实数知识讲解基础

合集下载

实数知识点归纳整理

实数知识点归纳整理

实数知识点归纳整理1.引言1.1 概述概述部分主要对实数的基本概念进行介绍和解释。

实数是数学中最基本且最常用的数集之一,它包括所有的有理数和无理数。

有理数是可以表示为两个整数之比的数字,而无理数则是不能被表示为两个整数之比的数字。

实数作为数学中的一个重要概念,具有以下几个特点:首先,实数具有连续性,即在任意两个实数之间都存在无数个实数。

其次,实数具有无限性,即实数集合是无限的。

再次,实数具有稠密性,即在任意两个实数之间都存在另一个实数。

实数的运算法则和性质是我们进一步研究实数的基础。

实数的四则运算规则和性质可以通过加法、减法、乘法和除法来描述。

此外,实数还具有交换律、结合律、分配律等运算规律。

了解实数的定义和性质对我们在数学问题的求解和实际生活中的运用非常重要。

实数在各个领域都有广泛的应用,如物理学、经济学、工程学等。

在这些领域中,实数的连续性和无限性特点使得实数能够准确地描述事物的变化和趋势,为问题的解决提供了有力的工具。

本文主要围绕实数的定义与性质以及实数的运算法则展开讨论,同时总结实数的重要性质和实数在实际生活中的应用。

通过对实数的系统梳理和整理,旨在帮助读者更好地理解实数的概念、运算规则和应用价值,并进一步提升数学问题的解决能力和应用能力。

【1.2 文章结构】本文主要介绍实数的相关知识点,包括实数的定义与性质以及实数的运算法则。

文章内容分为引言、正文和结论三个部分。

引言部分主要对实数进行概述,说明实数在数学中的重要性和应用领域。

同时,介绍了文章的结构,方便读者对接下来的内容有一个整体的了解。

正文部分分为两个小节:实数的定义与性质以及实数的运算法则。

首先,详细介绍了实数的定义,包括实数的范围和特点。

然后,探讨实数的性质,如实数的可比性、稠密性和有序性等。

接着,重点介绍实数的运算法则,包括实数的加法、减法、乘法和除法法则。

通过具体的例子和推导,帮助读者理解和掌握实数的运算方法。

结论部分对全文进行总结,强调了实数的重要性质,并说明了实数在实际生活中的应用。

北师大版八年级数学上册实数基础知识点及练习题讲解

北师大版八年级数学上册实数基础知识点及练习题讲解

北师大版八年级数学上册实数基础知识点
及练习题讲解
本文档旨在为八年级学生提供关于北师大版数学上册实数基础知识点以及相应的练题讲解。

以下是一些关键的知识点和题解答。

实数的定义
实数是指有理数和无理数的集合。

有理数包括整数、分数和十进制无限循环小数,而无理数是指非循环无穷小数。

实数的运算
实数具有加法、减法、乘法和除法等基本运算。

以下是一些实数运算的例子:
- 加法:a + b = c
- 减法:a - b = d
- 乘法:a * b = e
- 除法:a / b = f
实数的性质
实数具有许多重要的性质,例如:
- 交换律:a + b = b + a
- 结合律:(a + b) + c = a + (b + c)
- 分配律:a * (b + c) = a * b + a * c
实数的应用
实数在数学中有广泛的应用。

例如,实数可以用来表示物体的长度、时间的流逝以及温度的变化等。

实数的概念也常常在代数和几何中使用。

题解答
以下是一些题的解答,供同学们练:
1. 计算:3 + 4 = ?
答案:7
2. 计算:5 * 6 = ?
答案:30
3. 计算:10 - 7 = ?
答案:3
请同学们仔细阅读每个题,并尝试独立解答。

如果有任何问题,请随时向老师请教。

以上是关于北师大版八年级数学上册实数基础知识点及练习题
讲解的内容。

希望对同学们的学习有所帮助!。

实数_知识点+题型归纳

实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。

数a的相反数是-a。

正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。

2.绝对值:表示点到原点的距离,数a 的绝对值为3.倒数:乘积为1的两个数互为倒数。

非0实数a的倒数为1a. 0没有倒数。

4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。

数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。

开平方:求一个数的平方根的运算,叫做开平方。

2.立方根:如果一个数的立方等于a,则称这个数为a立方根。

数a的立方根用3a表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

开立方:求一个数的立方根(三次方根)的运算,叫做开立方。

四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。

2.有理数的减法法则:减去一个数等于加上这个数的相反数。

3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.a| |ab)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。

实数的知识点九年级

实数的知识点九年级

实数的知识点九年级实数是数学中的基本概念之一,它包括有理数和无理数两种类型。

在九年级的数学学习中,我们需要掌握实数的定义、性质以及其在代数运算中的应用。

本文将对实数的相关知识点进行论述,帮助同学们更好地理解和掌握这一概念。

一、实数的定义实数是包括有理数和无理数的数的集合。

有理数是可以表示为两个整数之比的数,包括整数和分数两种类型;无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环的。

实数可以用数轴上的点表示,每个实数都与数轴上的唯一一个点对应。

二、实数的性质1. 实数的有序性:对于任意两个实数a和b,必定满足a<b、a=b或者a>b中的一种关系。

2. 实数的稠密性:在任意两个实数之间,总存在其他实数。

这意味着无论两个实数之间的距离有多小,总可以找到一个实数填补其中的空隙。

3. 实数的运算封闭性:对于任意两个实数a和b,其加减乘除的结果仍然是实数。

三、实数的分类1. 有理数:有理数可以表示为一个整数除以一个非零整数的形式,包括整数和分数两种类型。

有理数是可以准确表达的,它们的十进制表示要么是有限小数,要么是循环小数。

2. 无理数:无理数是不能写成有理数的形式,它们的十进制表示是无限不循环的。

常见的无理数有π、√2等。

四、实数的运算1. 实数的加法和减法:实数的加法是可交换的,减法可以看作加法的逆运算。

例如,若a、b是实数,则a+b=b+a,a-b=-(-a)+(-b)。

2. 实数的乘法和除法:实数的乘法是可交换的,除法可以看作乘法的逆运算。

例如,若a、b是实数,则a×b=b×a,a÷b=(1/b)×a。

3. 实数的乘方和开方:实数的乘方是将实数连乘多次,开方则是乘方的逆运算。

例如,a的n次方记作a^n,开方记作√a。

五、实数的应用实数是数学在现实生活中的重要应用之一,它广泛地应用于科学、工程、金融等领域。

在几何中,实数可以表示点的坐标,直线的斜率等。

实数(基础)知识讲解

实数(基础)知识讲解

实数(基础)要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,要点二、实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数 按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小.要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数:222,,0,,10.1010010001......73π---【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有222,0,,73--,10.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如1-举一反三:【高清课堂: 389318 实数复习 ,巩固练习3】【变式】下列说法错误的是( )①无限小数一定是无理数; ②无理数一定是无限小数;③带根号的数一定是无理数;④不带根号的数一定是有理数.A .①②③ B. ②③④ C. ①③④ D. ①②④【答案】C ;类型二、实数大小的比较22和0.5的大小.【答案与解析】解:作商,得20.5=1>,即210.5>,所以0.52>. 【总结升华】根据若a ,b 均为正数,则由“1ab >,1ab =,1ab <”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π--4__32 03___--|___(7)---【答案】<; >; <; <; <; >; <.3、如图,数轴上点P 表示的数可能是A. 3.2-B.【答案】B ;【解析】-3<<-2.【总结升华】关键是估计出.类型三、实数的运算4、化简:(1) 1.4|(2)4||(3)|12|【答案与解析】解: 1.4|1.4=4||4|12|121=+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|(4)0a c -+-=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3;【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a ,非负数的和为0,只能每个非负数分别为0 .举一反三:【变式】已知2(16)|3|0x y +++=【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.=. 12。

实数概念例题和知识点总结

实数概念例题和知识点总结

实数概念例题和知识点总结实数是数学中的一个重要概念,它涵盖了有理数和无理数。

理解实数的概念对于进一步学习数学知识,解决数学问题至关重要。

下面我们通过一些例题来深入理解实数的相关概念,并对重要知识点进行总结。

一、实数的定义和分类实数是有理数和无理数的总称。

有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数,例如√2、π等。

二、实数的性质1、实数的有序性:任意两个实数 a 和 b,要么 a < b,要么 a = b,要么 a > b。

2、实数的稠密性:在任意两个不同的实数之间,都存在无穷多个实数。

3、实数的运算封闭性:实数进行加、减、乘、除(除数不为 0)运算,其结果仍然是实数。

三、例题解析例 1:判断下列数哪些是有理数,哪些是无理数?22/7,√5,0,-314,***********(相邻两个 1 之间依次多一个 0)解:22/7 是分数,属于有理数;√5 是无限不循环小数,是无理数;0 是整数,属于有理数;-314 是有限小数,可化为分数,属于有理数;***********(相邻两个 1 之间依次多一个 0)是无限不循环小数,是无理数。

例 2:比较大小:√3 + 1 和 2 +√2解:因为(√3 + 1)²= 3 +2√3 + 1 = 4 +2√3 ,(2 +√2)²=4 +4√2 + 2 = 6 +4√2 。

而 4 +2√3 < 6 +4√2 ,所以√3 + 1 < 2 +√2 。

例 3:已知一个实数的绝对值是√5,求这个实数。

解:设这个实数为 x ,则|x| =√5 ,所以 x =±√5 。

四、实数的运算1、加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

2、减法:减去一个数,等于加上这个数的相反数。

3、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。

初中数学知识点讲解实数

初中数学知识点讲解实数

初中数学知识点讲解:实数1. 实数的定义实数是指能够用带有小数的数来表示的数,它包括正数、零和负数三种类型。

实数可以表示为有理数或无理数的形式,也可以是这两种数的混合形式。

通常用R表示实数集合。

以下是各种实数的表示方式:•1/3、-2、0.666、3.1415926…… 是实数•√2、π、e等无限不循环小数也是实数•-∞、+∞ 不是实数2. 实数的分类实数可以分为有理数和无理数两类,下面分别介绍它们的定义和性质。

2.1 有理数有理数是指能够表示为两个整数之比的数,可以写成分数的形式。

有理数包括正有理数、零和负有理数三种类型。

有理数通常用Q表示。

以下是一些有理数的例子:•正有理数:1/2、3/4、2、3、999等•零:0•负有理数:-1/2、-3/4、-2、-3、-999等有理数的性质:1.有理数的加、减、乘、除仍为有理数。

2.有理数可以化为最简分数形式。

3.任意两个不等于零的有理数的和、差、积、商仍为有理数。

4.有理数的大小可以用数轴表示。

2.2 无理数无理数是指不能表示为两个整数之比的数,无限不循环小数或无法写成分数形式的数。

无理数包括代数无理数和超越无理数两种类型。

以下是一些无理数的例子:•代数无理数:√2、√5、√7等•超越无理数:π、e等无理数的性质:1.无理数的加、减、乘、除可能得到有限小数或无限不循环小数。

2.任意一个无理数都可以用有限小数或无限不循环小数表示。

3.无理数不能化为最简分数形式。

4.无理数之间不存在大小关系。

3. 实数的运算实数的运算包括加、减、乘、除四种,下面分别介绍其运算规则和性质。

3.1 加法运算两个实数相加,可以按有理数的加法和无理数的加法进行。

•有理数相加:先化为相同的分母,再将分子相加即可。

•无理数相加:直接将两个无理数相加。

例如:• 1.5 + 2 = 3.5•√2 + √3 = √2 + √3 (无法化简)加法的性质:1.交换律:a+b=b+a2.结合律:(a+b)+c=a+(b+c)3.同一元素:a+0=a4.相反元素:a+(-a)=03.2 减法运算两个实数相减,可以根据加法的性质转化为加法运算。

八年级上册实数知识点讲解

八年级上册实数知识点讲解

八年级上册实数知识点讲解在数学学科中,实数是非常重要的一个概念。

它是指所有普通数字的集合,包括正数、负数和零。

在八年级上册中,实数也是重点学习内容之一。

本文将对八年级上册实数的知识点进行全面讲解,以便帮助学生加深对实数的理解。

一、实数的基础概念实数是指所有常见的数字集合,包括正数、负数和零。

实数的表示方法可以用数轴来表示。

其中,数轴的正方向表示正数,反方向表示负数,原点表示零。

在数轴上,任何一个实数都可以表示为一个唯一的点。

二、绝对值的概念绝对值是一个实数的非负值,表示这个数到零的距离。

比如绝对值为5的实数表示这个数与零的距离为5。

绝对值的表示方法可以用两个竖线(如|4|表示4的绝对值为4)来表示。

三、实数的运算1. 实数的加法实数的加法满足交换律、结合律和分配律。

具体表示为:①交换律:a + b = b + a②结合律:(a + b) + c = a + (b + c)③分配律:a * (b + c) = a * b + a * c2. 实数的减法实数相减,可以转换为实数相加,即 a - b = a + (-b)。

其中,-b 表示b的相反数。

实数的减法满足结合律和分配律,但不满足交换律。

3. 实数的乘法实数的乘法满足交换律、结合律和分配律。

具体表示为:①交换律: a * b = b * a②结合律: (a * b) * c = a * (b * c)③分配律: a * (b + c) = a * b + a * c4. 实数的除法实数的除法用分数表示。

若b不为0,则a/b = a * (1/b)。

其中,1/b表示b的倒数。

实数的除法满足结合律和分配律,但不满足交换律。

四、实数的大小比较实数的大小比较可以通过比较它们的绝对值大小来实现。

其中,绝对值越大的实数,其大小越大;绝对值相等的实数,需要进一步比较它们的正负。

五、实数的平方与平方根实数的平方是该实数与自身相乘的结果,即a² = a * a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:实数—知识讲解 (基础)撰稿:张晓新 审稿:杜少波【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用.【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如n m (m ,n 是整数n≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数.实数:有理数和无理数统称为实数.要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.100…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:3256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0.要点诠释:若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离.3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=.4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a .5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔;或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c).2.减法减去一个数等于加上这个数的相反数.3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac .4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n 所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数011(0)(0).p p a a a a a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法. 要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: 则化简2()a b +=______.0a b(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩.【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:20 0 |||| 0 ()||().a b a b a b a b a b a b a b ><<∴+<∴+=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、()02、3.14159、-9、()27--、8中无理数有( )个 A .1 B .2 C .3 D .4 【答案】C.【解析】无理数有sin60°、3π、8. 【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【高清课程名称: 实数 高清ID 号: 369214关联的位置名称(播放点名称):经典例题1】【变式】在,30cos ,2π,)23(,4,8,14.30ο--,45tan ο,712,1010010001.0Λ,51-13.0%,3&&中,哪些是有理数? 哪些是无理数?【答案】03.14,4,(32),-,45tan ο,712,51-13.0%,3&&都是有理数; π8,,cos30,2-o 0.1010010001,L 都是无理数. 3.计算:计算:|2|)3()21()1(022001----⨯+. 【答案与解析】2001201(1)()(3)|2|214121+⨯=-+⨯-=---- 【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂,正整数指数幂.只要准确把握各自的意义,就能正确的进行运算.举一反三:【高清课程名称:实数 高清ID 号:369214关联的位置名称(播放点名称):经典例题8-9】【变式1】计算:.45sin 8)14.3π()3(2022ο--+----【答案】174-; 【变式2】计算:12004200320022001+⨯⨯⨯【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体) =1)3(2)3(222++++n n n n=n 2+3n+1=n(n+3)+1=2001×2004+1=4010005.类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a 1(a ≠0) 【答案与解析】(1)1740174-=>+,4150415-=>+,而174+与415+可以很容易进行比较得到:1744150+>+>,所以174415-<-;(2)当a<-1或O<a<1时,a<a1; 当-1<a<0或a>1时,a>a1; 当a=1±时,a=a1.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较; (2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a 1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小. 举一反三: 【变式】比较下列每组数的大小: (1)817-和511- (2)52+和23+ 【答案】(1)将其通分,转化成同分母分数比较大小,1785840= ,1188540=, 171185<, 所以171185->-. (2)()2257210740+=+=+,()232743748+=+=+,因为4048<,所以2532+<+.类型四、平方根的应用5.已知:x ,y 是实数,234690x y y ++-+=,若axy-3x=y ,则实数a 的值是_______.【答案】14. 【解析】234690x y y ++-+=,即234(3)0x y ++-=两个非负数相加和为0,则这两个非负数必定同时为0,∴340x +=,(y-3)2=0, ∴ x=43-, y=3 又∵axy-3x=y , ∴ a=43()33134433x y xy ⨯-++==-⨯. 【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题()()()2122231112,22213,23314,2S S S +==+==+==L LS 1S 2S 3S 4S 5OA 1A 2A 3A 4A 5A 611111 (1)请用含有n (n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出S 12+ S 22+ S 32+…+ S 102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112n S n n n =+=+ (2)因为OA 1=1,OA 2=2,OA 3=3…, 所以OA 10=10(3)S 12+ S 22+ S 32+…+ S 102=2222)210()23()22()21(++++Λ =)10321(41++++Λ=455. 【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).。

相关文档
最新文档