四川大学仪器分析第八章-分子发光分析法答案讲课教案
分子发光分析法

S2最低振动能级
内转移 振动弛豫
荧光:10-8~10-10s,第一激发单重态的最低振 动能级 → 基态,通常比分子吸收的能 量小,波长更长; 磷光:10-2~10-6s,第一激发三重态的最低振 动能级 → 基态,发光速度很慢,光照 停止后可持续一段时间;
2. 荧光、磷光的寿命和量子产率
(1) 荧光寿命 τf:荧光分子处于 S1激发态的 平均寿命。
若ΣK<<kf, Φf接近于1,荧光强度越大。 即荧光强度取决于荧光发射与非辐射跃迁过 程的竞争结果。
磷光量子产率Φp :
p ST
Kp K j
Kp
Kp:磷光发射速率常数; ΦST : 系间窜越量子产率; ΣKj:非辐射跃迁速率常数的总和。
荧光量子产率Φ的测定:
FU AS U S FS AU
苯溶液的吸收光谱和发射光谱
8.2.1.6 荧光(磷光)强度与溶液浓度的关系
If = f Ia
If :荧光强度; f:荧光量子产率; Ia:吸收光强。 由 Lambert-beer 定律及吸收光强度的概念, 可推导出,当bc ≤0.05时,有: If = 2.303 f I0bc
与荧光类似,溶液的磷光强度(IP)与低浓度 下磷光物质浓度之间的关系可表示如下: IP= 2.303ST P I0bc
(1) 灵敏度高(比UV-Vis高2-3个数量级) (2) 选择性高 (3) 试样量小,操作简便,线性范围宽
8.2 分子荧光与磷光光谱分析法
Molecular fluorescence spectrometry,MFS Molecular phosphorescence spectrometry,MPS 8.2.1 基本原理 8.2.1.1 荧光和磷光产生机理
川大学仪器分析第八章 分子发光分析法答案

第八章分子发光分析法基本要求:了解荧光的产生和影响荧光强度的因素,掌握分子荧光光谱法的定量关系和应用特点,重点:荧光光谱法的定量关系、应用特点。
难点:荧光的产生和影响荧光强度的因素。
参考学时:3学时作业参考答案1.简述荧光法产生的基本原理。
具有什么样结构的物质最容易发荧光答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。
芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。
2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、荧光量子产率、激发光谱、荧光光谱答:单重态:电子自旋都配对的分子的电子状态称为单重态。
三重态:有两个电子自旋不配对而同方向的状态。
荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射;振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。
内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。
外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。
失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。
系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。
荧光量子产率:表示物质分子发射荧光的能力。
荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。
荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。
仪器分析习题参考答案

仪器分析习题作业第一章绪论需要特殊的仪器设备;仪器分精心整理析需要特殊的仪器设备;(3)化学分析只(4)化学分析灵精心整理敏度低、选择性差,但测量准确度高,适合于常量组分分析;超痕量组精心整理分的分析。
2、共同点:都是进行组分测量分精心整理析是利用仪器设备进行组分分析的一种技术手段。
1-7采用仪器分析进行定量分析为神魔要进行校正?精心整理因为仪器分析直接测量的是物质的各种物理信号而不是其浓及样品基体等对测量的影响,精心整理必须首先建立特定测量条件下信号与浓度或质量数之间的关各部件的主要作用为光源:提精心整理供能量使待测组分产生吸收包括激发到高能态;精心整理精心整理精心整理信号。
精心整理信号处理精心整理精心整理精心整理精心整理2-2:单色器组成?作用是?光分解为平行光;精心整理单色元件:将复合光色散为单色光(即将光按波长排列)2-7光栅宽度5.0mm,每毫米刻线数720条,该光栅第一级光谱分辨率多少?精心整理因为对于一级光谱(n=1)而言,光栅的分辨率为:离为:dλ=精心整理==0.28cm-13-6(注意内标与内标法的概念区别)精心整理解:在进行内标法定量分析时,在待样品中加入或基体中消除试样的组成、形态及测量精心整理条件如光源的变化等对测量结果的影响,提高分析结果的稳液体试样都在引入ICP 光源精心整理前必须转化为气态或气溶胶状态。
因此试样引入ICP 光源的第8 章分子发光分析法8-1解释下列名词精心整理(1)单重态:体系中两个电子以不同的自旋方向处于相同或中,从较高振动能级到较低振精心整理动能级的非辐射跃迁过程。
(5)荧光猝灭:某种给定荧光精心整理(6)荧光量子产率:荧光体所发射的荧光的光子数与所吸收精心整理精心整理精心整理精心整理精心整理8-2磷光与荧光在发射特性上差别与原因?前都将通过振动驰豫、内转化精心整理等非辐射驰豫过程回到第一电子激发单重态的最低振动能级导致荧光减弱,但却使磷光增精心整理强。
最新四川大学仪器分析第八章 分子发光分析法答案

4. 荧光物质浓度高时,为什么会发生荧光强度偏离 F=2.3K’I0εbc 光系式的情况? 答:由 Lambert-Beer 定律可知,F=K’I0(1-e-2.303εbc),将此式中的指数项展开,当 εbc<0.05、I0 一定时,荧光强度 F=Kc,所以低浓度时,溶液的荧光强度与荧光物质浓 度呈线性关系。当 c 变得足够大使得吸光度.超过 0.05 时,F 将偏向浓度轴。原因很多。 首先是数学上的近似带来的误差,其次是入射光被强烈地吸收,造成溶液内部的入射光 强锐减。当溶液浓度增加时,发光物质分子间碰撞还会产生自猝灭。当荧光化合物的发 射波长与吸收峰重叠时,液体内部激发态分子所发射的荧光在通过外部溶液时被同类分 子吸收,因而浓度增加同时会导致自吸收增强。
8.试比较紫外-可见分光光度计与荧光光度计的异同点。 不同点: 第一是光源不同。荧光光度计光源为高压汞蒸气灯和高压氙弧灯,紫外-可见分光 光度计用的光源是钨灯、碘钨灯、氢灯等; 第二是吸收池不同。在荧光分光光度计中的荧光池是四面透明;透过荧光池的激发 光方向与被测物发射的荧光是相互垂直的;而在紫外-可见分光光度计中,比色皿是两 面透明;入射光与检测器是在同一直线上。 相同点:都是由光源、单色器、吸收池、检测器四大主要部分组成。
仅供学习与交流,如有侵权请联系网站删除 谢谢1
精品好文档,推荐学习交流
溴化碳)能使荧光减弱。溶剂纯度对荧光强度的影响也很大。当溶剂中含卤素或重金属 原子时,荧光强度降低。
pH 值的影响:pH 值对荧光强度的影响是可逆的,含酸、碱性取代基的芳香化合物 的荧光一般都与 pH 值有关,一些荧光物质在酸性或碱性溶液中会发生水解。而不会离 解的荧光物质在任何 pH 值均产生荧光。
仪器分析各章习题与答案重点讲义资料

仪器分析各章习题与答案重点讲义资料第⼀章绪论问答题1. 简述仪器分析法的特点。
第⼆章⾊谱分析法1.塔板理论的要点与不⾜是什么?2.速率理论的要点是什么?3.利⽤保留值定性的依据是什么?4.利⽤相对保留值定性有什么优点?5.⾊谱图上的⾊谱流出曲线可说明什么问题?6.什么叫死时间?⽤什么样的样品测定? .7.在⾊谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率?为什么?8.某⼀⾊谱柱从理论上计算得到的理论塔板数n很⼤,塔板⾼度H很⼩,但实际上柱效并不⾼,试分析原因。
9.某⼈制备了⼀根填充柱,⽤组分A和B为测试样品,测得该柱理论塔板数为4500,因⽽推断A和B在该柱上⼀定能得到很好的分离,该⼈推断正确吗?简要说明理由。
10.⾊谱分析中常⽤的定量分析⽅法有哪⼏种?当样品中各组分不能全部出峰或在组分中只需要定量其中⼏个组分时可选⽤哪种⽅法?11.⽓相⾊谱仪⼀般由哪⼏部分组成?各部件的主要作⽤是什么?12.⽓相⾊谱仪的⽓路结构分为⼏种?双柱双⽓路有何作⽤?13.为什么载⽓需要净化?如何净化?14.简述热导检测器的基本原理。
15.简述氢⽕焰离⼦化检测器的基本结构和⼯作原理。
16.影响热导检测器灵敏度的主要因素有哪些?分别是如何影响的?17.为什么常⽤⽓固⾊谱分离永久性⽓体?18.对⽓相⾊谱的载体有哪些要求?19.试⽐较红⾊载体和⽩⾊载体的特点。
20.对⽓相⾊谱的固定液有哪些要求?21.固定液按极性⼤⼩如何分类?22.如何选择固定液?23.什么叫聚合物固定相?有何优点?24.柱温对分离有何影响?柱温的选择原则是什么?25.根据样品的沸点如何选择柱温、固定液⽤量和载体的种类?26.⽑细管⾊谱柱与填充柱相⽐有何特点?27.为什么⽑细管⾊谱系统要采⽤分流进样和尾吹装置?28.在下列情况下⾊谱峰形将会怎样变化?(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增⼤载⽓流速;(5)增加柱长;(6)固定相颗粒变粗。
90350-仪器分析-第八章 分子发光分析法

以系间窜跃方式转至第一激发三重态,经过振动弛豫 转至其最低振动能级,跃回至基态时便发射磷光。
3、荧光/磷光光谱曲线
§4.2 分子荧光与磷光光谱分析法
• 激发光谱曲线-荧光强度与激
发光波长的关系
• 固定测量波长为荧光/磷光的最 大发射波长,改变激发波长, 测量荧光或磷光强度;
荧光发射光谱 荧光激发光谱
磷光光谱
• 荧光或磷光光谱曲线-荧光
或磷光强度与发射光波长的关 系
• 固定激发光波长为其最大激发 波长,测量发射不同波长的荧 光或磷光强度.
200 260 320 380 440 500 560 620 室温下菲的乙醇溶液荧(磷)光光谱
§4.2 分子荧光与磷光光谱分析法
4. 荧光、磷光与分子结构的关系
荧光激发光谱荧光发射光谱
200 蒽25的0 激30发0光3谱50和4荧00光4光50n谱m500
§4.2 分子荧光与磷光光谱分析法
6、荧光强度与溶液浓度的关系(定量分析)
溶液的荧光强度(If )与溶液吸收的光强度(Ia)及荧光量
子产率( f)的关系 :
If = Ia
由朗伯-比耳定律:
A=lg(I0/ It), Ia= I0- It
§4.2 分子荧光与磷光光谱分析法
9. 影响分子发光的环境因素
a.溶剂的影响
除一般溶剂效应外,溶剂的极性、氢键、配位键的形成 都将使化合物的荧光发生变化;
b.温度的影响
荧光强度对温度变化敏感,温度增加,外转换去活的几 率增加。
c. 溶液pH
酸碱化合物受溶液pH的影响较大,需要严格控制.
§4.2 分子荧光与磷光光谱分析法
分子发光分析法

第7章分子发光分析法【7-1】解释下列名词。
(1)单重态;(2)三重态;(3)荧光;(4)磷光;(5)化学发光;(6)量子产率;(7)荧光猝灭;(8)振动弛豫;(9)系间跨越;(10)内转换;(11)重原子效应。
答:(1)单重态:在给定轨道中的两个电子,必定以相反方向自旋,自旋量子数分别为1/2和-1/2,其总自旋量子数s=0。
电子能级的多重性用M=2s+1=1,即自旋方向相反的电子能级多重性为1。
此时分子所处的电子能态称为单重态或单线态,用S表示。
(2)三重态:当两个电子自旋方向相同时,自旋量子数都为1/2,其总自旋量子数s=1。
电子能级的多重性用M=2s+1=3,即自旋方向相同的电子能级多重性为3,此时分子所处的电子能态称为三重态或三线态,用T表示。
(3)荧光:分子受到激发后,无论处于哪一个激发单重态,都可通过振动弛豫及内转换,回到第一激发单重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光。
(4)磷光:分子受到激发后,无论处于哪一个激发单重态,都可通过内转换、振动弛豫和体系间跨越,回到第一激发三重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光(5)化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。
表示。
(6)量子产率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比,常用f(7)荧光猝灭:指荧光物质分子与溶剂分子之间发生猝灭,荧光猝灭分为静态猝灭和动态猝灭。
(8)振动弛豫:处于激发态最高振动能级的外层电子回到同一电子激发态的最低振动能级以非辐射的形式将能量释放的过程。
(9)系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程。
即分子由激发单重态以无辐射形式跨越到激发三重态的过程。
(10)内转换:相同多重态的两个电子态之间的非辐射跃迁。
(11)重原子效应:使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。
《仪器分析》教案5-分子发光分析法

《仪器分析》教案5-分子发光分析法第一篇:《仪器分析》教案5- 分子发光分析法第8章分子发光分析法8.1教学建议一、从光谱定性分析和定量分析的依据和方法入手,在了解分子发光分析特点的基础上,介绍分子荧光与磷光光谱分析法的基本原理、仪器结构组成、常规测定方法及应用。
二、在比较分子荧光与磷光光谱分析法的基础上,介绍化学发光分析方法的基本原理及分析特点与应用。
8.2主要概念一、教学要求:(一)、掌握分子荧光与磷光光谱分析方法的基本原理;(二)、掌握荧光与磷光分析仪器的结构组成、常规测定方法及应用;(三)、掌握化学发光法的基本原理及应用;二、内容要点精讲第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
荧光分析的特点:灵敏度高:视不同物质,检测下限在0.1~0.001mg/mL之间。
可见比UV-Vis的灵敏度高得多。
选择性好:可同时用激发光谱和荧光发射光谱定性。
结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。
应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。
二、基本原理1、分子荧光的产生处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。
这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。
单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。
在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。
处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。
辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学仪器分析第八章-分子发光分析法答案第八章分子发光分析法基本要求:了解荧光的产生和影响荧光强度的因素,掌握分子荧光光谱法的定量关系和应用特点,重点:荧光光谱法的定量关系、应用特点。
难点:荧光的产生和影响荧光强度的因素。
参考学时:3学时作业参考答案1.简述荧光法产生的基本原理。
具有什么样结构的物质最容易发荧光?答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。
芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。
2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、荧光量子产率、激发光谱、荧光光谱答:单重态:电子自旋都配对的分子的电子状态称为单重态。
三重态:有两个电子自旋不配对而同方向的状态。
荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射;振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。
内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。
外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。
失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。
系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。
荧光量子产率:表示物质分子发射荧光的能力。
荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。
荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。
3.溶液中,溶剂的极性、pH值及温度是如何影响荧光强度的。
答:溶剂的影响:随着溶剂极性增加,荧光物质的n—π*跃迁能量增大,π-—π*跃迁的能量降低,从而导致荧光强度增加,荧光波长红移。
溶剂若能和荧光物质形成氢键或使荧光物质的电离状态改变,会使荧光强度、荧光波长改变。
含重原子的溶剂(碘乙烷、四溴化碳)能使荧光减弱。
溶剂纯度对荧光强度的影响也很大。
当溶剂中含卤素或重金属原子时,荧光强度降低。
pH值的影响:pH值对荧光强度的影响是可逆的,含酸、碱性取代基的芳香化合物的荧光一般都与pH值有关,一些荧光物质在酸性或碱性溶液中会发生水解。
而不会离解的荧光物质在任何pH值均产生荧光。
温度的影响:温度降低会增加荧光强度,因为降低了碰撞与非辐射失活的概率。
4.荧光物质浓度高时,为什么会发生荧光强度偏离F=2.3K’I0εbc光系式的情况?答:由Lambert-Beer定律可知,F=K’I0(1-e-2.303εbc),将此式中的指数项展开,当εbc<0.05、I0一定时,荧光强度F=Kc,所以低浓度时,溶液的荧光强度与荧光物质浓度呈线性关系。
当c变得足够大使得吸光度.超过0.05时,F将偏向浓度轴。
原因很多。
首先是数学上的近似带来的误差,其次是入射光被强烈地吸收,造成溶液内部的入射光强锐减。
当溶液浓度增加时,发光物质分子间碰撞还会产生自猝灭。
当荧光化合物的发射波长与吸收峰重叠时,液体内部激发态分子所发射的荧光在通过外部溶液时被同类分子吸收,因而浓度增加同时会导致自吸收增强。
5.试述为什么π-π*型跃迁的荧光要比π*-n型荧光易发生而且强度大。
答:π-π*型跃迁产生的荧光要比π*-n型荧光强度大而且易发生,是由于π-π*跃迁属于电子自旋允许的跃迁,具有较大的ε,它一般比属于禁阻跃迁的n-π*跃迁ε大100-1000倍,其次π-π*跃迁的寿命约10-7-10-9s,比n-π*跃迁的寿命10-5-10-7要短,因而在与各种失活过程竞争中,π-π*跃迁更有利,此外,在π-π*跃迁过程中,因S1与T1能级差较大,通过系间窜跃至三重态的速率常数也较小,这也有利于荧光发射。
6.荧光激发光谱与发射光谱之间有什么关系?答:激发光谱与发射光谱大致呈“镜像对称”。
发射光谱的形状与基态中振动能级的分布状况有关,而激发光谱的形状则反映了第一电子激发单重态中振动能级的分布。
基态和第一电子激发单重态中的振动能级分布情况类似,所以激发光谱与发射光谱大致呈镜像对称。
7.用什么方法可以提高荧光分析法的灵敏度答:增大光源辐射强度I0(增加激发和发射光栅的宽度),放大荧光信号(增加光电倍增管PMT的电压)。
8.试比较紫外-可见分光光度计与荧光光度计的异同点。
不同点:第一是光源不同。
荧光光度计光源为高压汞蒸气灯和高压氙弧灯,紫外-可见分光光度计用的光源是钨灯、碘钨灯、氢灯等;第二是吸收池不同。
在荧光分光光度计中的荧光池是四面透明;透过荧光池的激发光方向与被测物发射的荧光是相互垂直的;而在紫外-可见分光光度计中,比色皿是两面透明;入射光与检测器是在同一直线上。
相同点:都是由光源、单色器、吸收池、检测器四大主要部分组成。
9.与过渡金属离子相比,非过渡金属离子的荧光螯合物要多,这是为什么?答:金属离子与有机配位体所形成的配合物的发光能力,与金属离子以及有机配位体结构特性有很大关系。
金属离子可分为三类:第一类是离子的外电层具有与惰性气体相同的结构,为抗磁性的离子,它与含有芳基的有机配位体形成配合物时多数会发生较强的荧光,因为这类离子与有机配位体配合时,会使原来有机配位体的单线最低电子激发态S1为n,π1*能层转变为π,π1*能层,并使原来的非刚性平面结构转变为刚性的平面结构,使原来不发荧光(或弱荧光)的有机配位体转变为发强荧光者。
此类配合物的荧光强度随金属离子的原子量增加而减弱,吸收蜂和发射峰也相应向长波长方向移动,这一类配合物系由配位体L吸光和发光,故称L—L*发光。
第二类金属离子亦具有惰性气体的外层电子结构和具有抗磁性,然而其次外电子层为含有未充满电子的f层。
这类金属离子会产生f—f*吸光跃迁,亦会产生f*—f发光跃迁,但都较微弱,可是当它们和有机配位体生成二元配合物之后,由于f*能层多在配位体最低单线态的S1的π,π1*能层下方,因此被激发的有机配位体的能量可能转移给金属离子m而产生金属离子激发态m*(即m—m*跃迁),然后由激发态金属离子m*返回基态离子m 而产生m*—m发光。
第三类金属离子为过渡金属离子,它们与有机配位体所生成的配合物,大多数不发生荧光和磷光,其原因尚不清楚,目前有两种说法:一是认为它们是顺磁性物质,可能产生可逆的电荷转移作用而导致荧光猝灭,二是认为顺磁性和过渡金属的重原子效应引起电子自旋-轨函耦合作用,使激发态分子由单线态转入三线态,而后通过内转换去活化,在少数情况下,亦发现过渡金属离子会发光。
10.试述化学发光分析的基本原理。
它与荧光法有什么异同点?答:在某些化学反应中,某种反应产物或共存物分子由于吸收了反应产生的化学能,由基态跃迁至较高电子激发态中各个不同的振动能级,然后经过振动弛豫或内转换到达第一电子激发态的最低振动能级,由此以辐射的形式放出能量跃回到基态。
在个别的情况下,它可以通过系间穿跃到达亚稳的三重态,然后再回到基态的各个振动能级,并产生磷光辐射,这两种光都是化学发光。
物质的化学发光光谱与该物质的荧光光谱(个别的情况下与磷光光谱)是十分相似的,只是荧光和磷光是以光来激发,而化学发光则是靠化学能来激发的。
11.化学发光反应需要满足的条件是什么?A.化学反应要提供足够的能量,而这一化学能又能被反应分子所吸收,形成一种激发态的产物。
至少要有一种物质能够接受化学反应能量,形成激发态。
化学发光反应的△G通常在40~70 kcal/mol。
B.在反应条件下,激发态分子或原子,能够以电磁辐射的形式释放出光子,回到基态;或者它能够转移能量到另一个分子上而使此分子被激发;这一分子回到基态时,释放出光子。
满足上述条件的通常是氧化还原反应!12.什么是化学发光效率?化学发光效率愈大,化学发光的强度愈大,这个说法是否正确?化学发光效率ΦCL表示一个化学发光反应中的发光能力,它也等于产生激发态的化学效率Φr(激发态的分子数/反应分子数)与激发态分子的发射效率(发射光子数/激发态的分子数)的乘积。
化学发光效率越大,化学发光的强度就越大,这个说法是错误的。
发光强度与发光试剂的发光效率、发光时间以及发光试剂的浓度有关。
不能单纯说化学发光效率越大,化学发光的强度就越大。
13.化学发光分析有些什么特点与短处?化学发光分析法具有以下特点:①极高的灵敏度(2×10-11 mol/L);②化学发光具有较好的选择性(不同的化学反应很难产生出同一种发光物质);③仪器装置比较简单,不需要复杂的分光和光强度测量装置(干涉滤光片,光电倍增管);④分析速度快,一次分析在1min之内就可完成,适宜进行自动连续测定。
⑤定量线性范围宽,化学发光反应的发光强度和反应物的浓度在几个数量级的范围内成良好的线性关系。
⑥化学发光反应多为氧化还原反应,激发能与反应能相当(△E=170~300kJ/mol),位于可见光区;⑦发光持续时间较长,反应持续进行。
化学发光的短处:①化学发光反应发出的光通常都很微弱。
②化学反应一般速度较快,发光信号会瞬间消失。
所以样品与试剂能否快速、充分、均匀混合成为影响分析结果精密度的主要因素。