实数(基础)知识讲解

合集下载

实数知识点归纳整理

实数知识点归纳整理

实数知识点归纳整理1.引言1.1 概述概述部分主要对实数的基本概念进行介绍和解释。

实数是数学中最基本且最常用的数集之一,它包括所有的有理数和无理数。

有理数是可以表示为两个整数之比的数字,而无理数则是不能被表示为两个整数之比的数字。

实数作为数学中的一个重要概念,具有以下几个特点:首先,实数具有连续性,即在任意两个实数之间都存在无数个实数。

其次,实数具有无限性,即实数集合是无限的。

再次,实数具有稠密性,即在任意两个实数之间都存在另一个实数。

实数的运算法则和性质是我们进一步研究实数的基础。

实数的四则运算规则和性质可以通过加法、减法、乘法和除法来描述。

此外,实数还具有交换律、结合律、分配律等运算规律。

了解实数的定义和性质对我们在数学问题的求解和实际生活中的运用非常重要。

实数在各个领域都有广泛的应用,如物理学、经济学、工程学等。

在这些领域中,实数的连续性和无限性特点使得实数能够准确地描述事物的变化和趋势,为问题的解决提供了有力的工具。

本文主要围绕实数的定义与性质以及实数的运算法则展开讨论,同时总结实数的重要性质和实数在实际生活中的应用。

通过对实数的系统梳理和整理,旨在帮助读者更好地理解实数的概念、运算规则和应用价值,并进一步提升数学问题的解决能力和应用能力。

【1.2 文章结构】本文主要介绍实数的相关知识点,包括实数的定义与性质以及实数的运算法则。

文章内容分为引言、正文和结论三个部分。

引言部分主要对实数进行概述,说明实数在数学中的重要性和应用领域。

同时,介绍了文章的结构,方便读者对接下来的内容有一个整体的了解。

正文部分分为两个小节:实数的定义与性质以及实数的运算法则。

首先,详细介绍了实数的定义,包括实数的范围和特点。

然后,探讨实数的性质,如实数的可比性、稠密性和有序性等。

接着,重点介绍实数的运算法则,包括实数的加法、减法、乘法和除法法则。

通过具体的例子和推导,帮助读者理解和掌握实数的运算方法。

结论部分对全文进行总结,强调了实数的重要性质,并说明了实数在实际生活中的应用。

实数的知识点九年级

实数的知识点九年级

实数的知识点九年级实数是数学中的基本概念之一,它包括有理数和无理数两种类型。

在九年级的数学学习中,我们需要掌握实数的定义、性质以及其在代数运算中的应用。

本文将对实数的相关知识点进行论述,帮助同学们更好地理解和掌握这一概念。

一、实数的定义实数是包括有理数和无理数的数的集合。

有理数是可以表示为两个整数之比的数,包括整数和分数两种类型;无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环的。

实数可以用数轴上的点表示,每个实数都与数轴上的唯一一个点对应。

二、实数的性质1. 实数的有序性:对于任意两个实数a和b,必定满足a<b、a=b或者a>b中的一种关系。

2. 实数的稠密性:在任意两个实数之间,总存在其他实数。

这意味着无论两个实数之间的距离有多小,总可以找到一个实数填补其中的空隙。

3. 实数的运算封闭性:对于任意两个实数a和b,其加减乘除的结果仍然是实数。

三、实数的分类1. 有理数:有理数可以表示为一个整数除以一个非零整数的形式,包括整数和分数两种类型。

有理数是可以准确表达的,它们的十进制表示要么是有限小数,要么是循环小数。

2. 无理数:无理数是不能写成有理数的形式,它们的十进制表示是无限不循环的。

常见的无理数有π、√2等。

四、实数的运算1. 实数的加法和减法:实数的加法是可交换的,减法可以看作加法的逆运算。

例如,若a、b是实数,则a+b=b+a,a-b=-(-a)+(-b)。

2. 实数的乘法和除法:实数的乘法是可交换的,除法可以看作乘法的逆运算。

例如,若a、b是实数,则a×b=b×a,a÷b=(1/b)×a。

3. 实数的乘方和开方:实数的乘方是将实数连乘多次,开方则是乘方的逆运算。

例如,a的n次方记作a^n,开方记作√a。

五、实数的应用实数是数学在现实生活中的重要应用之一,它广泛地应用于科学、工程、金融等领域。

在几何中,实数可以表示点的坐标,直线的斜率等。

实数教学总结知识点

实数教学总结知识点

实数教学总结知识点一、实数的定义和分类1. 实数的定义实数是指能用数线上的一点表示的数。

包括有理数和无理数两个部分。

有理数是指可以表示为两整数之比的数,无理数是指不能表示为有理数的数。

2. 实数的分类实数分为有理数和无理数两大类。

有理数包括整数、有限小数和无限循环小数,而无理数是指不能表示为有理数的数,比如π和e等。

二、实数的性质和运算1. 实数的大小比较实数之间可以通过大小关系进行比较,可以使用大小关系进行排序。

在实数范围内,大于0的数为正数,小于0的数为负数。

2. 实数的加法和减法实数的加法和减法遵循交换律和结合律,满足加法逆元和减法逆元的性质。

3. 实数的乘法和除法实数的乘法和除法也遵循交换律和结合律,分母不为0时可进行除法运算。

4. 实数的运算性质实数的运算满足分配律、结合律、交换律和消去律等性质。

三、实数的代数运算1. 实数的乘方和开方对于实数的乘方运算,有着指数运算的法则,例如乘方和开方的逆运算。

2. 实数的多项式运算实数的多项式运算包括加法、减法、乘法和除法等运算。

3. 实数的根式运算根式运算是对实数的开方运算,需要注意分母不为0,并且运算结果可能是有理数或无理数。

四、实数的应用1. 实数在代数方程中的应用实数在代数方程中起到了重要作用,可以通过实数的代数运算解决方程,例如一元一次方程、二元一次方程等。

2. 实数在几何中的应用实数在几何中有着广泛的应用,比如用实数表示坐标、长度、面积和体积等概念。

3. 实数在金融和经济中的应用实数在金融和经济中也有着广泛的应用,比如利息计算、货币兑换和股票投资等。

五、实数教学方法和策略1. 实数教学方法在实数教学中,老师可以采用讲解、示范、演练、实验、讨论等多种教学方法,提高学生对实数的理解和应用能力。

2. 实数教学策略在实数教学中,老师可以引导学生进行探究性学习,激发学生的学习兴趣,培养学生的实际动手能力和解决问题的能力。

六、实数教学中的注意事项1. 注重基础知识的建立实数是数学的基础,老师要注重实数的基本概念和分类,使学生能够对实数有一个清晰的认识。

实数概念例题和知识点总结

实数概念例题和知识点总结

实数概念例题和知识点总结实数是数学中的一个重要概念,它涵盖了有理数和无理数。

理解实数的概念对于进一步学习数学知识,解决数学问题至关重要。

下面我们通过一些例题来深入理解实数的相关概念,并对重要知识点进行总结。

一、实数的定义和分类实数是有理数和无理数的总称。

有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数,例如√2、π等。

二、实数的性质1、实数的有序性:任意两个实数 a 和 b,要么 a < b,要么 a = b,要么 a > b。

2、实数的稠密性:在任意两个不同的实数之间,都存在无穷多个实数。

3、实数的运算封闭性:实数进行加、减、乘、除(除数不为 0)运算,其结果仍然是实数。

三、例题解析例 1:判断下列数哪些是有理数,哪些是无理数?22/7,√5,0,-314,***********(相邻两个 1 之间依次多一个 0)解:22/7 是分数,属于有理数;√5 是无限不循环小数,是无理数;0 是整数,属于有理数;-314 是有限小数,可化为分数,属于有理数;***********(相邻两个 1 之间依次多一个 0)是无限不循环小数,是无理数。

例 2:比较大小:√3 + 1 和 2 +√2解:因为(√3 + 1)²= 3 +2√3 + 1 = 4 +2√3 ,(2 +√2)²=4 +4√2 + 2 = 6 +4√2 。

而 4 +2√3 < 6 +4√2 ,所以√3 + 1 < 2 +√2 。

例 3:已知一个实数的绝对值是√5,求这个实数。

解:设这个实数为 x ,则|x| =√5 ,所以 x =±√5 。

四、实数的运算1、加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

2、减法:减去一个数,等于加上这个数的相反数。

3、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。

实数_知识点+题型归纳

实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。

数a的相反数是-a。

正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。

2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。

非0实数a的倒数为1a. 0没有倒数。

4.相反数是它本身的数只有0;绝对值是它本身的数是非负数〔0和正数〕;倒数是它本身的数是±1. 三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。

数a的平方根记作〔a>=0〕特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。

开平方:求一个数的平方根的运算,叫做开平方。

2.立方根:如果一个数的立方等于a,那么称这个数为a立方根。

数a 的立方根用3a表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

开立方:求一个数的立方根〔三次方根〕的运算,叫做开立方。

四、实数的运算有理数的加法法那么:a〕同号两数相加,取一样的符号,并把绝对值相加;b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。

2.有理数的减法法那么:减去一个数等于加上这个数的相反数。

3.乘法法那么:a| |aa〕两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b〕几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c〕几个数相乘,只要有一个因数为0,积就为04.有理数除法法那么:a〕两个有理数相除〔除数不为0〕同号得正,异号得负,并把绝对值相除。

实数初步认识讲解

实数初步认识讲解

实数讲解部分一、分类的数学思想1、⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数 2、3、实数与数轴的关系每个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应4、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作。

0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。

5、平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。

正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

6、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

7、80a ≥0.9、公式:⑴(2=a (a ≥0a 取任何数).10、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)a ())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a已知下列实数: ,1020.5,23,0,1.2,25,,722,14.3,32⨯-∙π25, 1010010001.1(每两个1之间多一个0). (1)按要求填空:无理数有______________________________,有理数有______________________________, 整数有________________________________.分数有______________________________,(2)请在数轴上用点A 、点B 分别表示5-,3的大致位置.(3)求出点、点之间的距离.(结果保留3个有效数字)(1)64的平方根是______; (2)64-的立方根是______;(3)64=______;(4)32的五次方根是______; (5)1的四次方根是______; (6)0的立方根是_______;(7)已知42=x ,则=x_______; (8)4的平方根是_____.(1)3)3(2=-;( ) (2)3)3(33=-;( )(3)2)2(2-=-;( )(4)52)52(2-=-.( )(5)74343432222=+=+=+;( ) 例题4 实数大小的比较:1.比较下列各数的大小:(1)16225与; (2)37--与; (3)216--与 (4)2526-与-。

数学知识点总结 实数

数学知识点总结 实数

数学知识点总结实数数学是一门关于数量,结构,空间和变化等概念的科学。

它在我们的生活中随处可见,从日常的购物和金融交易到科学研究和工程设计,数学都扮演着不可或缺的角色。

在这篇文章中,我们将总结一些基础的数学知识点,包括整数,分数,代数,几何和统计学等。

整数整数是自然数(包括正整数和零)与其相反数(负整数)的集合。

整数之间的运算包括加法,减法,乘法和除法。

整数被广泛应用于计算,代数和统计学等领域。

分数分数是指由分子和分母组成的有理数,表示为一个整数除以另一个整数。

分数在日常生活中被广泛应用,例如在食谱和药物剂量中。

在数学中,分数用于表示两个整数之间的比率,以及解决各种问题,如比较大小,加减乘除等。

代数代数是数学的一个重要分支,研究数学结构和运算规则。

代数中的基本概念包括变量,方程,函数和图形等。

代数被广泛应用于科学,工程和经济等领域,例如用于求解未知数的方程,建立数学模型和分析数据等。

几何几何是研究空间,形状,大小和相对位置的数学学科。

在几何中,我们学习关于点,线,面,多边形,圆,角,距离,相似性和对称性等概念。

几何在建筑,设计,地图制作和天文观测等领域有重要应用。

统计学统计学是研究数据收集,分析和解释的科学。

统计学的基本概念包括数据类型,样本和总体,平均值,方差,概率和推断等。

统计学被广泛应用于调查研究,风险评估,市场分析和政策制定等方面。

总结数学是一门重要的学科,它不仅帮助我们理解世界的运作规律,也为我们提供了解决问题的方法和工具。

通过学习数学,我们可以提高逻辑思维能力,培养分析和解决问题的能力,这对我们的个人和职业发展都具有重要意义。

因此,我们应该重视数学学习,不断积累数学知识,提高数学水平,以应对日常生活和工作中的各种挑战。

初中数学知识点讲解实数

初中数学知识点讲解实数

初中数学知识点讲解:实数1. 实数的定义实数是指能够用带有小数的数来表示的数,它包括正数、零和负数三种类型。

实数可以表示为有理数或无理数的形式,也可以是这两种数的混合形式。

通常用R表示实数集合。

以下是各种实数的表示方式:•1/3、-2、0.666、3.1415926…… 是实数•√2、π、e等无限不循环小数也是实数•-∞、+∞ 不是实数2. 实数的分类实数可以分为有理数和无理数两类,下面分别介绍它们的定义和性质。

2.1 有理数有理数是指能够表示为两个整数之比的数,可以写成分数的形式。

有理数包括正有理数、零和负有理数三种类型。

有理数通常用Q表示。

以下是一些有理数的例子:•正有理数:1/2、3/4、2、3、999等•零:0•负有理数:-1/2、-3/4、-2、-3、-999等有理数的性质:1.有理数的加、减、乘、除仍为有理数。

2.有理数可以化为最简分数形式。

3.任意两个不等于零的有理数的和、差、积、商仍为有理数。

4.有理数的大小可以用数轴表示。

2.2 无理数无理数是指不能表示为两个整数之比的数,无限不循环小数或无法写成分数形式的数。

无理数包括代数无理数和超越无理数两种类型。

以下是一些无理数的例子:•代数无理数:√2、√5、√7等•超越无理数:π、e等无理数的性质:1.无理数的加、减、乘、除可能得到有限小数或无限不循环小数。

2.任意一个无理数都可以用有限小数或无限不循环小数表示。

3.无理数不能化为最简分数形式。

4.无理数之间不存在大小关系。

3. 实数的运算实数的运算包括加、减、乘、除四种,下面分别介绍其运算规则和性质。

3.1 加法运算两个实数相加,可以按有理数的加法和无理数的加法进行。

•有理数相加:先化为相同的分母,再将分子相加即可。

•无理数相加:直接将两个无理数相加。

例如:• 1.5 + 2 = 3.5•√2 + √3 = √2 + √3 (无法化简)加法的性质:1.交换律:a+b=b+a2.结合律:(a+b)+c=a+(b+c)3.同一元素:a+0=a4.相反元素:a+(-a)=03.2 减法运算两个实数相减,可以根据加法的性质转化为加法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数(基础)
【学习目标】
1. 了解无理数和实数的意义;
2. 了解有理数的概念、运算法则在实数范围内仍适用 .
【要点梳理】
=
要点一、有理数与无理数
有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,
不能表示成分数的形式.
(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,
如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,
要点二、实数
有理数和无理数统称为实数.
1.实数的分类
按定义分:
实数⎧⎨⎩有理数:有限小数或无限循环小数
无理数:无限不循环小数
按与0的大小关系分:
实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩
正有理数正数正无理数负有理数负数负无理数
2.实数与数轴上的点一一对应.
数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.
要点三、实数大小的比较
对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小.
要点四、实数的运算
有理数关于相反数和绝对值的意义同样适合于实数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
【典型例题】
类型一、实数概念
1、指出下列各数中的有理数和无理数:
222,,0,,10.1010010001 (73)
π-- 【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.
【答案与解析】
有理数有222,0,,73
-
,10.1010010001π……
【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….
③带有根号的数,但根号下的数字开方开不尽,如
1举一反三:
【变式】(2015春•聊城校级月考)在下列语句中:
①无理数的相反数是无理数;
②一个数的绝对值一定是非负数;
③有理数比无理数小;
④无限小数不一定是无理数.
其中正确的是( )
A .②③
B .②③④
C .①②④
D .②④
【答案】C ;
解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;
③数的大小,和它是有理数还是无理数无关,故本选项是错误的;
④无限循环小数是有理数,故本选项正确.
类型二、实数大小的比较
2
0.5的大小. 【答案与解析】
解:作商,得20.5
=
1>
,即210.5>
0.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1a b
<”分别得到结论“a b >,
a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.
举一反三:
【变式】比较大小
___ 3.14π--4__3 2 0
3___- |___(7)---
【答案】<; >; <; <; <; >; <.
3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )
A .ac >bc
B .|a ﹣b|=a ﹣b
C .﹣a <﹣b <c
D .﹣a ﹣c >﹣b ﹣c
【答案】D ;
【解析】
解:∵由图可知,a <b <0<c ,
∴A 、ac <bc ,故A 选项错误;
B 、∵a <b ,
∴a ﹣b <0,
∴|a ﹣b|=b ﹣a ,故B 选项错误;
C 、∵a <b <0,
∴﹣a >﹣b ,故C 选项错误;
D 、∵﹣a >﹣b ,c >0,
∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确.
故选:D .
【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.
类型三、实数的运算
4、化简:
(1) 1.4| (2)4|| (3)|12|
【答案与解析】
解: 1.4| 1.4=
4|| 4
|12|121==.
【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.
5
、若2|2|(4)0a c --=,则a b c -+=________.
【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.
【答案】3;
【解析】
解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩
,∴ 2343a b c -+=-+=.
【总结升华】初中阶段所学的非负数有|a |
,2,a ,非负数的和为0,只能每个非负数分别为0 .
举一反三:
【变式】已知2(16)|3|0x y +++
【答案】 解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩

12=.。

相关文档
最新文档