第八章超静定结构和弯矩分配法 32页PPT文档
超静定结构(精)

第4章超静定结构§4.1 超静定结构特性●由于多余约束的存在产生的影响1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。
2. 具有较强的防护能力,抵抗突然破坏。
3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。
4. 结构刚度和稳定性都有所提高。
●各杆刚度改变对内力的影响1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。
2. 计算内力时,允许采用相对刚度。
3. 设计结构断面时,需要经过一个试算过程。
4. 可通过改变杆件刚度达到调整内力状态目的。
●温度和沉陷等变形因素的影响1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。
2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。
不应盲目增大结构截面尺寸,以期提高结构抵抗能力。
3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。
§4.2 力法原理●计算超静定结构的最基本方法超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。
力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。
根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。
这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。
●基本结构的选择(解题技巧)1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。
2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。
3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。
超静定结构的计算

第二节力法
这样,原结构的内力计算问题就转变为基本结构在多余未知 力多的X余基1未本及知未荷力知载量Xq共1就,同是其作多余用余的下未计的知算内力就力。迎计刃算而问解题了了。。因只此要,设力法法求计出算
(二)力法方程 基本结构在月端不再受约束限制,因此在荷载y作用下月点
竖1小因5向-不此10位同基(d移而本)]向异结。下 , 构显由 的[然图于 变在15形X二-11位是者0(c移取共)]状代,同态了在作应被X用1与拆下作原去B用点结约下竖构束月向完对点位全原竖移一结向将致构位随,的移X即作向1的B用上点大,[图 的余方竖未向向知产位力生移X的1位△共移1同必应作须与用为原下零结,,构在也在拆就X除是1方约说向束基的处本位沿结移多构相余在等未已。知知即力荷X:载1作与用多 △1=0 这就是基本结构应满足的变形谐调条件,又称位移条件。
用结所构示11、上。产则12生△、的11、1沿3 △表X11示2方、单向△位的13可力相以X应1表=位1示移, X为,2=如1,X图3=151-分12别(c作),(用d)于, (基c),本(d) 11 11X1、12 12 X 2、13 13 X 3,上面儿何条件(15-2)
中的第一式可以写为:
下一页 返回
第一节超静定结构基本知识
(1)去掉支座处的一根链杆或者切断一根链杆,相当于去掉一 个约束,如图15-3 (a),(b)所示的两个结构都多出来一个约束, 都是一次超静定结构。
(2)去掉一个铰支座或内部的一个单铰,相当于去掉两个约束。 图15-4 (a), (b)所示的两个刚架都多出来两个约束,都是二次 超静定结构。
上一页 下一页 返回
第二节力法
用力法计算超静定结构在支座移动所引起的内力时,其基本 原理和解题步骤与荷载作用的情况相同,只是力法方程中自 由项的计算有所不同,它表示基本结构由于支座移动在多余 约第束五处节沿“多支余 座未 移知 动力 时方 静向 定所 结引 构起 的的 位位 移移 计算△”iC,所可述用方第法十求四得帝。 此外,还应注意力法方程等号右侧为基本结构在拆除约束处 沿多余未知力方向的位移条件,也就是原结构在多余未知力 方正向值的,已否知则实 取际 负位 值移 。值△i,当△i与多余未知力方向一致时取
结构力学——力矩分配法分解

3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
第三节 多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩;
100k0N
EI
1 EI
2 EI
0.43 0.57 0.57 0.43
-500 -1000
M3B=1000
例题:有支座移动(已知结点线位移)E=200GPa,I = 2500cm4
绘制弯矩图。
A
B
C
D
EI
EI
=1cm
10m
10m
10m
0.429 0.571
0.571 0.429
MF
3000
3000 -1500
2 . 不相邻 点可同时 释放.
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
A
EI
10m
1 EI
10m
100k0N 2 EI 3 B 3B是悬臂梁,
转动结点3 时,
10m 1m 悬臂可自由转
0.43 0.57 0.5 0.5 1 0
动,固其转动
MF
1000 刚度为零
或A
MF
100k0N
放松状态的计算(与单点放松不同)。
力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
第三节 多结点力矩分配法
力矩分配法计算超静定结构典型例题(附详细解题过程)

力矩分配法计算超静定结构——典型例题
【例1】用力矩分配法作如图1(a)所示连续梁的弯矩图。
已知EI 为常数。
【解】该连续梁为对称结构承受对称荷载作用,可取如图1(b)所示左半结构来分析。
此时,只有一个结点转角,可以采用力矩分配法进行分析,这里记线刚度。
计算结点B 处的分配系数:
,
, 在结点B 加入附加刚臂,计算由荷载单独作用时产生的各杆端固端弯矩值
, 附加刚臂中产生的约束力矩为:
放松结点B ,力矩分配和传递的过程如图1(c)所示。
根据最后的杆端弯矩可先绘制半结构的M 图,再根据对称性可绘出整个结构的M 图,如图1(d)所示。
/i EI l =3BA S i =4BC S i =BA 3
7μ=BC 47
μ=12F AB M Fl =-14
F BA M Fl =-14
B M Fl =
-
图1
【例2】用力矩分配法作如图2(a)所示刚架的弯矩图。
已知EI 为常数。
【解】该对称刚架承受对称荷载作用,可取如图2(b)所示半结构来分析,可采用力矩分配法分析,记线刚度。
计算结点A 处的分配系数:
,
在结点A 加入附加刚臂,各杆均无固端弯矩,附加刚臂中产生的约束力矩为:
放松结点B ,将约束力矩反号后进行分配和传递,可得各杆端的分配、传递弯矩分别为:
根据各杆端弯矩值可绘制结构构的M 图,如图2(c)所示,为对称的图形。
/i EI l =3AB S i =A 3C S i =AB AC 0.5μμ==A M Fl =-12
AC AB M M Fl μμ==0C C CA BA M M ==。
结构力学力法PPT_图文

一个无铰封闭圈有三个多余联系
q
q
q
q
第8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
1、解题思路
q
2
1
l
原结构
q
x1 基本结构
位移条件: 1P+ 11=0 因为 11= 11X1 ( 右下图) 所以 11X1 +1P =0 X1= -1P/ 11
q 1P
11 x1
11 x1=1
第8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程; (5)绘内力图。
X1
X2
基本结构(1)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l A X1
l
l
原结构
B
C
D
C1
C2
X2
解:力法方程:
基本结构(2)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l
l
原结构
A
B
C
l D
C1
X1
X2
解:力法方程:
基本结构(3)
第8章
四、如何求
A
以基本结构(2)为例:
自考结构力学_超静定结构的内力和位移

取C结点,如图6.12c所示,由∑y=0 得: 4 NCA = QCB = ql 7
取结点B,由∑X=0 ,已知 3 得 NBC = ql 7
3 x2 = ql 7
图6.12 求各杆轴力及剪力
三、力法典型方程
支座移动时的计算
X1
d11 X 1 d12 X 2 D1c = 0 h d 21 X 1 d 22 X 2 D 2c =
1、力法基本未知量 结构的多余约束中产生的多余未知力(简称多 余力)。
2、力法基本体系 力法基本结构,是原结构拆除多余约束后得到的 静定结构;力法基本体系,是原结构拆除多余约束 后得到的基本结构在荷载(原有各种因素)和多余 力共同作用的体系。
3、力法基本方程 力法基本体系在多余力位置及方向与原结构位移 一致的条件。 方程中的系数和自由项均是静定结构的位移计算 问题,显然,超静定转化为静定问题。
1 (d 11 ) k 25 X 1 = ql ( ) 32 5 X 1 = ql ( ) (c) 4
?
基 本 体 系
M图由M = M1 X1 M P 作出:
温度内力的计算
画出 M 1 , M 2 , N1 , N 2 图 计算
t1 t1 t2 t1 X1
t1 t2
梁刚架: 系 数 桁 架:
d d
d
M i yi = i ds= ii EI EI j yi Mi M j ds = ij = EI EI 2 N l = i ii EA
2
自由项
梁刚架:
桁 架:
d ij = EA M M ds D iP = EI
Ni N jl
d11 X1 d12 X 2 D1P = 0 d 21 X1 d 22 X 2 D2 P = 0
《工程力学》超静定结构.

试求悬臂梁AD在D点的挠度。
A
D
F
B
C
E
(1)、判定超静定次数 一次内力超静定问题。
A
D
F
B
C
E
(2)、确定多余约束 以CD杆的轴力为多余约束力;
(3)、去掉多余约束代之以反力 ,得到相当系统。
A
D
FN
FN
FN
F
B
C
FN
E
(4)、设两梁的挠度以向下为正,则变形协调方程为
2KN
2KN
0.5m
2、GH平行于EF,并且GH、EF垂直于圆轴的轴线。 圆轴、GH、EF处于水平。已知:圆轴的直径为D1 =100毫米,GH、EF的直径为D2=20毫米,材料 相同。G=0.4E,M=7KNm。求轴内的最大剪应 力。
M
2m
H
1m
1m G
E
2m F
3、直角拐ABC的直径为D=20毫米,CD杆的横截面 面积为A=6.5㎜2,二者采用同种材料制成。弹性 模量E=200GPa,剪变模量G=80 GPa。CD杆 的线胀系数α=12.5×10-6,温度下降50º。求出直 角拐的危险点的应力状态。
A 0.6m
B 0.3m
C
D
4、图示中梁为工字型截面,梁的跨度为L=4米, 力P=40KN作用在梁的中央。对本身形心轴的惯性 矩为IZ=18.5×106mm4,求该梁的最大剪力和弯矩, 并求C截面的挠度。
P
90 C
5、图示中的钢制直角曲拐ABC的截面为圆型,直径为d=100
毫米,位于水平面内,A端固定,C处铰接钢制直杆CD。已
q
a
a
7、悬臂梁的抗弯刚度为EI,长为2a,用二根长均为 a的拉杆BC、CD支撑。已知拉杆的抗拉压刚度相 等同为EA。求C点的铅垂挠度。
《结构力学》第八章-位移法

(5) 按叠加法绘制最后弯矩图。
18
例 8—1 图示刚架的支座A产生了水平位移a、竖向位移b=4a
及转角=a/L,试绘其弯矩图。
L
解:基本未知量 Z 1(结点C转角); C EI
B C Z1
B
基本结构如图示;
2EI
建立位移法典型方程: r11Z1+R1△=0
A Z1
基本结构 A
为计算系数和自由项,作
链为了杆能数简,捷即地为确定原出结结构构的的独独立立线线位
(b)
移位移数数目目(见,可图以b)。
11
2.位移法的基本结构
用位移法计算超静定结构时,每一根杆件都视为一根单跨超静
定梁。因此,位移法的基本结构就是把每一根杆件都暂时变为一根
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
构在荷载等外因和各结点位移共同作用下,各附加联系上的反力矩
或反力均应等于零的条件,建立位移法的基本方程。
(3) 绘出基本结构在各单位结点位移作用下的弯矩图和荷载作
用下(或支座位移、温度变化等其它外因作用下)的弯矩图,由平衡
条件求出各系数和自由项。
(4) 结算典型方程,求出作为基本未知量的各结点位移。
正。
B
B
B′
X2
X3
M1图
1
M
图
2
7
将以上系数和自由项代入典型方程,可解得 X1=
X2=
令
称为杆件的线刚度。此外,用MAB代替X1,用
MBA代替X2,上式可写成
MAB= 4iA+2i B- MBA= 4i B +2i A-
(8—1)
是此两端固定的梁在荷载、温度变化等外因作用下的杆