第9章 纯滞后补偿控制系统
9 纯滞后过程控制

Smith预估补偿原理
D( s)
R( s )
+ - +
Gc (s)
+
k p g p ( s)
Y '( s )
e
p s
Y ( s)
D( s)
R( s )
+
-
Gc (s)
Y '( s )
U ( s) + +
k p g p (s)e
Gs (s)
p s
Y ( s) 关键是内部
模型! + +
Smith预估补偿原理
D( s)
R( s )
+
-
Gc (s)
Y '( s )
U ( s) + +
k p g p (s)e
Gs (s)
p s
Y ( s)
+ +
p s Gc ( s) k g ( s ) e G ( s ) k p g p ( s )Gc ( s ) p p s Y '( s) p s R( s) 1 k p g p ( s)e Gs ( s) Gc ( s) 1 k p g p ( s)Gc ( s)
k p g p (s) k p g p (s)e
p s
Gs (s)
Gs ( s) k p g p ( s) 1 e
p s
Smith预估补偿器
p s Gs ( s) k p g p ( s) 1 e
D( s)
R( s )
+
-
Gc (s)
与 D( s)
并接一个补偿环节,用来补偿对象中的纯滞后部分,其 传递函数为
纯滞后补偿控制的若干改进方案

Ym(s)
上图中,W C 1(s)W ,C 2(s)分别为设定值跟踪控制器和扰动控制器. 由图可得Y (s)对 R(s)和D(s)的传递函数分别为:
W R ( s ) Y R ( ( s s ) ) 1 W C 1 W ( s C ) 1 W ( s O ) ( W s ) m e ( s ) s 1 1 W W C C 2 2 ( ( s s ) ) W W m O ( ( s s ) ) e e m s s ( 1 )
u 2 l s 0 s i2 ( m s U ) d r ( 1 / K m 1 / K O )
模型准确时KmKO, 则 u2 d, 扰动控制器的输出可
视为对扰动的估计, 且任何模型误差在稳态时均可看为 其值为 r( 1 /K m 1 /K O )的附加扰动, 并由与模型无关的 扰动控制回路补偿, 从而使整个系统对过程模型不敏感.
不管1 对 象W 的K ( s 纯) W 滞O 后( s 多) e 大 s , 若1 , W 1 K (s W )K ( s ) 1 W m ( ( 9 s ) ) , 就1 有( :1 ) 0
从而闭环特征方程为: 1 W C (s ) W m (s ) 0 , 系统的稳定性 与纯滞后无关, 若W m (s) W O (s), 则式(6)与完全补偿时 的史密斯预估补偿控制方案的控制效果相同, 但本方案对 于对象参数的变化不敏感, 且不需纯滞后环节, 实施方便,
状态观测器的方框图见下,
令
~
x(t)x(t)x(t),
则有:
•
•
u
•
x Ax Bu
y
~
•
x(t) x(t) x(t)
y Cx
M
~
~
软件设计-Smith纯滞后补偿PID控制算法

一、题目题目5:以中等纯度的精馏塔为研究对象,考虑到不等分子溢流的影响和非理想的汽液平衡,可以得到塔顶产品轻组分含量Y 与回流量L 之间的传递函数为:s e s s s s L s Y 12)15.17)(13.28()19.0(4.3)()(-⋅+++= 控制要求:1、采用Smith 纯滞后补偿PID 控制算法将塔顶轻组分含量控制在0.99。
2、采用继电法整定PID 参数。
3、整定效果验证:当被控过程参数时变时,如滞后时间由12→24,开环增益由3.4→6时,讨论PID 控制的响应速度及鲁棒性问题,考察当系统参数发生改变时,上述PID 参数是否选取合适。
二、Smith 纯滞后补偿控制原理针对纯滞后系统闭环特征方程含的影响系统控制品质的纯滞后问题,1957年Smith 提出了一种预估补偿控制方案,即在PID 反馈控制基础上,引入一个预估补偿环节,使闭环特征方程不含有纯滞后项,以提高控制质量。
如果能把图2-1中假想的变量B 测量出来,那么就可以按照图2-1所示的那样,把B 点信号反馈到控制器,这样就把纯滞后环节移到控制回路外边。
图2-1 反馈回路的理想结构示意图由图2-1可以得出闭环传递函数为G (s )=D (s )G P (s)e −τs1+D(s)G P (s)由上式可见,由于反馈信号B 没有延迟,闭环特征方程中不含有纯滞后项,所以系统的响应将会大大地改善。
但是由于B 点信号是一个不可测(假想)的信号,所以这种方案是无法实现的。
为了实现上面的方案,假设构造了一个过程的模型,并按图2-2所示那样把控制量U(S)加到该模型上去。
在图 2-2中,如果模型是精确的,那么虽然假想的过程变量B 是得不到的,但能够得到模型中的B m 。
如果不存在建模误差和负荷扰动,那么B m 就会等于B , E m (s )= Y (s )−Y m (s )=0 ,可将B m 点信号作为反馈信号。
但当有建模误差和负荷扰动时,则E m (s )= Y (s )−Y m (s )≠0 ,会降低过程的控制品质。
纯滞后控制技术教学文案

N=τ/T (τ-纯滞后时间,T -采样周期)
每采样一次,把 m(k) 记入 0 单元,同时把 0 单元原来存放 数据移到 1 单元,1 单元原来存放数据移到2单元……以此类 推。从 N 单元输出的信号,就是滞后N 个采样周期的 m(k- N) 信号。
r(t) + -
e1(t) S
e1(k) + -
y (k)
e2(k)
u(k) S
PID
1 e s s
Gp (s)(1 e s )
1 e Ts S
y(t)
Gp (s)e s
5.3.2 达林算法
在工业过程(如热工、化工)控制中,由于物料或能量的传输 延迟,许多被控制对象具有纯滞后性质。对象的这种纯滞后 性质常引起系统产生超调或者振荡。
y ( k ) a y ( k 1 ) b [ u ( k 1 ) u ( k N 1 ) ]
(3)计算偏差 e2(k) e2(k)e1(k)y(k)
(4)计算控制器的输出 u(k) 当控制器采用 PID 控制算法时,则
其中
u (k) u (k 1 ) u (k)
u(k)K P [e2(k)e2(k 1 )]K Ie2(k) K D [e2(k)2e2(k1 )e2(k2)]
纯滞后控制技术
史密斯预估控制原理
r(t) +
e(t)
-
u(t)
y(t)
D(s)
Gp (s)e s
图5.3.1 带纯滞后环节的控制系统
D(s) 表示调节器(控制器)的传递函数; Gp(s) e-τs 表示被控对象的传递函数; Gp(s) 为被控对象中不包含纯滞后部分的传递函数; e -τs 为被控对象纯滞后部分的传递函数。
纯滞后控制实验报告

一、实验目的1. 理解纯滞后控制系统的概念及其在工业控制系统中的应用。
2. 掌握大林算法在纯滞后控制系统中的应用原理。
3. 通过实验验证大林算法在纯滞后控制系统中的控制效果。
二、实验原理1. 纯滞后控制系统:纯滞后控制系统是指被控对象具有纯滞后特性,即输入信号到输出信号的传递过程中存在一定的时间延迟。
这种时间延迟会使得控制作用不及时,从而影响系统的稳定性和动态性能。
2. 大林算法:大林算法是一种针对纯滞后控制系统的控制策略,其基本思想是在设计闭环控制系统时,采用一阶惯性环节代替最少拍多项式,并在闭环控制系统中引入与被控对象相同的纯滞后环节,以补偿系统的滞后特性。
三、实验设备1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 设计实验模型:根据实验要求,设计一个具有纯滞后特性的被控对象模型,并确定其参数。
2. 构建大林算法控制器:根据大林算法的原理,设计一个大林算法控制器,并确定其参数。
3. 进行仿真实验:在MATLAB软件中搭建实验平台,将设计的被控对象模型和大林算法控制器进行联接,进行仿真实验。
4. 分析实验结果:观察实验过程中系统的动态性能,分析大林算法在纯滞后控制系统中的应用效果。
五、实验结果与分析1. 实验结果(1)无控制策略:在无控制策略的情况下,被控对象的输出信号存在较大的超调和振荡,系统稳定性较差。
(2)大林算法控制:在采用大林算法控制的情况下,被控对象的输出信号超调量明显减小,振荡幅度减小,系统稳定性得到提高。
2. 分析(1)无控制策略:由于被控对象具有纯滞后特性,系统动态性能较差,导致输出信号存在较大超调和振荡。
(2)大林算法控制:大林算法通过引入与被控对象相同的纯滞后环节,有效补偿了系统的滞后特性,使得控制作用更加及时,从而提高了系统的动态性能和稳定性。
六、实验结论1. 纯滞后控制系统在实际工业生产中普遍存在,对系统的稳定性、动态性能和抗干扰能力具有较大影响。
Smith纯滞后补偿PID

软件设计报告——Smith纯滞后补偿PID 控制塔顶轻组分含量、继电法整定PID参数目录目录 (2)一、题目 (3)二、原理 (4)1、Smith纯滞后补偿控制原理 (4)2、具有纯滞后补偿的数字控制器 (5)3、数字Smith预估控制 (5)4、继电法整定PID参数 (6)5、继电法整定PID参数的计算 (8)三、程序设计 (8)1、程序设计流程图 (8)2、程序设计详单 (10)四、结果展示与分析 (13)1、系统控制效果 (13)2、系统参数变化的控制结果 (13)五、体会 (17)六、参考文献 (17)一、题目题目5:以中等纯度的精馏塔为研究对象,考虑到不等分子溢流的影响和非理想的汽液相平衡,可以得到塔顶产品轻组分含量Y及回流量L之间的传递函数为:控制要求:1、采用Smith纯滞后补偿PID控制算法将塔顶轻组分含量控制在0.99。
2、采用继电法整定PID参数。
3、整定效果验证:当被控过程参数时变时,如滞后时间有12→24,开环增益由3.4→6时,讨论PID控制的响应速度及鲁棒性问题,考察当系统参数发生变化时,上述PID参数是否选取合适。
二、原理1、Smith 纯滞后补偿控制原理在工业过程控制中,由于物料或能量的传输延迟,许多被控对象具有纯滞后。
由于纯滞后的存在,被控量不能及时反映系统所受到的干扰影响,即使测量信号已到达控制器,执行机构接受控制信号后迅速作用于对象,也需要经过纯滞后时间τ以后才能影响到被控量,使之发生变化。
在这样一个控制过程中,必然会产生较明显的超调或震荡以及较长的控制时间,使Smith 就这个问题提出了一种纯滞后补偿控制器,即Smith 补偿器。
其基本思想是按照过程的动态特性建立一个模型加入到反馈控制系统中,使被延迟了τ的被控量提前反映到控制器,让控制器提前动作,从而可明显地减少超调量,加快控制过程。
下图1为Smith 预估控制系统的示意框图。
如果模型是精确的,即m m s G s G ττ==),()(0,且不存在负荷扰动(D=0),则m m m m X X Y Y E Y Y ==-==,0,,则可以用m X 代替X 作为第一图1、Smith 预估控制系统等效图条反馈回路,实现将纯滞后环节移到控制回路的外边。
纯滞后控制系统讲解

过程控制实验报告实验名称:纯滞后控制系统班级:姓名:学号:实验五 纯滞后系统一、实验目的1) 通过本实验,掌握纯滞后系统的基本概念和对系统性能的影响。
2) 了解纯滞后系统的常规控制方法和史密斯补偿控制方法。
二、 实验原理在工业生产中,被控对象除了容积延迟外,通常具有不同程度的纯延迟。
这类控制过程的特点是:当控制作用产生后,在滞后时间范围内,被控参数完全没有响应,使得系统不能及时随被控制量进行调整以克服系统所受的扰动。
因此,这样的过程必然会产生较明显的超调量和需要较长的调节时间。
所以,含有纯延迟的过程被公认为是较难控制的过程,其难控制程度随着纯滞后时间与整个过程动态时间参数的比例增加而增加。
一般认为,纯滞后时间与过程的时间常数之比大于0.3时,该过程是大滞后过程。
随此比值增加时,过程的相位滞后增加而使超调增大,在实际的生产过程中甚至会因为严重超调而出现聚爆、结焦等事故。
此外,大滞后会降低整个控制系统的稳定性。
因此大滞后过程的控制一直备受关注。
前馈控制系统主要特点如下:1) 在纯滞后系统控制中,为了充分发挥PID 的作用,改善滞后问题,主要采用常规PID 的变形形式:微分先行控制和中间微分控制。
微分先行控制和中间微分控制都是为了充分发挥微分作用提出的。
微分的作用是导前,根据变化规律提前求出其变化率,相当于提取信息的变化趋势,所以对滞后系统,充分利用微分作用,可以提前预知变化情况,进行有效的“提前控制”。
微分先行和中间微分反馈方法都能有效地克服超调现象,缩短调节时间,而且不需特殊设备。
因此,这两种控制形式都具有一定的实际应用价值。
但是这两种控制方式都仍有较大超调且响应速度很慢,不适于应用在控制精度要求很高的场合。
2) 史密斯补偿控制的基本思路是:在控制系统中某处采取措施(如增加环节,或增加控制支路等),使改变后系统的控制通道以及系统传递函数的分母不含有纯滞后环节,从而改善控制系统的控制性能及稳定性等。
自动控制原理滞后系统知识点总结

自动控制原理滞后系统知识点总结自动控制原理中,滞后系统是一种常见的控制系统,也是控制理论中的重要知识点之一。
本文将对滞后系统进行全面的知识点总结,包括定义、传递函数、特性、应用等方面,帮助读者更好地理解和应用滞后系统。
1. 滞后系统的定义滞后系统是一种控制系统,其输出信号滞后于输入信号。
它通过延迟输出信号,平衡输入和输出之间的关系。
滞后系统的主要作用是改变输入信号的相位,使得输出信号能够更好地适应被控对象的特性。
2. 滞后系统的传递函数滞后系统的传递函数可以通过数学模型来表示。
一般而言,滞后系统的传递函数可以用一阶滞后环节来描述,其传递函数表达式为:G(s) = K/(Ts+1),其中K表示增益,T表示时间常数。
3. 滞后系统的特性滞后系统具有以下几个主要特性:3.1 相位滞后:滞后系统通过改变输入信号的相位来实现控制效果,使得输出信号能够滞后于输入信号。
3.2 幅频特性:滞后系统对于不同频率的输入信号具有不同的幅度衰减特性,可以通过调整滞后系统的参数来改变幅频特性。
3.3 稳定性:滞后系统对于特定的增益和时间常数可以实现系统的稳定性,保证系统的输出信号不会出现不稳定现象。
4. 滞后系统的应用滞后系统在自动控制中有着广泛的应用,主要体现在以下几个方面:4.1 相位校正:滞后系统通过改变输入信号的相位,可以实现对系统输出信号的相位校正,提高系统的稳定性和响应速度。
4.2 频率补偿:滞后系统可以通过调整时间常数来实现对输入信号的幅度衰减特性,提高系统对不同频率信号的补偿能力。
4.3 参数调节:滞后系统的参数可以根据被控对象的特性进行调节,达到最佳的控制效果,提高系统的性能。
综上所述,滞后系统是自动控制原理中的重要知识点,它通过改变输入信号的相位来实现对系统的控制。
滞后系统具有相位滞后、幅频特性和稳定性等特点,并广泛应用于相位校正、频率补偿和参数调节等方面。
深入理解和掌握滞后系统的知识,对于掌握自动控制原理和应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y S
X S
GCS
GP S 1 e s
Y S
GP S e s
X S
GCS
GP S 1 e s
Y S
GP S e s
Ys X s
1 1
GC s GC sGP s1 e s
GC s 1 GCsGP s1 e
GP se s s GP se
s
GCsGP ses
1 GCsGP s1 es GCsGP ses
其特点是:需要精确知道受控过程数学模型,否 则补偿效果不好。 9.3 史密斯预估补偿方法的实现 模拟仪表实现很少用,自学书上内容。
计算机实现,将补偿环节离散化,用计算机程序 实现,在计算机控制技术中继续学习。
作业4.7
选气开阀。
FC
IO IS IL IF
F
Kv > 0, KOF > 0 , KOL > 0 , KmL > 0,
LT L
KFC > 0 , FC反作用。
验证:
IO
LTI L +
IF
IS
L ,IO ,MV ,F ,
L ,
FC
GV
GOF F GOL L
F ,MV ,F ,
IO
T
二. 纯滞后补偿原理
纯滞后使控制质量变坏的原因是:控制效果经过
延时后才传递到控制器测量端,控制器没能立即
得到控制效果信息,造成调节误动作。
X S
纯滞后过程的传递函数
GC S
Y S
GP S e s
Gs GP se s
克服办法:消除反馈信号的纯滞后。
串联方法需要补偿环节有超前作用,物理上无法
GCsGP ses
1 GCsGP s GCsGP ses GCsGP ses
GCsGP ses 1 GCsGPs
Y s GCsGP ses GCsGP s es X s 1 GCsGPs 1 GCsGPs
X S GCS GPS
Y S
e s
补偿后,反馈信号的纯滞后被消除,控制器可以 及时得到控制效果信息,及时地修正控制动作。 这种补偿方法叫史密斯预估补偿方法。
实现。
X S
GC S
G s GP S e s
YS
G sGPse s GPs
G s e s
并联方法
GPses G s GPs
X S
GC S
GP S e s G S
Y S
G s GPs1 es
9.2 纯滞后补偿的效果
X S
GC S
GP S e s
GP S 1 e s
FT
IS LT
当 IO等于设定值时,流量和液位稳定到新的值上, 达到均匀目的。(设计思想:以液位为主)
第9章 纯滞后补偿控制系统
9.1 纯滞后补偿原理
一. 纯滞后过程
⒈ 传输带传输过程v挡板开度变化,经过τ后,
物料才进入设备,引起工艺 参数变化。
l
l
Gs Kes
v
Ts 1
一般 0.3 的过程称为大滞后过程。