永磁电机概述

合集下载

永磁电机设计计算手册

永磁电机设计计算手册

永磁电机设计计算手册第一章永磁电机基础知识概述1.1 永磁电机的发展历史永磁电机是利用永磁材料产生永磁场,通过与电流的相互作用产生转矩从而实现动力传递的一种电动机。

永磁电机的历史可以追溯到 19 世纪初,当时英国科学家 Faraday 通过实验最早发现磁场与导体之间的相互作用。

随后,人们利用永磁材料和电流相互作用的原理,逐渐发展出了永磁电机的原型,并不断进行改进,使其性能不断提升。

20 世纪以来,随着先进材料和技术的不断发展,永磁电机在各个领域都得到了广泛应用,并成为电动机领域的重要一员。

1.2 永磁电机的分类永磁电机可以根据永磁材料的不同以及结构形式的不同进行分类。

按照永磁材料的不同,永磁电机可以分为硬磁永磁电机和软磁永磁电机两大类。

硬磁永磁电机采用永磁材料为NdFeB 等硬磁材料,具有较高的磁场强度和稳定性;而软磁永磁电机采用永磁材料为SmCo 等软磁材料,具有较高的抗腐蚀性和较低的磁场强度。

按照结构形式的不同,永磁电机可以分为平内磁式、平外磁式、内转子外定子式等多种形式。

1.3 永磁电机的工作原理永磁电机的工作原理主要是通过永磁材料产生的永磁场与电流之间的相互作用,产生电磁转矩,从而实现动力传递。

永磁电机一般由定子、转子、永磁体、绕组等部件组成。

当给定子绕组通电产生磁场时,永磁体的永磁场与定子绕组的磁场相互作用,产生电磁转矩,从而驱动转子运动。

1.4 永磁电机的优点与传统的电磁电机相比,永磁电机具有体积小、重量轻、效率高、响应快、寿命长等诸多优点。

首先,永磁电机采用永磁材料产生永磁场,无需外部电流激励,因此没有电励磁损耗,效率更高。

其次,永磁电机由于采用永磁材料,所以具有较小的体积和重量,适合于一些对重量和体积要求较高的场合。

此外,永磁电机具有瞬时响应快、寿命长、维护方便等优点。

因此,在诸如汽车、家电、工业生产等领域得到了广泛应用。

1.5 永磁电机的应用领域永磁电机由于其体积小、重量轻、效率高、响应快等优点,因此在各个领域都得到了广泛应用。

永磁同步电机详细讲解

永磁同步电机详细讲解

永磁同步电机详细讲解永磁同步电机是一种广泛应用于工业和家用电器的电机类型。

它具有高效率、高功率密度和高控制性能等优点,因此被广泛应用于各个领域。

本文将详细介绍永磁同步电机的工作原理、特点以及应用。

一、工作原理永磁同步电机是一种通过电磁感应原理进行能量转换的电机。

它由定子和转子两部分组成。

定子上有三个相位的绕组,通过交流电源供电,产生旋转磁场。

转子上带有永磁体,它在旋转磁场的作用下,受到电磁力的作用而旋转。

通过控制定子绕组的电流,可以实现对电机的转速和转矩的精确控制。

二、特点1. 高效率:永磁同步电机由于没有励磁损耗,能够更有效地将电能转化为机械能。

相比于传统的感应电机,其效率更高。

2. 高功率密度:永磁同步电机相比其他电机类型,具有更高的功率密度,可以在相同空间内提供更大的功率输出。

3. 高控制性能:永磁同步电机具有良好的转速和转矩控制性能,可以实现快速、准确的响应,适用于对动态性能要求较高的应用场景。

三、应用永磁同步电机在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 工业领域:永磁同步电机广泛应用于机床、风力发电、压缩机、泵等设备中,以提供高效、稳定的动力输出。

2. 交通运输:永磁同步电机在电动汽车、混合动力汽车以及电动自行车等交通工具中得到了广泛应用。

其高效率和高控制性能使得电动交通工具具有更好的续航里程和更好的动力性能。

3. 家电领域:永磁同步电机在家用电器中的应用也越来越广泛。

例如,空调、洗衣机、电冰箱等家电产品中常常采用永磁同步电机作为驱动器,以提供更高的效率和更好的性能。

永磁同步电机作为一种高效率、高功率密度和高控制性能的电机类型,具有广泛的应用前景。

随着科技的不断进步和发展,永磁同步电机将在各个领域继续发挥重要的作用,并为人们的生活带来更多便利和舒适。

永磁同步电机详细讲解

永磁同步电机详细讲解

永磁同步电机详细讲解永磁同步电机是一种使用永磁体作为励磁源的同步电机。

相比传统的感应电机,永磁同步电机具有更高的效率和更好的动态响应特性。

本文将详细介绍永磁同步电机的工作原理、结构特点及应用领域。

一、工作原理永磁同步电机的工作原理基于磁场的相互作用,在电机内部的定子和转子之间形成电磁耦合。

定子上的三相绕组通电时产生旋转磁场,而转子上的永磁体则产生恒定的磁场。

由于磁场的相互作用,转子会受到定子磁场的作用力,从而实现转动。

二、结构特点永磁同步电机的结构相对简单,主要包括定子、转子和永磁体。

定子是电机的固定部分,通常由铜线绕成的线圈组成。

转子则是电机的旋转部分,通常由永磁体和铁芯构成。

永磁体通常采用稀土永磁材料,具有较高的磁能密度和磁能积。

三、应用领域永磁同步电机在工业和交通领域有广泛的应用。

在工业领域,它常被用于驱动压缩机、泵和风机等设备,因为它具有高效率和良好的负载适应性。

在交通领域,永磁同步电机被广泛应用于电动汽车和混合动力汽车中,以实现高效率和低排放。

在电动汽车中,永磁同步电机可以提供高效的动力输出,使汽车具有更长的续航里程和更好的加速性能。

同时,由于永磁同步电机没有电刷和换向器等易损件,可靠性也较高。

在混合动力汽车中,永磁同步电机可以与发动机协同工作,实现能量的高效转换和回收。

永磁同步电机还被应用于风力发电和太阳能发电等可再生能源领域。

它可以将风能或太阳能转化为电能,并提供给电网使用。

永磁同步电机具有高效率、良好的动态响应特性和可靠性高的特点,因而在工业和交通领域得到了广泛应用。

随着科技的不断进步,永磁同步电机的性能还将进一步提升,为人们的生活和工作带来更多便利。

4-永磁同步电动机(基础)

4-永磁同步电动机(基础)
• 2.表面插入式 可充分利用转子磁路的不对称 性所产生的磁阻转矩,提高电动机的功率密度, 动态性能较凸出式有所改善,制造工艺也较简 单,常被某些调速永磁同步电动机所采用。但 漏磁系数和制造成本都较凸出式大。
4.2 内置径向式转子磁路结构
转轴
隔磁磁桥
永磁体
内置结构式转子的永磁体位于转子内部,永磁体外 表面与定子铁心内圆之间(对外转子磁路结构则为永 磁体内表面与转子铁心外圆之间)有铁磁物质制成的 极靴,极靴中可以放置铸铝笼或铜条笼,起阻尼或 (和)起动作用,动、稳态性能好,广泛用于要求有异 步起动能力或动态性能高的永磁同步电动机。内置式 转子内的永磁体受到极靴的保护,其转子磁路结构的 不对称性所产生的磁阻转矩也有助于提高电动机的过 裁能力和功率密度,而且易于“弱磁”扩速。
直轴电枢反应 为去磁性质
Ed E0
I&1 超前 E&0 I&1 滞后 U&
相当于感性负载
直轴电枢反应 为去磁性质
Ed E0
I&1 I&q
I&1与 U&同相位
仅有交轴电枢 反应,无直轴 电枢反应
Ed E0
I&1 滞后 E&0
相当于感性负载
直轴电枢反应 为助磁性质
Ed E0
7.2 永磁同步电机电磁转矩和矩角特性
1. 普通双层短距绕组
波形不好;永磁齿 磁导磁阻转矩大; 绕组端部长,不经济
2. 集中绕组 一对极下放置三 相集中绕组,绕 组基波系数低, 电机性能差。
3. 普通分数槽绕组
q 1 的分数槽绕
组可以改善电动势 和磁动势波形,
绕组的端部长。
4. 特殊分数槽绕组
q 1 3 这种

永磁电机基本概念

永磁电机基本概念

永磁电机永磁电机采用永磁体生成电机的磁场,无需励磁线圈也无需励磁电流,效率高、结构简单,是很好的节能电机,随着高性能永磁材料的问世和控制技术的迅速发展.永磁电机的应用变得更为广泛。

永磁电机的发展历史永磁电机的发展同永磁材料的发展密切相关。

19世纪20年代出现的世界上第一台电机就是由永磁体产生励磁磁场的永磁电机。

但当时所用的永磁材料是天然磁铁矿石(Fe3O4),磁能密度很低,用它制成的电机体积庞大,不久被电励磁电机所取代。

随着各种电机迅速发展的需要和电流充磁器的发明,人们对永磁材料的机理、构成和制造技术进行了深入研究,相继发现了碳钢、钨钢(最大磁能积约2.7 kJ/m3)、钴钢(最大磁能积约7.2 kJ/m3)等多种永磁材料。

特别是20世纪30年代出现的铝镍钴永磁(最大磁能积可达85 kJ/m3)和50年代出现的铁氧体永磁(最大磁能积现可达40 kJ/m3),磁性能有了很大提高,各种微型和小型电机又纷纷使用永磁体励磁。

永磁电机的功率小至数毫瓦,大至几十千瓦,在军事、工农业生产和日常生活中得到广泛应用,产量急剧增加。

这段时期在永磁电机的设计理论、计算方法、充磁和制造技术等方面也都取得了突破性进展,形成了以永磁体工作图图解法为代表的一套分析研究方法。

但是,铝镍钴永磁的矫顽力偏低(36~160 kA/m),铁氧体永磁的剩磁密度不高(0.2~0.44 T),限制了它们在电机中的应用范围。

一直到20世纪60年代和80年代,稀土钴永磁和钕铁硼永磁(二者统称稀土永磁)相继问世,它们的高剩磁密度、高矫顽力、高磁能积和线性退磁曲线的优异磁性能特别适合于制造电机,从而使永磁电机的发展进入一个新的历史时期。

永磁电机的特点及应用与传统的电励磁电机相比,永磁电机,特别是稀土永磁电机具有结构简单,运行可靠;体积小,质量轻;损耗小,效率高;电机的形状和尺寸可以灵活多样等显着优点。

因而应用范围极为广泛,几乎遍及航空航天、国防、工农业生产和日常生活的各个领域。

永磁电机的原理

永磁电机的原理

永磁电机的原理
永磁电机是一种利用永磁体产生磁场的电机。

它的基本原理是利用电流通过线圈产生的磁场与永磁体磁场相互作用,从而产生电机转矩。

具体来说,永磁电机由定子和转子两部分组成。

定子上通有电流,形成电磁线圈,而转子上安装有永磁体。

当通电时,定子电磁线圈产生的磁场与转子上的永磁体磁场相互作用,使转子受到一个力矩。

这个力矩使得转子开始转动。

当转子转动时,电流通过电机端子引出,形成一个闭合电路。

根据摩尔定律,闭合电路中的电流在磁场的作用下会受到一个力的作用,这个力称为洛伦兹力。

洛伦兹力与电机转子的转动方向相反,从而产生一个制动矩,使得电机转速减慢。

为了保持电机的运转,通常需要外部提供电力来维持定子上的电流。

这样,电机就可以持续地产生转矩,实现机械能的转换。

综上所述,永磁电机的原理是通过电流与永磁体磁场间的相互作用产生转矩,实现电能向机械能的转换。

《永磁同步电机》课件

《永磁同步电机》课件
《永磁同步电机》 PPT课件
contents
目录
• 永磁同步电机概述 • 永磁同步电机的设计与优化 • 永磁同步电机的控制技术 • 永磁同步电机的应用实例 • 永磁同步电机的挑战与展望
01
永磁同步电机概述
定义与工作原理
定义
永磁同步电机是一种利用永久磁体产 生磁场,通过控制器对电机电流的精 确控制实现电机转子和定子磁场同步 运行的电动机。
电动汽车驱动系统
01
电动汽车驱动系统是永磁同步电机的重要应用领域之
一。
02
永磁同步电机具有高效、可靠、低噪音等优点,能够
提高电动汽车的续航里程和性能。
03
在电动汽车驱动系统中,永磁同步电机可以作为主驱
电机,提供动力输出,实现车辆的加速和减速控制。
工业自动化设备
工业自动化设备是永磁同步电 机的另一个重要应用领域。
内运行。
噪声与振动分析
03
对电机运行过程中的噪声和振动进行测试和分析,以评估其运
行平稳性。
03
永磁同步电机的控制技 术
控制策略
PID控制
传统的控制方法,通过 比例、积分、微分三个
参数调整电机性能。
模糊控制
基于模糊逻辑的方法, 处理不确定性和非线性
问题。
神经网络控制
模仿人脑神经元网络, 处理复杂的模式和预测
02
永磁同步电机的设计与 优化
电机设计
磁路设计
根据电机性能要求,选择合适的磁路结构,如径 向、轴向或横向磁路。
绕组设计
根据电机尺寸和功率要求,设计绕组的匝数、线 径和绕组方式。
冷却系统设计
为确保电机长时间稳定运行,需设计有效的冷却 系统,如风冷或水冷。

一文读懂永磁电机

一文读懂永磁电机

⼀⽂读懂永磁电机永磁电机------Permanent magnet motor电机是以磁场为媒介进⾏电能与机械能相互转换的电⼒机械,⽽永磁电机采⽤永磁体产⽣电机的磁场,⽆需励磁线圈也⽆需励磁电流。

permanent magnet motor———即⽤永磁体建⽴磁场的⼀种电机。

永磁电机的发展跟永磁材料的发展密切相关,下⾯我们先来了解⼀下永磁体。

什么是永磁体永磁体也叫硬磁体,能够长期保持其磁性的磁体称永久磁体。

如天然的磁⽯(磁铁矿)和⼈造磁体(铝镍钴合⾦)等。

磁体中除永久磁体外,也有需通电才有磁性的电磁体。

永磁体不易失磁,也不易被磁化。

钢或其他材料能成为永磁体,就是因为它们经过恰当地处理、加⼯后,内部存在的不均匀性处于最佳状态,矫顽⼒最⼤。

铁的晶体结构、内应⼒等不均匀性很⼩,矫顽⼒⾃然很⼩,使它磁化或去磁都不需要很强的磁场,因此,它就不能变成永磁体。

通常把磁化和去磁都很容易的材料,称为“软”磁性材料。

“软”磁性材料不能作永磁体,铁就属于这种材料。

永磁材料及其分类permanent magnetic material——永磁材料,具有宽磁滞回线、⾼矫顽⼒、⾼剩磁,⼀经磁化即能保持恒定磁性的材料,⼜称硬磁材料。

从永磁材料的发展历史来看,⼗九世纪末使⽤的碳钢,磁能积(BH)max(衡量永磁体储存磁能密度的物理量)不⾜1MGOe(兆⾼奥),⽽国外批量⽣产的Nd-Fe-B永磁材料,磁能积已达50MGOe以上。

这⼀个世纪以来,材料的剩磁Br提⾼甚⼩,能积的提⾼要归功于矫顽⼒Hc的提⾼。

⽽矫顽⼒的提⾼,主要得益于对其本质的认识和⾼磁晶各向异性化合物的发现,以及制备技术的进步。

常⽤的永磁材料分为合⾦永磁材料和铁氧体永磁材料。

中国近年发展不错的稀⼟永磁体就属于合⾦永磁材料制造。

这些材料按⽣产⼯艺不同分为:烧结铁氧体、粘结铁氧体、注塑铁氧体,这三种⼯艺依据磁晶的取向不同⼜各分为等⽅性和异⽅性磁体。

铝镍钴材料在 20 世纪 80 年代以前使⽤较多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对应非凸极电机,则Xd=Xq,图3b)为对应非凸极 电机的等效电路。
图3(c)对应凸极电机,稳态等效电路分为d、q两个 电路。
在低饱和的情况下,Xd和Xq是相互独立的,分别对 应d轴和q轴的磁阻 在高度饱和的情况下,d轴和q轴分量是交叉耦合的。 所以 Xd = f(Id,Iq) , Xq = f(Id,Iq).
DC Winding:
DC绕组的结构是要获得一个梯形反电势波形,与 梯形的电流波形(120导通)相互作用产生一个平 滑的转矩。 这需要一个整距集中绕组。 图6 显示一个12槽4极对称三相绕组中的一相的分 布
a)2/3短距 b)集中整距极距=1Biblioteka /4=3梯形120 导通三相
电流
短距绕组 中的三相
反电势
磁铁不能工作在非线性区域,如图9,要有足够的 设计裕度使磁铁在过载条件下也不会失磁。运行 点可以通过计算磁导系数(PC)和电负载效应来 获得,对铁氧体永磁电机PC至少要8,对稀土永磁, 可以低些。
三条斜线对 应三条空载 磁路磁阻
磁导系数PC-又称退磁系数。在退磁曲线上磁感应 强度Bd与磁场强度Hd的比值,即PC=Bd/Hd,PC 越大,磁体工作点越高,越不容易被退磁。
如果转速超过基本同步速,则需要弱磁,这就需要内 置式永磁转子(IPM)。简单的表面式永磁转子的弱 磁能力受到限制。
这发生在电流向量超前于q轴时,由图3 可见,将有一 个分量位于d轴上,它具有三个作用:
1. 有一个负的XdId向量在q轴上。它减少了电动机磁通, 减少了高速时的铁耗
2. 它减少了要求逆变器输出的电压 3. 它引进了一个磁阻转矩
一般的,三相绕组产生的电流向量应该被放在转子q轴 上,除非要用到弱磁。这是用在高于基本转速时,当 逆变器电压已经达到最大值,而要求的电流最大值不 能达到时。 逆变器开关时间是超前的,可以达到约15~20电角
图1是一台小型4 极DC控制电机转 矩转速曲线。可 以看出转矩范围 由1500r/min扩 展到约 2500~3000r/mi n
6000r/min,负载电流为35.4A时
可以看出转矩峰值在超前30~50之间
效率图
可由此找出 最大效率点 作为运行点
短距绕组的 电磁转矩
整距绕组中 的反电势
整距绕组的 电磁转矩
A 相 120˚ 导 通
B相120˚导通
A 相 120˚ 导 通
Magnet Selection and PC
磁铁的类型对电机的性能和成本影响很大
内禀退磁 曲线
对于永磁材料磁滞回线的第二象限部分可用于描述其特性,称为退磁曲线。 Br--H=0时的剩余磁感应强度, Hc--B=0时的磁感应矫顽力 Hcj--Bi=0时的Hcj内秉矫顽力
回复磁导率REC
REC
tan
B H
,当永磁体处于外加磁场时,工作点为A,当去掉外加磁场时,工作 点不是沿着退磁曲线变化,而是到了一个新位置A’如果循环的改变 外磁场,得到一个局部磁滞回线,由于其非常狭窄,故可用一条直 线代替,称为回复线其斜率称为回复磁导率。
磁能积-Bd*Hd, Bd*Hd越大,磁体蕴 含的磁能量越大。
如图是一个18槽8极内置式永磁电机,其一相的 绕组见图a),转子安排见图b),这是一个分数 槽电机,使反电势波形非常接近正弦。使转矩平 滑
a)三相正弦绕组中一相的分布
q Z 18 3 0.75 2mp 8 * 3 4
b) IPM电机的一半横截面
4 360 80 18
c)三相受控的正弦电流在转子q轴上 d)三相反电势 e)电磁转矩
Winding Arrangement
AC绕组的设计是为了获得正弦的开路反电势波形, DC绕组是要获得梯形波
AC Windings: 分数槽带绕组常用于AC电机中,斜一个定子槽
分数槽带绕组常用于AC电机中,斜一个定子槽 斜槽、分数槽:减少齿谐波转矩 分数槽的好处: • 平均每对极下的槽数大为减少以较少数目的大槽代替数目较 多的小槽可减少槽绝缘占据的空间,有利于槽满率的提高 • 增加绕组的短(长)距和分布效应,改善反电动势波形的正 弦性 • 分数槽绕组电机有可能设计为线圈节距y=1(集中绕组)可 以缩短线圈周长和绕a组端部伸出长度,减少用铜量,各个线 圈端部没有重叠,不必设相间绝缘。 • 分数槽集中绕组有利于用绕线机进行机械绕线提高工效 • 槽满率的提高,使线圈周长缩短,铜耗随之减低进而提高效 率和减低温升 • 减低齿槽转矩和转矩波动
因此
• 交流(AC)电机需要由永磁转子产生正弦的反电动 势 直流电机(DC)需要梯形的反电动势波形
Te
Pe
eAiA eBiB
eCiC
1.5 EI
E、I一相反电动 势和电流的幅值
在一相绕组正向导通120°范围内, 输入线电流I为恒值其一相反电动 势为恒值转子角速度为时一相绕 组产生的电磁转矩Tep,总电磁转 矩T为
对凸极转子,⑴Xq > Xd,其优点是峰值转矩从q轴移一个
距d轴约100~120电角的角度,这意味着当电流在q轴上时,若出 现一个瞬时过载,将会有一个额外的转矩将电机拉回正确的触发 角,防止磁极滑动。
⑵凸极同时还提供了一个额外的磁阻转矩。
串联充 磁
并联充 磁
图3(a)
两种类型转子的稳态向量图见图3(a) v vd jv q je pm jX d id X qiq Ris 电动机惯例
Rotor Structure
AC or DC Control?
• 无刷永磁电机分为两种类型:AC、DC 两种类型永磁电机的设计有着不同的要求,与其反电动
势波形及转子位置检测有关
AC:相电流是正弦的,逆变器每个桥臂是180导通, 使用位置编码器,脉宽调制
DC:电流波形是梯形的,120导通,用三个霍尔探测 器检测开关位置。
PC可以通过减少气隙、是磁通路径缩短及宽 的齿和轭来改善,低磁密也可以改善PC
磁铁材料的温度特性也要考虑进去
永久 失磁
铁氧体永磁体设计小结
1. 铁氧体磁铁需要良好的磁路和低的磁阻, 否则,负载线将不能足够陡,导致运行 点落在非线性区域
2. 当x轴线由0定标负载线的斜率等于负的 PC,
3. PC=(磁铁厚度×气隙面积)/(气隙长度 ×磁铁面积)。PC值可被用于设定磁铁 厚度
4.对表面磁铁 气隙面积磁铁面积 5. 磁铁厚度需设计得适当大于气隙长度 6. 所需磁铁材料较多
稀土永磁讨论小结
1. PC不需要这么高,需要的材料较少,同样PC可 用于确定磁铁厚度
2. 它具有高能量,磁化较困难 3. 需预激磁 4. 在温度压力下可能会退磁
现代电机设计技术通常用详细的分析算法及电磁有 限元算法来分析

Choice of Rotors
转子的两种最基本的拓扑 • 有一点突出的表面磁铁,常用于DC电动机中 • 嵌入式磁铁,有显著的凸极,主要用于AC电机
图2 表面和内置的永磁四极电机 红、蓝色是相反极化的磁铁,灰色是叠片式铁心 a)非凸极的表面磁铁转子 b)凸极内置式磁铁 转子(IPM)
对表面磁铁非凸极转子,Xd=Xq,如图2(a)
内秉矫顽力Hcj和Hc的区别: Hc是处于技术饱和磁化后的磁体被反向充磁时,使磁感应强度B降为0 所需的反向磁场强度的值,但此时磁体的磁化强度并不为0,只是所 加的反向磁场强度与磁体的磁化强度相互抵消,此时若撤销外磁场, 磁体仍具有一定的磁性。 Hcj:若外加反向磁场>Hcj,磁铁的磁性将会基本消除。Hcj是衡量 磁体抗退磁能力的一个非常重要的一个物理量,是表征永磁材料抵抗 外部反向磁场以保持其原始磁化状态的一个主要指标。
永磁电机概述
INITIAL ELECTROMAGNETIC
DESIGN CHOICES
• A. Radial or Axial Flux? • B. Ratings, Motor Classes, and TRV
(torque-per-unit-rotor Volume) • C. AC or DC Control? • D. Choice of Rotors • E. Pole-Number Selection • F. Noise, Vibration, Cogging Torque, and Torque Ripple • G. Winding Arrangement • H. Magnet Selection and PC (permeance coefficient) • I. Steel Selection and Iron Loss • J. Insulation Systems, Slot Fill, and Mechanical Aspects of
磁极表面的槽用于控制Xq的大小,它还可以控 制交叉饱和,使电机运行更易于控制,更稳定。
Pole-Number Selection
DC电机趋向于选择低极数,(2,4,6等)ac电机趋 向于选择高极数(8,12,16等)高的极数使分数槽 绕组成为可能,极对数还是电机转速的函数。
下列几点是要注意的: 1)电机磁通在高频率下是不能改变的,否则将造成铁 耗过高。在更高转速下可以用弱磁方法以限制铁耗 2)磁通频率=转子旋转频率极对数 3)对一般的叠片铁心,不能超出150~200Hz。 4)两极永磁电机的制造较为困难,绕组端部长,导致 损耗的增加,同时定子铁心轭部宽,导致电机直径增加。
在图2-3的坐标下,永磁材料中的磁场满足: B=0H+0M 0-真空磁导率,M-单位体积内磁矩的矢量和,称为磁化 强度。其中0M称为内禀磁化强度,用Bi表示, Bi=0M=B+0H ,Bi=f(H)称为内禀退磁曲线。
典型的不同磁铁在25°C时的剩磁Br和回复磁导率REC 见表Ⅲ
Alnico- 铝镍钴合金,Ferrite-铁氧体, Sintered samarium cobalt-烧结的钐钴, Sintered Neodymium iron boron-烧结的钕铁硼
相关文档
最新文档