牛顿迭代法
研究生数值分析(5)牛顿(Newton)迭代法

z
0.612547 0.641384 0.641186
6 求方程 m重根的Newton法 设 s 是方程 f(x)=0 的 m 重根(m≥2), f(x)
在 s 的某邻域内有m阶连续导数 ,这时
f (s) f (s) f (m1) (s) 0, f (m) (s) 0
由Taylor公式,得
设 f '(x) 0 ,上式解为
x
xk
f (xk ) f ' (xk )
于是方程 f(x)=0的新的近似根xk+1,可由牛顿
迭代公式
xk 1
xk
f (xk ) f ' (xk )
k 0,1, 2,
求出
牛顿迭代公式具有明显的几何意义。 方程 y f (xk ) f '(xk )(x xk ) 是曲线 y=f(x)在点 (xk , f (xk )) 处的切线方程,迭代公式就是切线与x轴 交点的横坐标。因此,牛顿迭代法又称为切线法。
这表明牛顿迭代法用于求单根时至少是二阶收敛的。
(2)若 x* 是方程 f (x) 0 的 m(m 2) 重根,
即
f (x) (x x*)m q(x)
(q(x*) 0)
此时有
g ' (x*) lim g ' (x) lim
x x*
x x*
f (x) f '' (x) [ f ' (x)]2
k
xk
k
xk
4 0.635498 8 0.640964
5 0.643719 9 0.641285
6 0.640061 10 0.641142
牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。
考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。
函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。
牛顿法利用极小点的必要条件:这就是牛顿迭代法。
迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。
因此使用牛顿法是有问题的。
如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。
这种情况可以通过正则化Hessian矩阵来避免。
常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。
正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。
牛顿迭代法及其应用

牛顿迭代法及其应用牛顿迭代法是一种求解函数零点的迭代方法,具有快速收敛、精度高等优点,被广泛应用于计算机、数学、物理等领域。
本文将从理论和实际应用两方面介绍牛顿迭代法,并对其应用进行探讨。
一、理论基础牛顿迭代法是通过一点处的切线来逼近函数零点的方法。
设$f(x)$在$x_0$点有一个零点,且其导数$f'(x_0)$存在且不为零,那么该零点可以通过一点$(x_0,f(x_0))$处的切线与$x$轴的交点来逐步逼近。
假设切线的方程为$y=f'(x_0)(x-x_0)+f(x_0)$,则其中$x$轴上的交点为$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$,这是零点的一个更好的近似值。
用$x_1$代替$x_0$,再利用同样的方法得到$x_2$,不断重复这个过程,即可逐步逼近零点。
这个过程可以用下面的公式表示:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$这就是牛顿迭代法的基本公式。
从初始值$x_0$开始迭代,不断利用公式进行逼近,直到找到满足$f(x_n)=0$的解。
二、实际应用牛顿迭代法在实际应用中广泛存在,比如在计算机图形学中,通过牛顿迭代法可以精确计算出圆的周长、面积等参数,也可以实现快速的路径追踪和光线追踪。
在金融领域中,牛顿迭代法可以用来计算隐含波动率,即在期权定价模型中,寻找满足期权定价公式的波动率。
由于这个过程中往往要用到反函数,所以牛顿迭代法可以快速找到隐含波动率。
另外,在机器学习、神经网络中,多次用到牛顿迭代法进行梯度下降,智能化运用牛顿迭代法可以提高计算效率,降低误差。
三、应用探讨牛顿迭代法的应用范围较广,但在实际应用中也存在一些问题。
如何避免迭代过程中出现抖动、越界、阻尼等现象,可以通过设置收敛条件、调整步长等方式进行优化。
此外,当函数的导数存在零点或迭代公式不存在时,牛顿迭代法也会失效。
因此,在选择牛顿迭代法时,需要了解函数特性,根据情况选择适合的迭代方法。
牛顿迭代法原理

牛顿迭代法原理
牛顿迭代法是一种常用的数值解法,用于求解方程f(x)=0的根。
该方法的原理是利用牛顿近似定理,通过迭代不断逼近方程的根。
具体来说,牛顿迭代法的步骤如下:
1、选取一个初始点x0。
2、计算f(x0)和f'(x0)。
3、计算x1 = x0 - f(x0)/f'(x0)。
4、重复步骤2和3,不断迭代,直到满足精度要求为止。
牛顿迭代法具有收敛速度快、计算量少的优点,常用于求解非线性方程的根。
但是,牛顿迭代法也有一些缺点,例如需要计算函数的导数,对于复杂的函数可能较难求解;此外,该方法也存在收敛不保证的情况。
希望这些信息对您有帮助!。
牛顿迭代法:介绍、原理与运用

⽜顿迭代法:介绍、原理与运⽤⽜顿迭代法:介绍、原理与运⽤介绍⽜顿迭代法是⼀个可以求⼀个任意函数的零点的⼯具。
它⽐⼆分法快得多。
公式是:x=a-f(a)/f'(a)。
其中a是猜测值,x是新的猜测值。
不断迭代,f(x)就越来越接近0。
原理我们将f(x)做泰勒⼀阶展开:f(x)∼f(a)+(x-a)f'(a)。
令f(x)=0∴f(a)+(x-a)f'(a)=0∴f(a)+xf'(a)-af'(a)=0∴xf'(a)=af'(a)-f(a)∴x=a-f(a)/f'(a)实例:⽜顿迭代法求√2的近似值∵x = √2∴x2 = 2∴x2 -2 = 0令f(x)=⽅程左边,则f(x)∼0↔x∼√2。
f'(x) = 2x。
于是可以得到迭代公式:x=a-f(a)/f'(a)=a-(a2-2)/(2a)=a-a/2+1/a=a/2+1/a代码如下(要求误差⼩于1e-6):#include <stdio.h>#include <math.h>int main(int argc, char const *argv[]){double a = 2.0;double expect_error = 0.000001;double x;double actual_error;unsigned iteration_count = 0;do {if (a == 0.0) a = 0.1; /* 避免0做分母 */x = a/2 + 1/a;actual_error = fabs(2 - x*x);a = x;++iteration_count;printf("%d\t%.9f\t%.9f\n", iteration_count, a, actual_error);} while (actual_error >= expect_error);return 0;}输出:1 1.500000000 0.2500000002 1.416666667 0.0069444443 1.414215686 0.0000060074 1.414213562 0.000000000迭代了4次。
迭代法-牛顿迭代法

迭代法-⽜顿迭代法迭代法在程序设计中也是⼀种常见的递推⽅法,即:给定⼀个原始值,按照某个规则计算⼀个新的值,然后将这个计算出的新值作为新的变量值带⼊规则中进⾏下⼀步计算,在满⾜某种条件后返回最后的计算结果;⽜顿迭代法是⽤于多项式⽅程求解根的⽅法,在只有笔和纸的年代,这个⽅法给了⼈们⼀个⽆限逼近多项式⽅程真实解的重要思路,⽜顿也太⽜了.....求解f(x)=0的解,⽤⽜顿迭代法步骤如下:1、在y=f(x)这个函数上任取⼀点(x0,f(x0)),在这个点上做曲线y=f(x)的切线L,可以计算出切线L的表达式为y=f(x0)+f~(x0)(x-x0),这⾥f~(x0)表⽰L在点(x0,f(x0))处的斜率2、得出了切线L的表达式,我们就可以计算出L与X轴相交点的值x1=x0-f(x0)/f~(x0),此时x1要⽐x0更接近f(x)曲线与x轴相交点的真实值3、将刚才得出的x1带⼊到f(x)函数中,得到点(x1,f(x1)),再在点(x1,f(x1))出做曲线f(x)的切线,同样会得到新的切线的表达式:y=f(x1)+f~(x1)(x-x1),将得出的切线与X周相交,同样会得到相交点的值x2=x1-f(x1)/f~(x1)4、重复以上计算,会得出⼀个计算规则:,这个是真实值的n+1次近似值。
可以如下图近似表⽰。
根据以上描述,设计⼀个求解X~2-C=0的正根的⽅程,X~2表⽰X的平⽅,先得出迭代公式:;设计代码如下:public static void main(String[] args){System.out.println(calculate(2.0,2.0,0,1e-15));System.out.println(calculate(2.0,1e-15));}public static double calculate(double c,double x,double y,double precision){y=(x+c/x)/2;if(Math.abs(x-y)>precision){x=y;y=(x+c/x)/2;return calculate(c,x,y,precision);}return x;}public static double calculate(double c,double precision){double x=c,y=(x+c/x)/2;while(Math.abs(x-y)>precision){x=y;y=(x+c/x)/2;}return x;}从以上代码可以看出,迭代⽤法是⾸先给定⼀个初始值,然后按照某种规则进⾏计算,将得出的计算结果重新带⼊规则进⾏再次计算,直到满⾜某个条件退出程序。
牛顿法和牛顿迭代法

⽜顿法和⽜顿迭代法⽜顿法,⼤致的思想是⽤泰勒公式的前⼏项来代替原来的函数,然后对函数进⾏求解和优化。
和稍微有些差别。
⽜顿法⽜顿法⽤来迭代的求解⼀个⽅程的解,原理如下:对于⼀个函数f(x),它的泰勒级数展开式是这样的f(x)=f(x0)+f′(x0)(x−x0)+12f″(x0)(x−x0)2+...+1n!f n(x0)(x−x0)n当使⽤⽜顿法来求⼀个⽅程解的时候,它使⽤泰勒级数前两项来代替这个函数,即⽤ϕ(x)代替f(x),其中:ϕ(x)=f(x0)+f′(x0)(x−x0)令ϕ(x)=0,则x=x0−f(x0) f′(x0)。
所以,⽜顿法的迭代公式是x n+1=x n−f(x n) f′(x n)⽜顿法求解n的平⽅根求解n的平⽅根,其实是求⽅程x2−n=0的解利⽤上⾯的公式可以得到:x i+1=x i−x2i−n2x i=(xi+nx i)/2编程的时候核⼼的代码是:x = (x + n/x)/2应⽤于最优化的⽜顿法应⽤于最优化的⽜顿法是以迭代的⽅式来求解⼀个函数的最优解,常⽤的优化⽅法还有梯度下降法。
取泰勒展开式的⼆次项,即⽤ϕ(x)来代替f(x):ϕ(x)=f(x0)+f′(x0)(x−x0)+12f″(x0)(x−x0)2最优点的选择是ϕ′(x)=0的点,对上式求导ϕ′(x)=f′(x0)+f″(x0)(x−x0)令ϕ′(x)=0,则x=x0−f′(x0) f″(x0)所以,最优化的⽜顿迭代公式是x n+1=x n−f′(x n) f″(x n)⾼维下的⽜顿优化⽅法在⾼维下ϕ(x)=f(x0)+∇f(x0)T(x−x0)+12(x−x0)T∇2f(x0)(x−x0)求∇ϕ(x),并令它等于0,则公式变为了∇f(x0)+∇2f(x0)(x−x0)=0即x=x0−∇2f(x0)−1∇f(x0)所以,迭代公式变为x n+1=x n−∇2f(x n)−1∇f(x n)其中:x n+1,x n都是N*1维的⽮量。
牛顿迭代法

一后逐步向某个位置逼近的方法称为迭代法。 迭代法也称辗转法,是一种不断用变量的旧值递 推新值的过程,跟迭代法相对应的就是直接法(或 称为一次解法) ,即一次性解决问题。迭代算法是用 计算机解决问题的一种基本方法。它利用计算机运 算速度快、适合做重复性操作的特点,让计算机对 一组指令(或一定步骤)重复执行,在每次执行这 组指令(或这些步骤)时,都从变量的原值推出他 的一个新值。 利用迭代法解决问题,需要做好以下三个方面的 工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,至少存在一个 可直接或间接的不断由旧值递推出新值的变量, 这个变量就是迭代变量; 二、建立迭代关系式 所谓的迭代关系式,指如何从变量的前一个值递 推出其下一个值得公式(或关系) 。迭代关系式的 建立是解决迭代问题的关键,通常可以使用递推 或倒推的方法来完成。 三、对迭代过程进行控制 在什么时候结束迭代过程?这时编写迭代程序必
欧几里德算法(辗转相除法)
最经典的迭代算法是欧几里德算法,用于计算两 个整数 a,b 的最大公约数。 其计算原理依赖于下面 的定理: 定理:gcd(a,b)=gcd(b,a mod b) 证明:a 可以表示成 a=kb+r,则 r=a mod b. 假设 d 是 a,b 的一个公约数, 则有 a%d==0,b%d==0, 而 r=a-kb,因此 r%d==0,因此 d 是(b,a mod b)的公约 数 同理,假设 d 是(b,a mod b)的公约数,则 b%d==0, r%d==0, 但是 a=kb+r, 因此 d 也是(a,b)的公约数; 因此(a,b)和(b, a mod b)的公约数是一样的, 其最大 公约数也必然相等,得证。
牛顿迭代法
牛顿迭代法是求方程根的重要方法之一,其最大优 点是在方程 f(x)=0 的单根附近具有平方收敛, 而且该 法还可以用来求方程的重根、 复根, 此时线性收敛, 但是可通过一些方法变成超线性收敛。另外该方法 广泛用于计算机编程中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
则 ( x ) 0 ,所以上述格式是平方收敛的。
优点
① ② ① ②
收敛速度快,稳定性好; 精度高。 在重根附近收敛速度会降阶; 每次都要计算函数及其导数值,计算量大。 主要缺陷!!
f ( x * ) 1 其中 K , q (1 5 ) 1.618. * 2 f (x ) 2
)2 0 (a 0) 的根
1 a
)
1 等价于求方程 f ( x ) a 2 0 (a 0) 的正根 解法二: x 1
f ( xk ) xk 1 xk xk f ( x k ) a
2 xk
1 2 xk (3 axk ) k 0,1, 2, 2
证明:牛顿迭代法事实上是一种特殊的不动点迭代
f ( x) f 2 ( x ) f ( x ) f ( x ) ,则 ( x) 1 f ( x ) f 2 ( x ) f ( x*) f ( x*) ( x*) 0 1 收敛 2 f ( x*)
(i)
(ii)
f ( x ) 0
x I;
f ( ) M , I ; 2 f ( )
(iii) d M 1
e k 1 ek
q
则对 x0 , x1 I ,由割线法产生的序列 xk 都收敛于x*,且
lim
k
K
q 1
收敛速度介于牛顿法 和 二分法 之间
xk 之间
x k 1
在单根附近收敛快!
只要 f ( x ) 0 ,则令 k 可得结论。
xk 1 x * f ( k ) 2 ( x * xk ) 2 f ( xk )
牛顿迭代法的改进
重根 Q1: 若 f ( x*) 0 ,牛顿迭代法是否仍收敛?
n f ( x ) ( x x ) q( x ) 且 q( x ) 0 。 设 x* 是 f 的 n 重根,则:
因为牛顿迭代法事实上是一种特殊的不动点迭代,
f ( x) 其中 ( x ) x ,则 f ( x ) 1 f ( x*)2 f ( x*) f ( x*) 1 | ( x*) | 1 1 2 n f ( x*)
2 3 xk
2 f ( x ) 3 x
4、牛顿迭代法的局部收敛性定理 设 x* 为方程 f (x) = 0的根,在包含x*的某个开区间内 f ( x ) 连 续,且 f ( x ) 0,则存在 x* 的邻域 B ( x*) [ x , x ], 使得任取初值 x0 B ( x*),由牛顿迭代法产生的序列 xk 以不 低于二阶的收敛速度收敛于x*,且 xk 1 x * f ( x*) lim 2 k ( x * x ) 2 f ( x*) k
第三节 牛顿迭代法与弦割法
1、牛顿法基本思想 将非线性方程线性化,以线性方程的解逼近非线性方程的解。 2. 牛顿迭代法的原理 将非线性方程线性化,如何实现?? 取 x0 x*,将 f (x) 在 x0 处做一阶Taylor展开:
f ( ) f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2, 在 x0 和 x 之间 2! 取 x x* ,可将 (x* x0)2 看成高阶小量,则有:
对 ( x) 构造出相应的牛顿迭代格式,迭代函数为 ( x) f ( x) f ( x) ( x) x x ( x) [ f ( x)]2 f ( x) f ( x)
从而可构造出相应的迭代法格式为
f ( xk ) f ( xk ) xk 1 xk [ f ( xk )]2 f ( xk ) f ( xk )
方程
*
标即为 xk 1 。 y
( x0 , f ( x0 ))
x*
x2 x1
x0
x
例2.5:写出求 a (a 0) 的牛顿迭代格式;写出求
1
a 的牛顿迭代格式,要求公式中既无开方运算,又无除法运算。
2 解: 等价于求方程 f ( x ) x a 0 (a 0) 的正根
(a 0)
其中 ( x ) x
由泰勒展开:
0 f ( x*) f ( x k ) f ( x k )( x * x k ) f ( k ) ( x * xk )2 2! * f ( xk ) f ( k ) 2 在 和 x k x* xk ( x * xk ) f ( xk ) 2! f ( xk )
f ( x ) 2 x
2 f ( xk ) xk a 1 a xk 1 xk xk ( xk ) k 0,1, 2, f ( xk ) 2 xk 2 xk
等价于求方程 f ( x ) ( x 解法一:
1
a 1 2 ( xk ) f ( xk ) a f ( x ) 2( x xk 1 xk xk 1 f ( x k ) 2( xk ) a 1 1 ( xk ) k 0,1, 2, 退化为二分法!! 2 a
缺点
注解:牛顿法是局部收敛的,所以要求初值 x0 选在解 x 的附 近,实际计算时,常先用简单迭代法算几步,估计出一个质 量较好的初值!!
*
第五节
弦割法
基本思想:牛顿迭代法每一步要计算 f 和 f ,为了避免计算 导数值,现用 f 的差商近似代替微商 f ,从而得到弦割法。
割线
切线
收敛比牛顿迭代法慢,且对 初值要求同样高。 x2 x1 x0
0 f ( x*) f ( x0 ) f ( x0 )( x * x0 )
f ( x0 ) x* x0 f ( x0 )
y
x1
x1是如下线性方程的根!
y f ( x0 ) f ( x0 )( x x0 )
( x0 , f ( x0 ))
x*
x2 x1
A1: 有局部收敛性,但重数 n 越高,收敛越慢。 Q2: 如何加速重根的收敛? A2: 根的重数已知,可将 f 的重根转化为另一函数的单根。 令 ( x)
f ( x) ,则 f 的重根是 f ( x )
的单根,且
( x x* ) g ( x) ( x) mg ( x) ( x x* ) g ( x)
切线斜率
割线斜率
f ( x1 )
f ( x1 ) f ( x0 ) x1 x0
f ( xk )( xk xk 1 ) xk 1 xk f ( xk ) f ( xk 1 )
需要2个初值 x0 和 x1。
Th2.10 局部收敛性
[ x , x (x)在 I 中有足够阶连续导数, 且 满足
xk 1
x0
x
f ( xk ) xk f ( xk )
k 0,1, 2,
只要 f C1,每一步迭代都有 f ( xk ) 0 xk x 而且 lim ,则 x*就是 f 的根。 k
3. 牛顿迭代法的几何解释:
f ( x) 0的根 x 在几何上是曲线 y f ( x) 与 x 轴的交 * 点的横坐标。若 xk 是根 x 的一个近似,过曲线上横坐标为 xk y f ( x) 的切线,则该切线与 x 轴交点的横坐 的点 P k 作曲线