好的保护渣;
气孔、夹杂
④ 优化结晶器结构;
倒锥角度,弧形壁
⑤ 电磁搅拌;
气孔、夹杂
⑥ 软接触电磁连铸。
振痕、裂纹
电磁搅拌的部位:
结晶器电磁搅拌:
(1)借助旋转电磁场使连铸 机结晶器内的金属液产生平 面旋转,去除杂质、气体。
结晶器电磁搅拌:
(2)扩大等轴晶区改善宏观 偏析,减少粗大柱状晶区 。
软接触电磁连铸:
软接触电磁连铸:
(1)减轻结晶器振动对弯月 面的影响,液态渣膜连续均 匀。
软接触电磁连铸:
(2)减小初凝壳对结晶器的 连铸坯的内部缺陷
裂纹 气孔 夹杂 缩孔、缩松 成分偏析
连铸坯的缺陷及控制
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷
裂纹 气孔 夹杂 振痕、凹陷 成分偏析
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷

连铸坯质量

连铸坯质量

侧固液相界面捕捉,在内弧侧距表
面约10mm处,有一夹杂物集聚带。 大型夹杂物多集中于内弧侧
1/5~1/4厚度处。
直结晶器+2~3m垂直段:注流冲击 是对称的,液相内夹杂物得到上浮, 同时夹杂物分布也比较均匀。见右 图和下页图
1 弧形连铸机 2 直结晶器的弧形连铸机 3 立式连铸机
连铸机机型对大型夹杂物的影响
30 30
CaO- SiO2-Al2O3
Al2O3 ,Al2O3〃SiO2 Al2O3-MnO-CaO,Al2O3
⑵ 如何分析夹杂物对产品质量的影响
应从以下几个方面着手分析: ①夹杂物的形态和组成。塑性夹杂和球形不变形夹杂对钢性能的影响 不同,沿轧制方向伸长的塑性夹杂使钢横向力学性能恶化。MnS夹杂 能变形,FeO和MnO夹杂能稍变形,SiO2 和Al2O3 夹杂不变形。FeS、 FeO熔点低使钢产生热脆,MnS熔点高改善钢的热脆。 ②夹杂物的大小和聚集状态。夹杂物会使钢材产生分层,夹杂物越大, 影响越大。但即使存在着小的夹杂物聚集,也可能使钢材分层。
③ 预防及消除方法: — 结晶器铜板表面最好镀铬或 镀镍,减少铜的渗透; — 适当控制钢中残余元素,如 ω[Cu] <0.20%; — 降低钢中硫含量,并控制合 适的[Mn]/[S]比大于40; — 控制钢中Al、N含量,选择合 适的二冷制度。
⑸ 皮下气泡与气孔
① 缺陷特征:在铸坯皮下存在的直径约1mm,长约10mm,沿柱状晶生 长方向分布的气泡称为皮下气泡。若裸露于铸坯表面的气泡称为表面气 泡;小而密集的小孔叫皮下针孔。
①连铸时钢液凝固速度快,夹杂物集聚长大机会少→尺寸较小,不易从 钢液中上浮。
②连铸过程中多了中间包装臵,钢液与大气、熔渣、耐材接触时间长易

第六章_连铸坯质量及控制解读

第六章_连铸坯质量及控制解读

基本分布在方坯厚度的1/4处并垂直于铸坯表面,可能延伸到断 面中央附近,产生的主要原因:由于坯壳再二冷下段,铸坯表面 温度回升引起。
带液相弯曲的弧形/立弯连铸机矫直时仅在铸坯内部受张应力作 用一侧发生的裂纹。 拉辊压力过大造成的与拉辊压下方向平行的一种中心裂纹。
内 部 缺 陷
断面 中心 星状
断面裂纹 中心星 状裂纹
B类:氧化铝类
夹杂物分类
C类:硅酸盐类 D类:钙铝酸盐类 DS(E)类:氮化物类
形 状 缺 陷
菱形 变形 鼓肚 变形
结晶器锥度不当、坯壳冷却不均匀、厚度差别大,使坯壳在结晶器和二冷区布均匀收缩 造成。 坯壳受钢水静压力的作用而鼓胀成为凸面的现象。
6.4.3表面缺陷
连铸坯表面质量的好坏决定了铸坯在热加 工前是否需要精整,影响金属收得率和成 本,还是铸坯热送和直接轧制的前提条件。 连铸坯表面质量和钢液在结晶器中的凝固 密切相关,从根本上说,控制铸坯表面质 量就是控制结晶器中的坯壳的形成问题。
表 表面夹渣 面 皮下夹杂 钢水纯净度、保护渣的化学组成、物理性能、液面的波动情况。 缺 气孔 在钢水的凝固过程中,钢中存在C、H、O等元素在凝固界面富集, 陷 气泡 CO、H2分压大于钢水静压和大气压力之和而产生气泡。 表面增 其也是一种偏析。在最终凝固结构中溶质浓度分布不均匀,最先凝固部分溶质 碳偏析 含量较低,而后凝固部分溶质含量较高,这种成分不均匀的现象称偏析。 凹坑 重皮 由于坯壳和结晶器壁间周期性接触和收缩而产生的皱纹,严重的如山谷状的凹 陷,称为凹坑。钢水在凹陷部位渗漏出来,再在结晶器壁重新凝固,称重皮。
2.钢含碳量:低碳钢和高碳钢有较大的柱 状晶区;含碳量为0.18~0.45%的钢种有较 大的等轴晶区。 3.铸机机型(弧形):内弧侧柱状晶长度 大于外弧侧柱状晶的长度。 4.铸坯断面:铸坯断面增大到一定程度后, 等轴晶率显著提高。

连铸坯质量的控制

连铸坯质量的控制

连铸坯的质量控制系统专业:班级:姓名:XXX目录1连铸坯纯净度与产品质量 (1)1.1纯净度与质量的关系 (1)1。

2提高纯净度的措施 (2)2连铸坯质量............................................................ 错误!未定义书签。

2.1 连铸坯的几何形状质量 (3)2。

1.1 铸坯形状缺陷类型 (4)2。

1。

2 铸坯形状缺陷产生原因及防止措施 (4)2.1.3 铸坯鼓肚 (4)2.1.4 铸坯菱变 (4)2。

1。

5 铸坯变成梯形坯 (5)2.2 连铸坯表面质量 (5)2。

2。

1 连铸坯表面振痕 (5)2。

2。

2 振痕形成机理 (5)2。

2.3 振痕对铸坯质量的影响 (6)2。

2。

4 影响振痕深度的因素 (6)2.2.5 减少振痕深度的措施 (7)2。

2.6 铸坯表面裂纹 (7)2。

2。

7 表面纵裂纹 (8)2。

2.8 铸坯角部纵裂纹 (11)2。

2。

9 表面横裂纹 (12)2。

2.10 角部横裂纹 (14)2.2。

11 铸坯表面星状和网状裂纹 (15)2。

2.12 铸坯表面夹渣(杂) (16)2.2。

13 铸坯气孔和气泡 (17)2。

2.14 铸坯表面凹陷 (17)2。

2.15 铸坯表面增碳和偏析 (18)2。

2.16 重皮和重结及结疤 (19)2.3 连铸坯内部质量 (19)2。

3。

1 铸坯内部裂纹 (19)2。

3.2 皮下裂纹 (20)2.3.3 中间裂纹 (20)2.3.4 矫直裂纹 (21)2。

3。

5 压下裂纹 (22)2.3。

6 断面裂纹-——-中心线裂纹 (22)2。

3。

7三角区裂纹 (24)2。

3.8角部附近的裂纹 (25)2.3。

9白点及发纹 (25)2。

3。

10铸坯中心偏析、疏松和缩孔 (25)2.3。

11铸坯内部夹渣(杂) (26)3连铸坯星状缺陷 (27)3.1 鼓肚变形 (27)3。

2 菱形变形 (28)3.3 圆铸坯变形 (28)致谢 (29)摘要连铸坯质量决定着最终产品的质量。

连铸坯的质量控制概述

连铸坯的质量控制概述

提高铸坯洁净度的措施: (1)无渣出钢 (2)选择合适的精炼处理方式 (3)采用无氧化浇铸技术 (4)充分发挥中间包冶金净化的作用 (5)选用优质耐火材料 (6)充分发挥结晶器的作用 (7)采用电磁搅拌技术,控制铸流运动
三、铸坯表面质量及控制
控制表面质量的必要性 表面缺陷的形成 表面裂纹的主要种类 液面结壳 凹坑和重皮
4.3.2 内部纵向裂纹
包括中心线裂纹、三角区裂纹和角部裂纹 形成原因:液相穴末端板坯鼓肚;
板坯宽面、窄面鼓肚 主要影响因素:
1、浇铸速度过快; 2、浇铸温度过高; 3、钢水含硫量过大; 4、结晶器锥度太小; 5、铸流不对正。
减少内部裂纹的措施
采用多点矫直技术以弥补单点矫直的 不足
二冷区采用合适的夹辊辊距,支撑辊 准确对弧
对弧,并确保二冷区的均匀冷却
5.2 圆柱坯变形
定义:圆坯变形成椭圆形或不规则多边 形。圆坯直径越大,变成随圆的倾向越 严重。
椭圆变形原因: (1)圆形结晶器内腔变形 (2)二冷区冷却不均匀 (3)连铸机下部对弧不准 (4)拉矫辊的夹紧力调整不当,过分压下
应对圆柱坯变形的措施: (1)及时更换变形的结晶器 (2)连铸机要严格对弧 (3)二冷区均匀冷却 (4)可适当降低拉速
3.5 深振痕
结晶器上下振动时,在铸坯表面形成 周期性的和拉坯方向垂直的振动痕迹。 较深(大于0.5mm)时,振痕谷部会 形成缺陷,危害成品质量。
振痕深度与振动参数、含碳量、保护 渣性能及结晶器液面波动状态等因素 有关。
3.6 表面气泡(和皮下气泡)
形成原因:凝固过程中,钢中氧、氢、氮 和碳等元素在凝固界面富集,当其生成的 CO、H2、N2等气体的总压力大于钢水静 压力和大气压力之和时,即有气泡产生。

连铸坯质量解析(共20张PPT)

连铸坯质量解析(共20张PPT)
连铸坯表面缺陷形成的原因较为复杂.但总体来讲,主要是受结晶器内钢液凝固所控制。 横向裂纹多出现在铸坯的内弧侧振痕波谷处,通常是隐蔽看不见的。 (5)连铸系统选用耐高温、融损小、高质量的耐火材料,以减少钢中外来夹杂物
(2)二,冷区如采果用平夹稳杂的热物冷细却,小矫,直呈时铸球坯形的表,面弥温度散要分高于布质,点沉对淀钢温度质或量高的于γ影--α。响比集中存在要小些;当夹杂物大,
Your company slogan
13.5.2 连铸坯表面质量
13.5.2.1 表面裂纹
表面裂纹就其出现的方向和部位,可以分为面部纵裂纹.角部纵裂纹与横裂纹,星状 裂纹等。
纵向裂纹在板坯多出现宽面的中间部位.方坯多出现在棱角处。表面纵裂纹直接影响钢材质量。
若铸坯表面存在深度为,长度为300mm的裂纹,轧成板材后就会形成1125mm的分 层缺陷。严重的裂纹深度达10mm以上,将造成漏钢事故或废品。
(从4)表选1。用3—性大5能所于良列好5数的0据保μ可m 护以渣看的;出大,富型集夹溶杂质元物素往的母往液伴流动有是裂加剧纹中出心偏现析.的造重要成原连因。铸坯低倍结构不合格,板材分层,并
2 连铸坯表面质量 (4)选用性能良好的保护渣;
中2 间连包损铸使坏坯用表冷双面层轧质渣量钢覆盖板剂的,隔表绝面空气等,,避免对钢钢液的危二害次很氧化大。。夹杂物的大小形态和分布对钢质量的影响也不同
来看,锰-硅盐系夹杂物的外观颗粒大而浅,Al2O3系夹杂物细小而深。若不清除,会造成成品表面缺陷
,增加制品的废品率。夹渣的导热性低于钢,致使夹渣处坯壳生长缓慢,凝固壳薄弱,往往是拉漏的起因, 一般渣子的熔点高易形成表面夹渣。
敞开浇铸时,由于二次氧化.结晶器表面有浮渣。浮渣的熔点和流动性以及钢液的浸润性均与浮渣的组成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连铸坯内部质量12、连铸坯内部裂纹有哪几种,如何防止?从结晶器拉出来的带液芯的铸坯,在弯曲、矫直或辊子压力的作用下,在正在凝固的,非常脆弱的固液交界面产生的裂纹,叫内部裂纹。

这种裂纹可通过铸坯试样的酸浸和硫印试验显示,严重的用肉眼就可观察到。

内部裂纹可分为以下几种:(1)矫直裂纹,是带液芯的铸坯在进行矫直时,受到的变形超过了所允许的变形率造成的,这种裂纹,可采用多点弯曲矫直和压缩浇铸技术来消除。

(2)压下裂纹,是由于拉辊压力过大,在凝固的铸坯固液两相区产生的。

这种裂纹,可采用油压控制拉辊机构或设置限位垫块等措施,就可防止。

(3)中间裂纹,主要是由于铸坯通过二次冷却区时冷却不均匀,温度回升大而产生的热应力造成的。

另外,铸坯壳鼓肚或对弧不正造成的外力,作用于正在凝固的固液界面,也可产生这种裂纹。

(4)角部裂纹,是由于结晶器冷却不均匀所产生的变形应力,作用在铸坯角部附近而产生的。

如尽量使结晶器内均匀冷却,就可防止这种裂纹。

(5)皮下裂纹,离铸坯表面3~10mm范围内的细小裂纹,主要是由于铸坯表层温度反复变化而发生多次相变,裂纹沿两种组织交界面扩展而形成的。

(6)中心线裂纹,在板坯横断面中心可风的缝隙,并伴随有S、P的正偏析,它是由凝固末期铸坯鼓肚造成的。

(7)星状裂纹,方坯横断面中心裂纹呈放射状。

铸坯在二次冷却区冷却太强,随后温度回升而引起凝固层鼓胀,使铸坯中心粘稠区受到拉应力而破坏所致。

(8)对角线裂纹,方坯横断面沿对角线方向产生的裂纹。

这是二次冷却不均匀,使铸坯发生扭曲(菱变)所致。

防止铸坯菱变可消除这种裂纹。

13、什么叫连铸坯中心疏松?如将连铸坯沿中心线剖开,就会发现其中心附近有许多细小的空隙,我们把这些小孔隙叫中心疏松。

在铸坯轧制时,当压缩比为3~5时,中心疏松就可焊合,对成品性能并无危害。

但对用于穿无缝管的铸坯,中心疏松是很有害的,可能会造成钢管内表面缺陷。

铸坯中心疏松严重时还会伴随着严重的中心偏析,对产品性能的危害较大。

中心疏松的产生可以看成是铸坯两面的柱状晶向中心生长,碰到一起造成了“搭桥”,阻止了桥上面的钢水向桥下面钢液凝固收缩的补充,当桥下面钢水全部凝固后,就留下了许多小孔隙。

采用扩大铸坯等轴晶的各种措施,均可减轻中心疏松。

14、什么叫连铸坯中心偏析?所谓偏析是指铸坯中化学成分的差异。

在铸坯横断面试样上,每隔一定距离,从表面向中心取样进行化学分析,发现中心的碳、硫、磷等元素的含量高于其他部位。

这种现象叫中心偏析。

中心偏析是和中心疏松、缩孔密切相关的。

中心偏析会降低钢的机械性能和耐腐蚀性能,在制造线材时经常会发生拉拔断线,严重危害产品质量。

中心偏析的产生是由于铸坯在凝固过程中,特别是在凝固末期尚未凝固的钢液的流动造成的。

为防止中心偏析,从冶金考虑,就是设法扩大铸坯中心的等轴晶区,如采用低温浇注、电磁搅拌等。

从连铸设备上考虑,就是设法避免凝固坯壳的变形,控制好夹辊的间距,辊子严格对中等,这是防止铸坯鼓肚,消除中心偏析的有效措施。

15、连铸坯中非金属夹杂物有哪些类型?连铸坯中非金属夹杂物,按其生成方式可分为内生夹杂和外来夹杂。

内生夹杂,主要是指出钢时,加入的铁合金的脱氧产物和浇注过程中钢水和空气的二次氧化产物。

外来夹杂,主要是指冶炼和浇注过程中带入的夹杂物。

如钢包、中间包耐火材料的侵蚀物,卷入的包渣和保护渣等。

按夹杂物组成,可分为氧化铝系、硅酸盐系、铝酸盐系和硫化物等四大类。

按夹杂物粒度大小,可分为微细夹杂和大型夹杂两种。

一般认为,夹杂物粒度小于50微米叫微细夹杂,粒度大于50微米叫大型夹杂。

连铸中最后凝固的夹杂物的数量、分布和粒度是受中间包内钢水的纯净度、结晶器内注流的冲击深度、以及注流的运动状态等制约的。

对弧形连铸机来说,在离内弧面仅四分之一厚度处夹杂物有集聚现象。

这是一个严重的缺点。

为了克服这个缺点,对一些重要的钢种,人们主张采用立弯式连铸机来浇注。

16、怎样减少连铸坯中的非金属夹杂物?钢中有非金属夹杂物,就会破坏钢的连续性和致密性,对钢的性能有很大危害。

为提高钢的质量,要求生产的钢越干净越好。

但要生产出无夹杂物的钢是很困难的,只能是在生产过程中,尽量减少夹杂物对钢水的污染,把钢搞“干净”些。

为减少铸坯中的夹杂物,最根本的途径,一是尽量减少外来夹杂物对钢水的污染,二是设法促使已存在于钢水中的夹杂物排出,以净化钢液。

因此,必须在出炉到钢水进入结晶器之前,采取下列措施:控制好出钢时的脱氧操作;出钢时采用挡渣操作,防止钢包下渣;采用保护浇注,防止二次氧化;采用钢包处理或炉外精炼新技术;使用大容量深熔池的中间包,促使夹杂物上浮;采用性能适宜的保护渣;采用形状适宜的浸入式水口;采用高质量的耐火材料;对钢包、中间包要清扫干净等。

只有这样,才能减少连铸坯中的非金属夹杂物。

17、什么叫连铸坯皮下夹渣缺陷?铸坯表皮下2~10毫米处镶嵌的渣粒即连铸坯皮下夹渣,若不及时清除,往往会造成成品的表面缺陷。

另外,渣子的导热性差,在夹渣处的凝固壳较薄,会引起拉漏事故。

对小方坯连铸用油润滑的情况下,结晶器内钢液面上的浮渣会啮入铸坯表皮下并残留在铸坯上。

夹渣的发生率与钢的成分有密切关系。

如钢中锰/硅比减小,铸坯夹渣量就会增多;钢中铝含量增加,夹渣也会增多。

如果采用保护浇注并及时捞渣等措施,可以减少表面夹渣。

在采用保护渣浇注时,结晶器液面上未熔化的渣子,或浮在钢液面上的夹杂物,会由于钢液面的波动而被卷入到凝固壳表面造成夹渣。

此时应采用液面自动控制装置,以保持浇注过程液面稳定,或使用熔化性能良好的保护渣,以保持渣子中Al2O3含量小于10%以下,这样便可防止渣子卷入。

18、连铸坯中夹杂物分布有何特点?与钢锭相比,连铸坯中夹杂物特点是:1)夹杂物来源广泛,组成复杂。

2)结晶器液相穴内夹杂物上浮困难。

钢中夹杂物,尤其是大于50μm的大颗粒夹杂对产品质量危害很大。

如大颗粒氧化物夹杂是深冲薄板冲裂、冷拔钢丝断裂、中厚板探伤不合格的主要原因。

Al2O3夹杂降低轴承钢疲劳寿命等。

因此应根据产品用途,从冶炼、炉外精炼和连铸等工序,尽可能把钢水搞“干净”些。

最终连铸坯夹杂物数量和分布主要决定于机型。

就夹杂物数量而言:立式铸机为0.43mg/10kg钢,立弯式为4.6mg/10kg钢,弧形为7.5mg/10kg钢。

就铸坯内夹杂物分布而言,立式和立弯式铸机铸坯横断面从内弧到外弧夹杂物呈对称分布。

对弧形连铸机,在距内弧表面铸坯厚度的~范围内有夹杂物集聚,沿宽度方向夹杂物分面也不均匀,这是弧形连铸机的一个缺点。

液相穴内夹杂物上浮被内弧侧捕捉而不能上浮到结晶器液面是造成内弧夹杂物集聚的原因。

解决夹杂物集聚的办法:⑴加大弧形半径,可以减轻夹杂物集聚。

然而铸机造价加大不可取。

⑵采用炉外精炼、保护浇注等有效措施,尽可能把钢水中夹杂物去除干净,减少夹杂物集聚几率。

⑶建设带有垂直段的(2~3m)立弯式铸机,铸坯夹杂物无集聚,也降低了铸机造价。

19、铸坯鼓肚产生的原因及防止方法有哪些?铸坯鼓肚是指铸坯表面的凝壳由于受到内部钢水静压力的作用而发生凸起变形的现象。

它多发生于板坯宽面,是板坯连铸坯常见的形状缺陷之一。

伴随铸坯的鼓肚,铸坯多出现表面纵裂、角部纵裂以及内部裂纹缺陷。

根据造成铸坯鼓肚缺陷的原因,为防止产生鼓肚,在操作中应注意以下几点:⑴钢水过热度适当:对于板坯连铸机应采取尽可能小的钢水过热度(5-20℃),较小的钢水过热度有利于促进坯壳的增长速度,缩短液相穴深度,减小钢水的静压力。

对于过热度大的钢水,应采取低速度浇注的方法予以弥补;⑵定期检查、维护二冷区的夹辊辊间距,避免辊间距增大,同时应及时更换掉那些发生变形的夹辊;⑶保证二冷水的冷却强度和均匀性;⑷控制拉矫机的合适压力,尤其对于带液芯拉矫时,应避免铸坯产生矫区鼓肚现象。

为控制铸坯鼓肚,近年来大都采取了二冷区密排辊,通过多点矫直降低连铸机高度,减少钢水静压力等新技术,收到了良好的效果。

20、关于连铸坯菱形变形?连铸方坯菱形变形(又称脱方)是大小方坯所特有的形状缺陷,起因在于结晶器四周的不均匀传热或二冷区的不均匀传热,有时是两方面因素共同作用使坯壳不均匀生长,在凝固收缩时,产生应力集中,使铸坯断面由方形变为菱形。

连铸方坯脱方往往伴有角部内裂,严重时由裂纹扩展开常常酿成漏钢事故。

如150方连铸坯若脱方量大于4.5mm以上,则在钝角附近就会产生裂纹。

当脱方量达到9mm以上,除出现内部裂纹外,轧钢时不能咬入孔型,轧制过程中常常出现倒钢现象,严重影响铸坯的合格率和轧钢的成材率。

在实际生产中,引起结晶器内冷却不均匀的因素是比较多的,且各厂生产条件不一,造成连铸坯脱方的主要因素也不尽相同:⑴结晶器水缝宽度:有相当数量铸坯脱方的结晶器,打开后发现水缝宽度明显不一致,这是结晶器铜管装配质量造成的。

⑵结晶器铜管锥度:结晶器使用时间过长,锥度过小时,往往会造成铸坯脱方。

由于结晶器四壁磨损量也不相同,这样钢水在结晶器内凝固就保证不了坯壳的均匀生长。

磨损量大的一边,坯壳与结晶器壁之间的空隙增加,增大了传热阻力,坯壳变薄;反之,形成的坯壳较厚。

另外随着铜管结晶器的锥度逐渐缩小,铸坯脱方的程度也逐渐加剧。

⑶结晶器铜管变形:在检查出现脱方的结晶器时,发现脱方的铸坯的结晶器不但倒锥度消失,同时铜管也可能严重变形。

变形一般发生在铜管上口,四边铜壁向内腔凸出;弯月面区域和稍靠下部的变形,弧面和侧面的变形常表现出相反的形式,变形呈不规则状态。

这种现象对于结晶器内的均匀传热是十分不利的。

因变形程度不同,使原有的水缝宽度变化很大,从而导致四个面水流速有很大差异,这样四个面的水冷强度发生了很大变化,即冷却效果失去平衡。

另外,由于铜管变形的不均匀性,造成铸坯在结晶器内坯壳与铜壁的间隙也是不规则的。

所以,铸坯出现脱方的主要根源就在于铜管倒锥度的消失和铜管的变形。

对于结晶器铜管的变形和冷却效果不均匀主要是由于铜管使用时间过长,钢液面靠上及铜管与水套不对中造成的。

⑷浇注工艺参数:钢水温度高、拉速快、浸入式水口不对中以及二冷不均,都可使脱方铸坯程度加剧,而浸入式水口不对中则可直接造成铸坯坯壳生长不均,产生脱方。

21、控制连铸坯菱形变形的措施有哪些?⑴换新铜管时,要保证铜管与水套的良好对中,要检查水口定位销钉是否脱落。

⑵完善结晶器使用管理制度,对每支铜管的使用情况,认真做好记录。

换下的结晶器保证每支铜管的倒锥度都要测量,发现倒锥度小于0.3%/m,必须更换结晶器。

⑶稳定结晶器液面,使液面距上口100-120mm,液面不可过高。

且铜管内腔发生严重变形的,不论使用多长时间,都要更换新结晶器。

⑷浇注时浸入式水口保证良好对中,发现哪流铸坯出现脱方,通过降低浇注温度,并适当降低拉速,可控制铸坯脱方程度。

22、钢水凝固过程中的收缩包括哪些?钢水由液态转变为固态,随着温度下降,收缩可分为:⑴液态收缩:由浇注温度降到液相线温度的收缩。

相关文档
最新文档