苏科版七上3.4合并同类项练习(含答案).doc

合集下载

初中数学苏科版七年级上册3.4 合并同类项

初中数学苏科版七年级上册3.4 合并同类项
(2) -9x2y3+5x2y3=_(-_9_+_5_)_x_2_y_3_=_-_4__x_2y_3_.
合并同你类能项把法你则合:并同同类类项项的的系方数法相用加一,句所话得 的概结括果出作来为吗系? 数把,你字的母想和法字和母同的学指们数交不流变..
强调
一变二不变
一变 ------系数要变 二不变-----字母和字母的指数不变
当a=0.35,b=-0.28时,求多项式的值: a3b+2a3-2a2b+3a3b+2a2b-2a3 -4a3b
有一位同学指出:题目中给出的条件 a=0.35,b=-0.28是多余的.
他的说法有没有道理?
谢谢同学们的参与合作!
祝愿:快乐学习! 健康成长!
算一算
这是某学校的总体规划图(单位: 米),试计算这个学校的占地面积.
100
200


操场
a

学生活动中心 240
图书馆 b
60
议一议
我们这节课学到了什么?
1、什么是同类项? 2、怎样合并同类项? 3、“两相同、两无关、一特例” 与“一变二不变”指的是什么?
想挑战吗?
1.如果 2axb3与 3bya4 是同类项,那
一找、二移、 三合并
恍然大悟
你能说说刚才比赛时老师是如
何快速计算 4x2 5x 3x2 7x x2
的值的吗?
练一练 合并同类项:
1 3x 2 y 5x 7 y
2 x2 5xy yx 2x2
填一填:
1. 2xy ( 5xy ) 7xy
2 . a2b ( 2a2b) a2b 3. m2 m ( 2m2) ( 3m) 3m2 2m

3.4合并同类项(八大题型)(原卷版)

3.4合并同类项(八大题型)(原卷版)
(3)不要忘记几个单独的数也是同类项.
◆1、合并同类项定义:把同类项合并成一项叫作合并同类项.
◆2、合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
◆3、“合并同类项”的步骤:
一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;
二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;
A.yx与﹣xyB.3ac与2abcC.﹣2xy与﹣2abD.3x2y与3y2x
【变式13】(2023•诸暨市模拟)下列每组中的两个代数式,属于同类项的是( )
A.7a2b和3ab2B. 和﹣2x2y
C.x2yz和x2yD.3x2和3y2是同类项的是( )
(2)2a2﹣5a+6+4a﹣3a2﹣a﹣7.
【变式54】把(a+b)和(x+y)各看成一个整体,对下列各式进行化简:
(1)26(a+b)+4(a+b)﹣25(a+b);
(2)6(x+y)2+3(x+y)﹣9(x+y)2+2(x+y).
【变式55】化简下列各式:
(1)5m+2n﹣m﹣3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2;
求ba的值.
解题技巧提炼
整式中与“与字母取值无关”类问题的求解方法:在整式的加减运算的过程中,若涉及“与字母取值无关”,其实质是指合并同类项后“那个无关的字母项”的系数为0.
【变式81】(2022秋•镇平县期末)若代数式k2y+x﹣y+kx﹣3的值与x、y的取值无关,那么k的值
为( )
A.﹣1B.1C.±1D.0
A.7a2b﹣7ba2=0B.5x+2y=7xy

2022-2023学年苏科版数学七年级上册《合并同类项》课后巩固题

2022-2023学年苏科版数学七年级上册《合并同类项》课后巩固题

3.4 合并同类项(课后巩固题)-苏科版七年级上册一.选择题1.若单项式2x3y4与x m y n是同类项,则m,n分别是()A.3,4B.4,3C.﹣3,﹣4D.﹣4,﹣3 2.若4xy2与xy m是同类项,则m的值为()A.1B.2C.3D.43.下列合并同类项结果正确的()A.3a2+4a2=12a2B.4x3+3x3=7x6C.5xy﹣4xy=1D.2a2+3a2=5a24.若单项式2a2b与某个单项式合并同类项后结果为7a2b,则这个单项式是()A.5a2b B.5C.9ab2D.5.当代数式x2+4kxy﹣3y2﹣6xy+7中不含xy项,则k的值为()A.0B.C.﹣D.26.如果﹣xy b﹣1与x a+2y4的和是单项式,那么a b=()A.﹣1B.1C.0D.﹣27.下列单项式中,与a2b3是同类项的是()A.﹣a3b2B.a2b C.ab3D.32a2b3 8.若3a m+3b n+2与﹣2a5b是同类项,则mn=()A.﹣1B.﹣2C.2D.19.如果﹣2x2﹣a y与x3y b﹣1是同类项,那么﹣a﹣b的值是()A.﹣3B.﹣2C.﹣1D.110.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6C.3(x+2)+x2D.x2+5x二.填空题11.已知2a1﹣m b4与﹣5a2b n+1的和仍是单项式,则m n的值为.12.若代数式x a﹣1y3与﹣3x﹣b y2a+b是同类项,则a﹣b=.13.如果﹣3a m+2b5﹣n与7a4b8是同类项,则n m=.14.已知m,n为正整数,若a2b+3a﹣4a m﹣1b n合并同类项后只有两项,则m=,n =.15.如果单项式﹣xy b+1与是同类项,那么(a﹣b)2021=.三.解答题16.已知﹣和是同类项,a是c的相反数的倒数,求代数式(3a2﹣ab+7)﹣(5ab﹣4a2+7)﹣4c的值.17.化简:(1)5m+2n﹣m﹣3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2;(3)ab2﹣5a2b﹣a2b+0.75ab2;(4)4(m+n)﹣5(m+n)+2(m+n).18.化简:(1)﹣3x2y+3xy2﹣2xy2+2x2y;(2)2a2﹣5a+a2+6+4a﹣3a2.19.(1)关于x,y的多项式4x2y m+2+xy2+(n﹣2)x2y3+xy﹣4是七次四项式,求m和n的值;(2)关于x,y的多项式(5a﹣2)x3+(10a+b)x2y﹣x+2y+7不含三次项,求5a+b的值.20.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的值为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.参考答案与试题解析一.选择题1.【解答】解:∵单项式2x3y4与x m y n是同类项,∴m=3,n=4,故选:A.2.【解答】解:由题意可知:m=2,故选:B.3.【解答】解:A选项,原式=7a2,故该项不符合题意;B选项,原式=7x3,故该项不符合题意;C选项,原式=xy,故该项不符合题意;D选项,原式=5a2,故该项符合题意;故选:D.4.【解答】解:∵单项式2a2b与某个单项式合并同类项后结果为7a2b,∴某个单项式为:7a2b﹣2a2b=5a2b.故选:A.5.【解答】解:x2+4kxy﹣3y2﹣6xy+7=x2+4kxy﹣6xy﹣3y2+7=x2+(4k﹣6)xy﹣3y2+7,由题意得:4k﹣6=0,解得:k=,故选:B.6.【解答】解:由题意可知:﹣xy b﹣1与x a+2y4是同类项,∴a+2=1,b﹣1=4,∴a=﹣1,b=5,∴原式=(﹣1)5=﹣1,故选:A.7.【解答】解:A、字母a的次数不相同,不是同类项,故本选项不符合题意;B、字母b的次数不相同,不是同类项,故本选项不符合题意;C、字母a的次数不相同,不是同类项,故本选项不符合题意;D、有相同的字母,相同字母的指数也相同,是同类项,故本选项符合题意;故选:D.8.【解答】解:根据题意得m+3=5,n+2=1,解得m=2,n=﹣1,则mn=2×(﹣1)=﹣2.故选:B.9.【解答】解:∵﹣2x2﹣a y与x3y b﹣1是同类项,∴2﹣a=3,b﹣1=1,解得:a=﹣1,b=2,∴﹣a﹣b=﹣(﹣1)﹣2=1﹣2=﹣1.故选:C.10.【解答】解:A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)﹣2x,故正确;B、阴影部分可分为应该长为x+3,宽为x和一个长为x+2,宽为3的长方形,他们的面积分别为x(x+3)和3×2=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可分为一个长为x+2,宽为3的长方形和边长为x的正方形,则他们的面积为:3(x+2)+x2,故正确;D、x2+5x,故错误;故选:D.二.填空题11.【解答】解:∵2a1﹣m b4与﹣5a2b n+1的和仍是单项式,∴1﹣m=2,n+1=4,∴m=﹣1,n=3,∴m n=(﹣1)3=﹣1,故答案为:﹣1.12.【解答】解:∵代数式x a﹣1y3与﹣3x﹣b y2a+b是同类项,∴a﹣1=﹣b,2a+b=3,∴,由①得:a=1﹣b③,把③代入②得:2(1﹣b)+b=3,解得:b=﹣1,把b=﹣1代入③得:a=2,∴原方程组的解为:,∴a﹣b=2﹣(﹣1)=2+1=3,故答案为:3.13.【解答】解:∵﹣3a m+2b5﹣n与7a4b8是同类项,∴m+2=4,5﹣n=8,∴m=2,n=﹣3,∴n m=(﹣3)2=9.故答案为:9.14.【解答】解:由题意可知:a2b与4a m﹣1b n是同类项,∴m﹣1=2,n=1,∴m=3,n=1,故答案为:3,1.15.【解答】解:∵单项式﹣xy b+1与是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2021=(3﹣2)2021=12021=1.故答案为:1.三.解答题16.【解答】解:原式=3a2﹣ab+7﹣5ab+4a2﹣7﹣4c=7a2﹣6ab﹣4c,∵和是同类项,∴b﹣1=2,a+2=3,∴b=3,a=1,∵a是c的相反数的倒数,∴﹣ac=1,∴c=﹣1,∴原式=7﹣18+4=﹣7.17.【解答】解:(1)5m+2n﹣m﹣3n=4m﹣n;(2)3a2﹣1﹣2a﹣5+3a﹣a2=2a2+a﹣6;(3)ab2﹣5a2b﹣a2b+0.75ab2=ab2﹣5a2b﹣a2b+ab2=ab2﹣a2b;(4)4(m+n)﹣5(m+n)+2(m+n)=(4﹣5+2)(m+n)=m+n.18.【解答】解:(1)﹣3x2y+3xy2﹣2xy2+2x2y =(﹣3x2y+2x2y)+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a﹣3a2=(2a2+a2﹣3a2)+(4a﹣5a)+6=﹣a+6.19.【解答】解:(1)根据题意得2+m+2=7,n﹣2=0,解得m=3,n=2;(2)根据题意得5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,所以5a+b=2﹣4=﹣2.20.【解答】解:(1)﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)原式=3(x+2y)﹣8=3×3﹣8=1;(3)∵y﹣xy=﹣2,xy+x=﹣6,∴xy﹣y=2,x+y=xy+x+y﹣xy=﹣8,则原式=2x+2(xy﹣y)2﹣3(xy﹣y)2+3y﹣xy=2x+3y﹣xy﹣(xy﹣y)2=2(x+y)+(y﹣xy)﹣(xy﹣y)2=﹣16+(﹣2)﹣4=﹣22.。

苏科版七上3.4合并同类项

苏科版七上3.4合并同类项

苏科版七年级数学上册3.4“合并同类项”的教学设计扬中市教育局教研室 叶纪元【学情分析】七年级的学生具有强烈的好奇心与求知欲,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、喜欢游戏等特点,形象直观思维已比较成熟,但理性思维的发展还有很有限,抽象思维能力还比较薄弱。

所授班级的学生学习数学的积极性较高,已初步形成合作交流、勇于探索的学习风气。

【教材分析】本节课选自苏科版《数学》七年级上册§3.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。

合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。

另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。

可以说合并同类项是有理数加减运算的延伸与拓广。

因此,这节课是一节承上启下的课。

【教学目标】知识与技能目标:使学生了解同类项的概念,能识别同类项,学会合并同类项并知道合并同类项所依据的运算律.过程与方法目标:让学生经历观察、分析、归纳和动手解决问,初步使学生了解数学的分类思想.情感、态度、价值观目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动.培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神.【教学重、难点】根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:教学重点:同类项的概念和合并同类项的法则.教学难点:正确判断同类项;准确合并同类项。

【教学流程图】 —→—→概括提升 ——→【教学过程】一、创设情境,引入课题情境一:我班GBR课程选项统计表;情境二:英语单词分类;情境三:请大家谈谈生活中你所经历过的分类现象。

情境四:单项式分类;学生练习:以小组为单位任取x的一个整数值,求代数式—4x2+7 x+3 x2—5 x+ x2的值,求好后给出x的值,看教师需要多长时间得到答案.你知道老师怎么算的吗?(用师生竞赛的方式,充分调动了学生积极参与,激发了学生求知欲望)设计意图:创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题.二、实践思考探索交流1.数学源于生活:计算学校占地面积出示某校的总体规划图(单位:米),由学生思考怎样计算这个学校的占地面积.2.观察、比较、归纳想一想: 100a和200a, 240b和60b,有何共同点?下列整式中具有上式的特点吗?一些具有共同特征的整式,进行分类.并说说你的理由.(1)5ab2,ab2(2)-9x2y3,5y3x2, -0.5y3x2(3) 27, -12(学生分组讨论.)设计意图:培养学生的观察的能力和思考的能力.让学生在观察与思考中探索发现.三、概括提升(一)同类项1.所含字母相同,并且相同字母的指数也相同的项叫做同类项(like terms).几个常数项也是同类项.你能自己举出一些同类项的例子吗?列举同类项2.练一练:(1)下列各组中的两项是不是同类项?为什么?⑴ x 与y ⑵ a 2b 与ab 2 ⑶ -3pq 与3qp⑷ abc 与ac ⑸ 125与12 ⑹ a 2与a 3(3)请你在下面的横线上填上适当的内容,使两个代数式构成同类项.⑴ -3a 与 6ab ;⑵ -3x 2y 3 与2x 2 ;⑶ 2m 与 -5n 2 .(二)合并同类项1.想一想:下列各式计算结果是什么?说说你的理由:(1)7a -5a =______;(2)4x 2+x 2=____;(3)5ab 2-13ab 2=_____;(4) -9x 2y 3+5x 2y 3=____.你能把你合并同类项的方法用一句话概括出来吗? 把你的想法和同学们交流.(学生合作交流)2.合并同类项:定义:根据乘法对加法的分配律把同类项合并成一项叫做合并同类项.(unite like terms) .法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.3.合并同类项(口答)4.下列各题的结果是否正确?如不正确请指出错误的地方.①3x +3y =6xy②7x +5x =12x 2③16y 2-7y 2=9④19a 2b -9a 2b =10a 2b5.例题示范:合并同类项:设计意图:教师板书解题过程,让学生体会每步的计算依据,渗透推理的思想.四、挑战自我1.(分组演练)合并同类项:();75231y x y x --+-。

初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)

初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)

2018-2019 学年度苏科版数学合并同类项1.下列各组的两项中,不是同类项的是()A.2x2y3,﹣3y3x2B.23,32C.a2,b2D.﹣3ab,3ab2.下列各组整式中,是同类项的是()A.3a2b 与5ab2 B.5ay2 与2y2 C.4x2y 与5y2x D.nm2 与m2n3.若﹣2a m b4与5a2b2+n是同类项,则m n的值是()A.2 B.0 C.4 D.14.下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn 与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2 A.1组B.2 组C.3 组D.4 组5.计算x2y﹣3x2y 的结果是()A.﹣2 B.﹣2x2y C.﹣x2y D.﹣2xy26.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x7.下面是小林做的4 道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2 分,则他共得到()A.2分B.4 分C.6 分D.8 分8.若2b2n a m与﹣5ab6的和仍是一个单项式,则m、n 值分别为()A.6, B.1,2 C.1,3 D.2,39.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6 B.6 C.5 D.1410.合并同类项m﹣3m+5m﹣7m+…+2013m 的结果为()A.0 B.1007mC.m D.以上答案都不对11.若3x n y m 与x4﹣n y n﹣1 是同类项,则m+n= .12.若单项式2a x+1b 与﹣3a3b y+4是同类项,则x y= .13.任写一个与﹣a2b 是同类项的单项式.14.当k= 时,﹣3x2y3k与4x2y6是同类项.15.若单项式与﹣2x b y3的和仍为单项式,则其和为.16.计算:3a2b﹣a2b= .17.若单项式2x m y3与单项式﹣5xy n+1的和为﹣3xy3,则m+n= .18.把(x﹣y)看作一个整体,合并同类项:5(x﹣y)+2(x﹣y)﹣4(x﹣y)= .三.解答题(共4 小题)19.下列各题中的两项哪些是同类项?(1)﹣2m2n 与﹣m2n;(2)x2y3与﹣x3y2;(3)5a2b 与5a2bc;(4)23a2与32a2;(5)3p2q 与﹣qp2;(6)53与﹣33.20.合并同类项:(1)7a+3a2+2a﹣a2+3;(2)3a+2b﹣5a﹣b;(3)﹣4ab+8﹣2b2﹣9ab﹣8.21.已知﹣a2m b n+6与是同类项,求m、n 的值.22.如果﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,求(m﹣n)(2a﹣b)的值.参考答案一.选择题(共10 小题)1.C.2.D.3.C.4.C.5.B.6.C.7.C.8.C.9.B.10.B.二.填空题(共8 小题)11.3.12..13.a2b 14.2.15.﹣x2y3.16.2a2b.17.3.18.3(x﹣y).三.解答题(共4 小题)19.解:(1)是同类项;(2)相同的字母的指数不同;(3)所含的字母不同;(4)是同类项;(5)是同类项;(6)是同类项.答:(1)、(4)、(5)、(6)是同类项;(2)、(3)不是同类项.20.解:(1)原式=2a2+9a+3;(2)原式=﹣2a+b;(3)原式=﹣2b2﹣13ab.21.解:由﹣a2m b n+6与是同类项,得,解得.22.解:∵﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,∴a=5,a+1=b﹣1=n,﹣4+m=3,解得a=5,b=7,n=6,m=7,则(m﹣n)(2a﹣b)=3.§3.4 合并同类项第三份练习答案:参考答案1.B 2.C 3.C 4.A 5.B 6.D 7.-4xy2 -3m 9.24x 72 10.1 2 -3 11.0 12.n2xy 13.(1) 9a + x 1x2 y 8.1 3 6(2) -10a2 +14ab-2 (3)1721-b2 (4) 3x3 + 2x + 3 (5) 7(m + n)2+(m + n)a3 3 12+ ab2(6) 9a n-9a n+1 14.(1) -4a3-2a2 + 16a-3 7(2) x3-y3,-72 15.原式=(m-2)3 4 12x3+(3n—1) xy2+y,因为结果中不含有三次项,所以m=2,3n=1,因而2m+3n=2×2+1=5.16.由已知得m 1 =6,n2=4,即m-1=6 或m-1=-6,n=±2,∴m=7 或m=-5,n=±2.17.m=3,原式=-4.⎨⎨⎨⎨【基础巩固】1.计算:2x -3x =.7 上 3.4 合并同类项2. 当 m =时,-x 3b 2m与 1 x 3b 是同类项. 43. 写出-2x 3y 2的一个同类项 .4.若单项式 3x 2y n 与-2x m y 3是同类项,则 m +n = .1 a +ba -14 35. 单项式- x +y 3与 5x y 是同类项,则 a -b 的值为.6.下列各组中两个单项式为同类项的是 ( )A . 2 x 2-y 与-xy 2B .0.5a 2b 与 0.5a 2c3C .3b 与 3abcD .-0.1m 2n 与 1 nm 227.下列合并同类项正确的是 ( ) A .2x +4x=8x 2B .3x +2y =5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=01 a +2 33 2b -18. 如 果 x 3y 与-3x y 是同类项,那么 a 、b 的值分别是( )⎧a = 1 A . ⎩b = 2⎧a = 0 B . ⎩b = 2⎧a = 2 C . ⎩b = 1⎧a = 1 D . ⎩b = 19. 计算 a 2+3a 2的结果是()A .3a 2B .4a 2C .3a 4D .4a 410.合并下列各式中的同类项:(1)-4x 2y -8xy 2+2x 2-y -3xy 2;(2) 3x 2 -1 - 2x - 5 + 3x - x 2 ;(3)-0.8a 2b -6ab -1.2a 2b +5ab +a 2b ;(4)5yx -3x 2y -7xy 2+6xy -12xy +7xy 2+8x 2y .11. 求下列多项式的值:(1) 2 a 2 - 8a - 1 + 6a - 2 a 2 + 1 ,其中 a = 1 .3 2 34 2(2) 3x2 y2 + 2xy - 7x2 y2 -3xy + 2 + 4x2 y2 ,其中 x=2,y=1.212.在 2x2y、-2xy2、3x2y、-xy 四个代数式中,找出两个同类项,并合并这两个同类项.【拓展提优】13.已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=.14.若-4xay+x2yb=-3x2y,则 a+b=.15.下面运算正确的是( )A.3a+2b=5ab B.3a2b-3ba2=0C.3x2+2x3=5x5D.3y2-2y2=116.已知一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1C.-13x-1 D.13x+117.合并同类项: (1)2(x-y)+3(x+y)2-5(x-y)-8(x+y)2-(x-y);(2)3a m-4a n+1-5a m+4a m+1-3;(3)2(a-2b)2-7(a-2b)3+3(2b-a)2+(2b-a)3;(4) 0.5a n - 0.4a n-1 - 0.1 +1a n-1 +1.2 518.已知 8x2y m与- x n+4 y39是同类项,求多项式 m3-3m2n+3mn2-n3的值.19.先化简,再求值:(1)3x2y2+3xy-7x2y2-5xy+2+4x2y2,其中 x=-2,y=-1.2 4(2)3ab2+0.5a3b-3ab2-5ab3-9a3b+5b3a,其中 a=1,b=11.2 2 220.用a 表示一个两位数十位上的数字,b 表示个位上的数字,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得的数与原数的和,这个和能被 11 整除吗?21.设 m 和n 均不为零,3x2y3和-5x2+2m+n y33m3 -m2 n + 3mn2 + 9n3是同类项,求的值.5m3 + 3m2 n - 6mn2 + 9n3【基础巩固】1.-x 2.12参考答案3.答案不唯一4.5 5.4 6.D 7.D 8.A 9.B10.(1)-2x2y-11xy2(2)2x2+x-6 (3)-a2b-ab (4)5x2y-xy 11.(1)-54 (2)3 12.略【拓展提优】13.13 14.3 15.B 16.A 17.(1)-5(x+y)2-4(x-y) (2)-2a m-3(3)5(a-2b)2-8(a-2b)3(4)a n+0.1 18.125 19.(1)214 (2)-3420.原数为 10a+b.调换位置后的数为 10b+a,两数和为 11a+11b,所以能被 11 整除.c dc 21. 5597§3.4 合并同类项1. 当 n 等于 3 时,下列各组是同类项的是( )A. x n 与 x 3 y n -1B . 2x n y n -1 与 3x 6-n y 23C .5x 2 y n -2 与 5y 2x n -2D .-2x 3 y 与 2x n -6 y32. 下列计算正确的是 ( ) A .2a + b =2ab B .3x 2-x 2=2 C .7mn -7nm =0 D .a + a =a 23. 如果单项式-x a +1y 3 与 1y b x 2 是同类项,那么 a ,b 的值分别为2( )A .a =2,b =3B .a =1,b =2C .a =1,b =3D .a =2,b =24. 把 多 项 式 2x 2- 5x + 3- x 2- 5 + x 合 并 同 类 项 后 , 新 得 到 的 多 项 式 是 ( )A. 二次三项式 B .二次二项式 C .单项式 D .一次多项式5.若-3x 2m y 3 与 2x 4 y n 是同类项,则 m - n 的值是()A .0B .1C .7D .-1 6.若 n 为正整数,那么(-1) n a + (-1) n +1a 化简的结果是( )A .2a 与-2aB .2aC .-2aD .0 7.合并合类项:(1) 3xy 2-7xy 2=;(2) -m -m -m =;(3) x 2 y - 1 x 2 y - 1x 2y2 3= .8. 若两个单项式 2a 3 b 2m 与- 3a n b n - l 的和仍是一个单项式, 则 m = , n = .9. 三角形三边长分别为 6x ,8x ,10x ,则这个三角形的周长为 ;当 x =3 cm 时,周长为 cm ·10. 已知 3x a +1 y b - 2 与 mx 2 合并同类项的结果是 0, a = , b = , m = .11. 定义 a b 为二阶行列式,规定它的运算法则为 a b d =ad -bc ,那么当 x =1 时,二阶行列 式 x +1 1 的值为 . 0 x -1 12.通过阅读下列各式,你会发现一些规律:xy =12 xy ,xy + 3xy =22 xy ,xy + 3xy + 5xy =32xy ,xy+ 3xy + 5xy + 7xy =42 xy ,…,则运用你发现的规律,解答 xy + 3xy + 5xy + 7xy +…+(2n - 1)xy = 。

3.4 合并同类项(含答案)-

3.4 合并同类项(含答案)-

3.4 合并同类项(一)◆基础训练一、选择题1.下列各组中的两项,不是同类项的是().A.a2b与-3ab2B.-x2y与2yx2C.2πr与π2r D.35与53 2.已知34x2与3n x n是同类项,则n等于().A.4 B.3 C.2或4 D.23.代数式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值().A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关二、填空题4.若-3x m-1y4与13x2y n+2是同类项,则m=_______,n=______.5.若│a-2b│+(b-3c)2=0,那么a+b-9c的值是________.三、解答题6.合并下列各式中的同类项(1)15x+4x-10x;(2)-8ab+ba+9ab;(3)-p2-p2-p2;(4)3x2y-5xy2+2x3-7x2y+6-4x3-xy2+10;(5)-4a4-8a3+6a+1-7a+2+6a3+4a4.7.合并下列同类项,并求各式的值.(1)3c2-8c+2c3-13c2+2c-2c3+3,其中c=-4;(2)3y4-6x3y-4y4+2yx3,其中x=-2,y=3.◆能力提高一、填空题8.已知2a x b n-1与3a2b2m(m为正整数)是同类项,那么(2m-n)=_______.9.当k=________时,代数式x6-5kx4y3-4x6+15x4y3+10中不含x4y3项.二、解答题10.已知-2a2b y+1与3a x b3是同类项,试求代数式2x3-3xy+6y2的值.11.如果-4x a y a+1与mx5y b-1的和是3x5y n,求(m-n)(2a-b)的值.◆拓展训练12.已知xy+y2=3,x2+xy=-12,求2x2+3xy+y2的值.答案:1.A 2.D 3.D 4.3,2 5.06.(1)9x,(2)2ab,(3)-3p2,(4)-2x3-4x2y-6xy2+16,(5)-2a3-a+3 7.(1)-10c2-6c+3,-133,(2)-y4-4x3y,158.1 9.1 2510.28 11.a=5,b=7,m=7,n=6,值为3 12.23.4 合并同类项(二)◆基础训练一、选择题1.已知代数式ax+bx合并后的结果是零,则下列结论正确的是().A.a=b=0 B.a=b=x=0 C.a+b=0 D.a-b=0 2.下列计算正确的是().A.3a-2a=1 B.-m-m=-m2C.7x2y2-7x2y3=0 D.2x2+2x2=4x2 3.当a=-1时,代数式-5a n-a n+8a n-3a n-a n+1(n为正整数)的值为().A.a-2 B.-a或0 C.0 D.1或-1 二、填空题4.合并13a-14a-15a=________.5.一个三角形的第一边长是3a+2b(3a+2b>2),第二边长比第一边长大b-1(b>1),第三边长比第二边长大2,则该三角形的周长为_________.三、解答题6.若│x+2│+(y-12)2=0,求代数式13x3-2x2y+23x3+3x2y+5xy2+7-5xy2的值.7.观察下列代数式:-x,2x2,-3x3,4x4,-5x5,…,-19x19,20x20,…,你能写出第n个代数式吗?并写出第2007个代数式.8.当a=-34,b=12时,求2(2a+b)2-3(2a+b)-8(2a+b)2+6(2a+b)的值.◆能力提高一、填空题9.把a+b当作一个因式,合并代数式2(a+b)2+(a+b)+3(a-b)2-4(a+b)中的同类项得________.10.已知2x2+xy=10,3y2+2xy=6,则4x2+8xy+9y2的值为_________.二、解答题11.如果单项式2ax m y与单项式5bx2m-3y是关于x,y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m-3y=0,且xy≠0,求(2a+5b)1999+2m的值.12.初一(1)班与初一(2)班师生外出旅游,(1)班有教师6名,学生32名,(2)•班有教师4名,学生25名.教师的旅游费用为每人m元,学生的学生为每人n元,•因是团体给予优惠,教师按8折优惠,学生按6折优惠,•问此次旅游师生共花费多少钱?•计算当m=40元,n=30元时的总费用.◆拓展训练13.有这样一道题,“当x=1213,y=-0.78时,求代数式7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3的值”.有一位同学指出,题目中给出的条件x=1213,y=-0.78是多余的,•他的说法有道理吗?答案:1.C 2.D 3.C 4.-760a 5.9a+8b6.x=-2,y=12,原式=x3+x2y+7=17.(-1)n nx n或n为奇数时,-nx n,n为偶数时,nx n,第2007个代数式为-2007x2007.8.原式=-6(2a+b)2+3(2a+b)=-99.5(a+b)2-3(a+b)10.3811.(1)3,(2)0 12.8m+34.2n,1346元13.有道理,因为原式化简后为0.。

苏科版七年级上册数学同步练习:3.4合并同类项1(含答案)

苏科版七年级上册数学同步练习:3.4合并同类项1(含答案)

初中数学试卷3.4合并同类项1同步练习姓名_____________班级____________学号____________分数_____________一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.752853x x x =+ C.y x xy y x 22254-=- D.5xy-5yx =0 2 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与 C 、xy 与2pxy D 、11113+--+-n n n n x y y x 与3 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩ C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n - B.5xy 和5xy C.-1和14D.2a 和3x 6 .下列合并同类项正确的是 ( )(A)628=-a a ; (B)532725x x x =+ ;(C) b a ab b a 22223=-; (D)y x y x y x 222835-=--7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A.yxB.x y +C.10x y +D.100x y +9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x 10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________. 12.单项式113a ba xy +--与345y x 是同类项,则a b -的值为_________。13.若2243abx y x y x y -+=-,则a b +=__________. 14.合并同类项:._______________223322=++-ab b a ab b a15.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元。 三、解答题 17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .18.化简:)32()54(722222ab b a ab b a b a --+-+.参考答案一、选择题 1 .D 2 .C 3 .D 4 .A 5 .D 6 .D 7 .C 8 .D 9 .A 10.C 二、填空题11.322x y (答案不唯一) 12.4; 13.314.ab b a -25; 15.1- 16.11.m 三、解答题 17.解:)4(3)125(23m m m -+--=m m m 31212523-++-( )=134+-m 当3-=m 时,2513)3(4134=+-⨯-=+-m18.)32()54(722222ab b a ab b a b a --+-+=2222232547ab b a ab b a b a +-+-=22)35()247(ab b a ++--( )=228ab b a +。

苏科版初中数学七年级上册《3.4 合并同类项》同步练习卷

苏科版初中数学七年级上册《3.4 合并同类项》同步练习卷

苏科新版七年级上学期《3.4 合并同类项》同步练习卷一.填空题(共33小题)1.若﹣2a2b m与4a n b是同类项,则m+n=.2.已知7x m y3和﹣x2y n是同类项,则﹣n m=.3.单项式﹣3x a﹣1y4+与4x2y2b是同类项,则a=,b=.4.若2a3b n+3和4a m﹣1b4是同类项,则m+n=.5.已知14x5y2和2x m﹣1y n是同类项,则m+n=.6.计算:x2y﹣3yx2=.7.如果单项式5x a+1y3与2x3y b﹣1的差仍是单项式,那么a b=.8.若﹣3x4y m与2x n+1y2的和是单项式,则m=,n=.9.如果单项式y3与5x2y b的和仍是单项式,则|a﹣b|的值为.10.计算:﹣5m+7m=.11.如果x3n y m+4与﹣3x6y2n是同类项,那么mn的值为.12.写出﹣2m3n的一个同类项.13.已知代数式2x m y3与﹣3x n﹣1y m+1是同类项,则m﹣n=.14.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)若单项式﹣x m y n+4与5x2y是同类项,则n m的值为.(2)实施西部大开发战略是党中央的重大决策,我国国土面积约为960万平方千米,而我国西部地区的面积占我国国土面积的,用科学记数法表示我国西部地区的面积约为平方千米.15.若a2n+1b2与﹣2a3n﹣2b2是同类项,则n=.16.计算:(1)﹣7﹣2=;(2)﹣a+2a=;(3)2÷(﹣)=;(4)(﹣2)3=.17.﹣x2y m﹣2与3x4n y2之和是个单项式,求n m=.18.已知关于x、y的多项式mx3+3nxy2﹣2x3+xy2+2x﹣y不含三次项,那么n m =.19.计算下列各题:(1)﹣2+4=;(2)(﹣3)2×=;(3)﹣4÷×2=;(4)2a﹣5a=;20.若关于x、y的单项式3x4y3与(m﹣2)x4y|m|的和还是单项式,则这个和的结果为.21.若单项式3x m+2n y3与﹣xy m是同类项,则m+n的值是.22.若代数式﹣5x4y m与2x2n y3是同类项,则m n=.23.已知54x n与5n x3是同类项,则n=24.若代数式﹣3a2x﹣1和是同类项,则x=.25.已知2x6y2和﹣是同类项,则m﹣n的值是.26.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2018的值等于.27.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是.28.合并同类项:8m2﹣5m2﹣6m2=.29.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2016的值等于.30.已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么2m﹣n=.31.请将下面的同类项用连线连接起来:32.如果a表示任意一个数,那么利用乘法的分配律可得0.5a+0.7a=.33.若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是.苏科新版七年级上学期《3.4 合并同类项》同步练习卷参考答案与试题解析一.填空题(共33小题)1.若﹣2a2b m与4a n b是同类项,则m+n=3.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得m、n 的值,代入计算即可.【解答】解:∵﹣2a2b m与4a n b是同类项,∴n=2,m=1,∴m+n=3.故答案为:3【点评】本题考查了同类项的知识,解答本题的关键是牢记同类项中的两个相同.2.已知7x m y3和﹣x2y n是同类项,则﹣n m=﹣9.【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:由题意可知:m=2,3=n,∴﹣n m=﹣32=﹣9,故答案为:﹣9【点评】本题考查同类项的概念,涉及代入求值问题.3.单项式﹣3x a﹣1y4+与4x2y2b是同类项,则a=3,b=2.【分析】根据同类项的定义直接可得到a、b的值.【解答】解:因为单项式﹣3x a﹣1y4+与4x2y2b是同类项,所以a﹣1=2,2b=4,解得:a=3,b=2,故答案为:3;2.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.4.若2a3b n+3和4a m﹣1b4是同类项,则m+n=5.【分析】根据同类项的定义可得出关于m(n)的一元一次方程,解之即可得出m、n的值,将其相加即可得出结论.【解答】解:∵2a3b n+3和4a m﹣1b4是同类项,∴m﹣1=3,n+3=4,∴m=4,n=1,∴m+n=5.故答案为:5.【点评】本题考查了同类项,牢记“所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.”是解题的关键.5.已知14x5y2和2x m﹣1y n是同类项,则m+n=8.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求得m、n的值即可.【解答】解:因为14x5y2和2x m﹣1y n是同类项,所以m﹣1=5,n=2,解得:m=6,n=2,所以m+n=2+6=8,故答案为;8【点评】本题考查同类项的定义,熟练掌握定义是解题的关键.6.计算:x2y﹣3yx2=﹣2yx2.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.7.如果单项式5x a+1y3与2x3y b﹣1的差仍是单项式,那么a b=16.【分析】根据同类项的定义直接可得到a、b的值.【解答】解:因为单项式5x a+1y3与2x3y b﹣1的差仍是单项式,所以a+1=3,b﹣1=3,解得:a=2,b=4,所以a b=16,故答案为:16【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.8.若﹣3x4y m与2x n+1y2的和是单项式,则m=2,n=3.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得n+1=4,m=2,解得m=2,n=3,故答案为:2,3.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.9.如果单项式y3与5x2y b的和仍是单项式,则|a﹣b|的值为4.【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:y3与5x2y b是同类项,∴,解得:a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故答案为:4【点评】本题考查合并同类项,解题的关键正确理解同类项的定义,本题属于基础题型.10.计算:﹣5m+7m=2m.【分析】直接合并同类项即可.【解答】解:﹣5m+7m=2m,故答案为:2m.【点评】本题考查的是整式的加法,正确合并同类项法则是解题的关键.11.如果x3n y m+4与﹣3x6y2n是同类项,那么mn的值为0.【分析】根据同类项的概念即可求出答案.【解答】解:由题意可知:3n=6,m+4=2n,解得:n=2,m=0原式=0,故答案为:0【点评】本题考查同类项的概念,解题的关键是熟练运用同类项的概念,本题属于基础题型.12.写出﹣2m3n的一个同类项3m3n(答案不唯一).【分析】根据同类项的定义可知,写出的同类项只要符合只含有m,n两个未知数,并且m的指数是3,n的指数是1即可.【解答】解:3m3n(答案不唯一).【点评】本题考查了是同类项的定义,解题的关键是掌握所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.13.已知代数式2x m y3与﹣3x n﹣1y m+1是同类项,则m﹣n=﹣1.【分析】直接利用同类项的定义得出关于m,n的方程组进而得出答案.【解答】解:∵代数式2x m y3与﹣3x n﹣1y m+1是同类项,∴,解得:,则m﹣n=2﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)若单项式﹣x m y n+4与5x2y是同类项,则n m的值为9.(2)实施西部大开发战略是党中央的重大决策,我国国土面积约为960万平方千米,而我国西部地区的面积占我国国土面积的,用科学记数法表示我国西部地区的面积约为 6.4×106平方千米.【分析】(1)直接利用同类项的定义进而分析得出答案;(2)首先求出我国西部地区的面积占我国国土面积,进而利用科学记数法得出答案.【解答】解:(1)∵单项式﹣x m y n+4与5x2y是同类项,∴m=2,n+4=1,解得:m=2,n=﹣3,∴n m的值为:(﹣3)2=9;故答案为:9;(2)我国西部地区的面积约为:960万平方千米×=6.4×106平方千米.故答案为:6.4×106.【点评】此题主要考查了同类项以及科学记数法,正确掌握相关运算法则是解题关键.15.若a2n+1b2与﹣2a3n﹣2b2是同类项,则n=3.【分析】根据同类项的定义得到2n+1=3n﹣2,可求出n.【解答】解:∵a2n+1b2与﹣2a3n﹣2b2是同类项,∴2n+1=3n﹣2,解得n=3.故答案为:3.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.16.计算:(1)﹣7﹣2=﹣9;(2)﹣a+2a=a;(3)2÷(﹣)=﹣4;(4)(﹣2)3=﹣8.【分析】(1)根据减法法则计算可得;(2)根据合并同类项的法则计算可得;(3)除法转化为乘法,计算乘法即可得;(4)根据有理数的乘方的运算法则计算可得.【解答】解:(1)﹣7﹣2=﹣7+(﹣2)=﹣9,故答案为:﹣9.(2)﹣a+2a=(﹣1+2)a=a,故答案为:a.(3)2÷(﹣)=2×(﹣2)=﹣4,故答案为:﹣4.(4)(﹣2)3=﹣8,故答案为:﹣8.【点评】本题主要考查合并同类项与有理数的混合运算,解题的关键是掌握有理数的减法、除法和乘方的运算法则及合并同类项的法则.17.﹣x2y m﹣2与3x4n y2之和是个单项式,求n m=.【分析】直接利用合并同类项法则得出m,n的值进而得出答案.【解答】解:∵﹣x2y m﹣2与3x4n y2之和是个单项式,∴2=4n,m﹣2=2,解得:n=,m=4,∴n m=()4=.故答案为:.【点评】此题主要考查了合并同类项,正确得出m,n的值是解题关键.18.已知关于x、y的多项式mx3+3nxy2﹣2x3+xy2+2x﹣y不含三次项,那么n m=.【分析】将多项式合并后,令三次项系数为0,求出m与n的值,即可求出n m 的值.【解答】解:∵mx3+3nxy2﹣2x3+xy2+2x﹣y=(m﹣2)x3+(3n+1)xy2+2x﹣y,且多项式不含三次项,∴m﹣2=0且3n+1=0,解得:m=2,n=﹣,则n m=(﹣)2=,故答案为:.【点评】此题主要考查了多项式的定义与合并同类项,利用多项式不含三次项得出三次项系数和为0进而求出是解题关键.19.计算下列各题:(1)﹣2+4=2;(2)(﹣3)2×=5;(3)﹣4÷×2=﹣16;(4)2a﹣5a=﹣3a;【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的乘除运算法则计算得出答案;(4)直接利用合并同类项法则计算得出答案.【解答】解:(1)﹣2+4=2;(2)(﹣3)2×=9×=5;(3)﹣4÷×2=﹣8×2=﹣16;(4)2a﹣5a=﹣3a.故答案为:(1)2;(2)5;(3)﹣16;(4)﹣3a.【点评】此题主要考查了合并同类项以及有理数的混合运算,正确掌握运算法则是解题关键.20.若关于x、y的单项式3x4y3与(m﹣2)x4y|m|的和还是单项式,则这个和的结果为4x4y3或﹣2x4y3或3x4y3.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出m的所有可能值,再代入代数式计算即可.【解答】解:根据题意知|m|=3,或m﹣2=0,则m=3或m=﹣3或m=2若m=3,两个单项式的和为3x4y3+x4y3=4x4y3;若m=﹣3,两个单项式的和为3x4y3﹣5x4y3=﹣2x4y3;若m=2,两个单项式的和为3x4y3+0=3x4y3;故答案为:4x4y3或﹣2x4y3或3x4y3.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.21.若单项式3x m+2n y3与﹣xy m是同类项,则m+n的值是2.【分析】由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:由同类项的定义可知,解得m=3,n=﹣1,则m+n=2.故答案为:2.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.22.若代数式﹣5x4y m与2x2n y3是同类项,则m n=9.【分析】根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值,再代入代数式求值即可.【解答】解:由题意得,解得,m n=32=9.故答案为:9.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.23.已知54x n与5n x3是同类项,则n=3【分析】根据同类项的概念求解.【解答】解:因为54x n与5n x3是同类项,所以n=3,故答案为:3.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.24.若代数式﹣3a2x﹣1和是同类项,则x=3.【分析】根据同类项是字母相同且相同字母的指数也相同,可得方程,根据解方程,可得答案.【解答】解:由﹣3a2x﹣1和是同类项,得2x﹣1=x+2.解得x=3,故答案为:3.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.25.已知2x6y2和﹣是同类项,则m﹣n的值是0.【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.【点评】本题主要考查同类项,解题的关键是熟练掌握同类项得定义.26.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2018的值等于1.【分析】根据同类项定义可得m﹣1=1,n=3,然后可得m、n的值,进而可得答案.【解答】解:因为x m﹣1y3与2xy n的和仍是单项式,所以x m﹣1y3与2xy n是同类项,则m﹣1=1,即m=2、n=3,所以(m﹣n)2018=(2﹣3)2018=1,故答案为:1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.27.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是9.【分析】直接利用合并同类项法则得出n,m的值,进而求出答案.【解答】解:∵单项式x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,解得:m=2,n=3,故n m=32=9.故答案为:9.【点评】此题主要考查了合并同类项,正确得出m,n的值是解题关键.28.合并同类项:8m2﹣5m2﹣6m2=﹣3m2.【分析】根据合并同类项法则计算可得.【解答】解:8m2﹣5m2﹣6m2=(8﹣5﹣6)m2=﹣3m2,故答案为:﹣3m2.【点评】本题主要考查合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.29.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2016的值等于1.【分析】根据同类项定义可得m﹣1=1,n=3,然后可得m、n的值,进而可得答案.【解答】解:由题意得:m﹣1=1,n=3,解得:m=2,n=3,(m﹣n)2016=(2﹣3)2016=1,故答案为:1.【点评】此题主要考查了同类项,关键是掌握同类项定义:所含字母相同,相同字母的指数也相同.30.已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么2m﹣n=5.【分析】根据两单项式的和是单项式可得出式3a m b2与﹣a4b n﹣1是同类项,根据同类项所含字母相同,并且相同字母的指数也相同可得出m和n的值,代入即可得出答案.【解答】解:由题意得,3a m b2与﹣a4b n﹣1是同类项,∴m=4,n﹣1=2,解得:m=4,n=3,∴2m﹣n=5.故答案为:5.【点评】此题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握同类项的两个“相同”,难度一般.31.请将下面的同类项用连线连接起来:【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.同类项与字母的顺序无关,与系数无关.【解答】解:如图所示,【点评】本题考查了同类项定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.32.如果a表示任意一个数,那么利用乘法的分配律可得0.5a+0.7a=(0.5+0.7)a.【分析】根据乘法的分配律进行计算即可.【解答】解:原式=(0.5+0.7)a,故答案为(0.5+0.7)a.【点评】本题考查了合并同类项,掌握乘法的分配律是解题的关键.33.若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是1.【分析】由两个单项式2x m y n与﹣3xy3n的和还是单项式就得出它们是同类项,由同类项的定义可求得m和n的值.【解答】解:∵两个单项式2x m y n与﹣3xy3n的和也是单项式,∴2x m y n与﹣3xy3n是同类项,∴m=1,n=3n,∴m=1,n=0,∴(m+n)m=(1+0)1=1,故答案为:1.【点评】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 4 合并同类项
知识平台
1 .同类项的意义.
2 .合并同类项的意义.
3 .合并同类项的方法. 思维点击
1 .判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等, ?两
条标准缺一不可.
例如: 3x 2y 与 3xy 2 虽然所含字母相同,但在这两个单项式中,
x 的指数不相等, y 的
值数也不相等,所以不是同类项. - 2x 3y 与 3yx 3 两个项所含字母相同,字母 x , y?的指数也相
等,所以是同类项.
2 .合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并)

例如:合并同类项
3x 2y 和 5x 2y ,字母 x 、 y 及 x 、 y 的指数都不变, ?只要将它们的系
数 3 和 5 相加,即 3x 2 y+5x 2y= ( 3+5) x 2y=8x 2y .
考点浏览 ☆考点
了解同类项的意义,会合并同类项.
例 1
如果
1 x k
y 与 - 1 x 2
y 是同类项,则 k=______, 1 x k
y+(- 1 x 2
y )=________.
3
3
3
3
【解析】
k
2
1
x y 与 -
1
x y 是同类项,这两项中 x 的指数必须相等,所以 k=2; ?合并
3
3
同类项,只需将它们的系数相加,因为
1
与 -
1
互为相反数,它们的和为零,所以
1
x k y+
3 3
3
( - 1
x 2y ) =0.答案是: 2 0 .
3
例 2 合并下列多项式中的同类项.( 1) 4x 2y-8x y 2+7-4x 2y+10xy
2
-4 ;
( 2) a 2-2ab +b 2+a 2+2ab+b 2.
【解析】
( 1)初学时用不同记号标出各同类项,会减少运算的错误;
( 2)常数项
都是同类项;( 3)两个同类项的系数互为相反数,则合并后结果为
0.答案是:
2
2
2
2
( 1)原式 =( 4x y- 4x y ) +( -8 xy +10xy ) +(7-4 ) = ( 4-4 ) x 2y+ ( -8+10 ) xy 2+3
=2xy
2
+3;
2
2
2
2
( 2)原式 =( a +a ) +(-2ab+2ab ) +( b +b )
=2
a 2+2
b 2.
在线检测
- 1 -
1.将如图两个框中的同类项用线段连起来 :
3 a 2b b 2a 2.当 m=________时, - x 3b
2m

1
x 3b 是同类项.
-2x 3 3.如果 5a k
b 与 -4 a 2
4
mn 2 2
b 是同类项,
-1 3a b 那么 5a k
b+(-4a 2
b ) =_______.
x
5 ab 2
2mn 2
4.直接写出下列各式的结果:
1 1
xy=_______ ;
2
2
(1)-
xy+
( 2) 7a b+2a b=________;
2
2
( 3) -x-3x+2x=_______ ;( 4) x 2
y- 1
x 2
y- 1
x 2y=_______;
2 3
( 5) 3xy 2-7x y 2=________.
5.选择题 :
( 1)下列各组中两数相互为同类项的是( )
A .
2
2
2
. 2
2
2
n 与
1 2
3 x
y 与-x y ; B 0.5 a b 与
0.5 a c; C . 3b 与 3abc; D . -0.1 m 2 mn
( 2)下列说法正确的是( )
A .字母相同的项是同类项
B .只有系数不同的项,才是同类项
C .-1 与 0.1 是同类项
D .-x 2y 与 xy 2 是同类项
6.合并下列各式中的同类项
:
( 1) -4x 2y-8 xy 2+2x 2y-3xy 2

( 2) 3x 2-1-2x-5+3x-x 2;
( 3) -0.8a 2b-6ab-1.2 a 2b+5ab+a 2b ;
( 4) 5yx-3 x 2y-7x y 2+6xy-12xy+7x y 2+8x 2y .
7.求下列多项式的值 :
( 1)
2 2
-8a- 1 2 2
1 ,其中 a=
1 ;
3 a
+6a-
3 a +
4 2
2
- 2 -
( 2) 3x 2y 2+2xy-7 x 2y 2
- 3
xy+2+4x 2y 2
,其中 x=2, y= 1

2 4
3. 4 合并同类项(答案)
1.略 2 .略 3 . ab
4.( 1) 0 ( 2) 9a 2
b ( 3) -2x
( 4) 1
x 2y ( 5)-4x y 2
6
5.( 1) D ( 2)C
6.( 1) -2x 2y-11xy 2 ( 2) 2x 2+x-6 ( 3) -a 2b-ab ( 4) -xy+5 x 2y
7.(1)-
5
(2)
9
4
4
- 3 -。

相关文档
最新文档