第二讲函数的概念

合集下载

02 复合函数、反函数、初等函数

02 复合函数、反函数、初等函数

y ax
(a 1)
• (0,1)
11
首页
上页
返回
下页
结束

3. 对数函数 y loga x (a 0,a 1)
y ln x
y loga x
(1,0)

(a 1)
y log 1 x
a
12
首页
上页
返回
下页
结束

4. 三角函数
正弦函数 y sin x
y sin x
13
首页
上页
返回
幂函数 指 对数 数函 函数 数 三角函数 反三角函数
23
首页
上页
返回
下页
结束

幂函数 y = x α (∈R),
指数函数 y = a x (a >0,且 a ≠1) 对数函数 y = log a x (a>0,且a≠1) 三角函数 y = sin x , y = cos x
y = tan x , y = cot x 反三角函数 y = arcsin x , y = arccos x
例 如 y x3 , x R是 单 射 , 其反函数为x 3 y, y R 通常写作y 3 x, x R
7
首页
上页
返回
下页
结束

y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
8
首页
上页
返回
下页
结束

三、初等函数
余割函数 y csc x 1
sin x
y csc x
18

【(2020-2022)三年真题分项汇编】第2讲 函数的概念与基本初等函数Ⅰ(新高考)(原卷版)

【(2020-2022)三年真题分项汇编】第2讲 函数的概念与基本初等函数Ⅰ(新高考)(原卷版)

【(2020-2022)三年真题分项汇编】第2讲函数的概念与基本初等函数Ⅰ1.【2022年新高考2卷】已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f(k)22k=1=( )A .−3B .−2C .0D .12.【2021年新高考2卷】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c << 3.【2021年新高考2卷】已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f = 4.【2020年新高考1卷(山东卷)】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天5.【2020年新高考1卷(山东卷)】若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃6.【2020年新高考2卷(海南卷)】已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a的取值范围是( )A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞ 7.【2022年新高考1卷】已知函数f(x)及其导函数f ′(x)的定义域均为R ,记g(x)=f ′(x),若f (32−2x),g(2+x)均为偶函数,则( )A .f(0)=0B .g (−12)=0C .f(−1)=f(4)D .g(−1)=g(2)8.【2021年新高考2卷】设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅,其中{}0,1i a ∈,记()01k n a a a ω=+++.则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21n n ω-= 9.【2021年新高考1卷】已知函数()()322x x x a f x -=⋅-是偶函数,则=a ______.10.【2021年新高考1卷】函数()212ln f x x x =--的最小值为______.11.【2021年新高考2卷】写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数。

02初等函数及数列极限的概念

02初等函数及数列极限的概念
并称该支反函数为反双曲余弦的主支。
通常所说的反双曲余弦函数即指此主支。
类似于上面的作法, 可以得到 arth x , arcth x , arsech x , arcsch x 的表达式.
第二章 极限
本章学习要求:
了解数列极限的概念, 会用《 N》语言描述数列的 极限。正确理解 和 N 的含义。
双曲余弦函数的 定义域为 (, )
双曲余弦函数 在(, 0)内单调减少 在[0, )内单调增加
双曲余弦函数是偶函数
y
y = cth x
1
O y = th x
x
1
双曲正切、双曲余切的图形
双曲正切函数 定义域为 (, )
双曲正切函数 是单调增加的且有界
| th x | 1
4
x1 x
1 2
1 2n

,
有界 (可取 M 1 ). 2
(2) { (1)n1}: 1, 1, 1, 1,, (1)n1,
x2n
–1
0
x 2 n 1
x
1
{(1)n1}不单调, 但有界 (可取 M 1 ).
(3)
1

(1)n n

:
x3
••

(••x•2n•-•1••(•••
*
•••)•
x2n
••• •••)•

x4


1 103

1 102n
1
0
1
1
102n
y y f (x) M
yM
I (
O
) x
M y M
数列的有界性的定义
若 M 0, 使得 | xn | M , n N 成立, 则称数列{xn} 有界. 否则称{xn} 是无界的.

第二章 第二讲 函数的定义域、值域

第二章 第二讲 函数的定义域、值域

第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f (x )的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R . (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f (x )=x 0的定义域为{x |x ≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域: 1.y =kx +b (k ≠0)的值域是R . 2.y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧y ⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪y ≤4ac -b 24a . 3.y =kx(k ≠0)的值域是{y |y ≠0}.4.y =a x (a >0且a ≠1)的值域是(0,+∞). 5.y =log a x (a >0且a ≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.3.函数f (x )与f (x +a )(a 为常数a ≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x >1.( × ) (3)函数y =f (x )定义域为[-1,2],则y =f (x )+f (-x )定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a )的值域为R ,则a 的取值范围为⎝⎛⎦⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × )[解法二](判别式法):设x 2+2=t (t ≥2),则y =t +1t ,即t 2-ty +1=0,∵t ∈R ,∴Δ=y 2-4≥0,∴y ≥2或y≤-2(舍去).( × )[解法三](配方法):令x 2+2=t (t ≥2),则y =t +1t =⎝⎛⎭⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t ≥2时是增函数,所以t =2时,y min =322,故y ∈⎣⎡⎭⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a )值域为R 应满足Δ≥0,即1-4a ≥0,∴a ≤14.题组二 走进教材2.(必修1P 17例1改编)函数f (x )=2x -1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x -1≥0x -2≠0,解得x ≥0且x ≠2,故选C .3.(必修1P 32T5改编)函数f (x )的图象如图,则其最大值、最小值分别为( B )A .f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫-32 B .f (0),f ⎝⎛⎭⎫32 C .f ⎝⎛⎭⎫-32,f (0) D .f (0),f (3)4.(必修1P 39BT1改编)已知函数f (x )=x +9x,x ∈[2,4]的值域为⎣⎡⎦⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎡⎦⎤6,132. 题组三 走向高考5.(2020·北京,11,5分)函数f (x )=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞).6.(2016·北京,5分)函数f (x )=xx -1(x ≥2)的最大值为2. [解析] 解法一:(分离常数法)f (x )=x x -1=x -1+1x -1=1+1x -1,∴x ≥2,∴x -1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f (x )=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy -y =x ,∴x =y y -1.∵x ≥2,∴y y -1≥2,∴yy -1-2=2-y y -1≥0,解得1<y ≤2,故函数f (x )的最大值为2.解法三:(导数法)∵f (x )=xx -1,∴f ′(x )=x -1-x (x -1)2=-1(x -1)2<0,∴函数f (x )在[2,+∞)上单调递减,故当x=2时,函数f (x )=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎫-1,-12 C .(-1,0)D .⎝⎛⎭⎫12,1[解析] 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为⎝⎛⎭⎫-1,-12. [引申1]若将本例中f (x )与f (2x +1)互换,结果如何? [解析] f (2x +1)的定义域为(-1,0),即-1<x <0, ∴-1<2x +1<1,∴f (x )的定义域为(-1,1).[引申2]若将本例中f (x )改为f (2x -1)定义域改为[0,1],求y =f (2x +1)的定义域,又该怎么办? [解析] ∵y =f (2x -1)定义域为[0,1].∴-1≤2x -1≤1,要使y =f (2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x ≤0, 因此y =f (2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 〔变式训练1〕 (1)(角度1)函数f (x )=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( D ) A .-2 B .-1 C .1D .2(3)(角度2)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.故选B .(2)因为-2x +a >0,所以x <a 2,所以a2=1,得a =2.故选D .(3)因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x |1+|x |;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2; (6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x |1+|x |=-1+21+|x |, ∵|x |≥0,∴|x |+1≥1,∴0<2|x |+1≤2.∴-1<-1+21+|x |≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x |1+|x |,得|x |=1-y 1+y .∵|x |≥0,∴1-y1+y≥0,∴-1<y ≤1,即函数值域(-1,1]. (2)解法一:配方法:y =-2⎝⎛⎭⎫x -142+258, ∴0≤y ≤524,∴值域为⎣⎡⎦⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t ≤258, 又∵y =t 有意义,∴0≤t ≤258,∴0≤y ≤524,∴值域为⎣⎡⎦⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x ≠0),得y -1=x +1x .∵⎪⎪⎪⎪x +1x =|x |+⎪⎪⎪⎪1x ≥2|x |·⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y ≤-1或y ≥3.即函数值域为(-∞,-1]∪[3,+∞) 解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y )x +1=0.∵方程有实根,∴Δ=(1-y )2-4≥0. 即(y -1)2≥4,∴y -1≤-2或y -1≥2.得y ≤-1或y ≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y ′=1-1x 2=(x +1)(x -1)x 2<0,得-1<x <0或0<x <1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y ≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y ≤-1. ∴y ≤-1或y ≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t (t ≥0),得x =1-t 22,∴y =1-t 22-t =-12(t +1)2+1≤12(t ≥0),∴y ∈⎝⎛⎦⎤-∞,12.即函数的值域为⎝⎛⎦⎤-∞,12. 解法二:单调性法∵1-2x ≥0,∴x ≤12,∴定义域为⎝⎛⎦⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝⎛⎭⎫-∞,12上均单调递增,∴y ≤12-1-2×12=12,∴y ∈⎝⎛⎦⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎡⎦⎤-π2,π2,y =sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4,∵θ∈⎣⎡⎦⎤-π2,π2,∴θ+π4∈⎣⎡⎦⎤-π4,3π4,∴sin ⎝⎛⎭⎫θ+π4∈⎣⎡⎦⎤-22,1,∴y ∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x <-1),3(-1≤x ≤2),2x -1(x >2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a ≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a ≠0,f (x )值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x )+bf (x )+c (a ≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b ±cx +d (c ≠0)的函数;如例3(4);形如y =ax +b ±c 2-x 2(c ≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ; (3)y =2x 2-x +12x -1⎝⎛⎭⎫x >12. [解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1]. 解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y1+y≥0.所以-1<y ≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t ≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t ≥0), 所以y ≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12,因为x >12,所以x -12>0,所以x -12+12x -12≥2⎝⎛⎭⎫x -12·12⎝⎛⎭⎫x -12=2,当且仅当x -12=12x -12,即x =1+22时取等号.所以y ≥2+12,即原函数的值域为⎣⎡⎭⎫2+12,+∞.导数法:y ′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f (x )=lg [(a 2-1)x 2+(a +1)x +1]. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为R ,求实数a 的取值范围.[分析] (1)由f (x )的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立; (2)由f (x )的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a >1或a <-1,a >53或a <-1. ∴a <-1或a >53.又a =-1时,f (x )=1>0,满足题意.∴a ≤-1或a >53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f (x )的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a ≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a ≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎡⎦⎤32,4 C .⎣⎡⎦⎤32,3D .⎣⎡⎭⎫32,+∞[解析] (1)①当m =0时,y =8,其定义域为R . ②当m ≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,∴32≤m ≤3. 另:由y =x 2-3x -4=⎝⎛⎭⎫x -322-254,∴32≤m ≤3.。

第2章 第2讲 函数的单调性与最值

第2章 第2讲 函数的单调性与最值

(4)有界性法:利用代数式的有界性(如 x2≥0, x≥0,2x>0,-1≤sinx≤1 等)确定函数的值域.如举例说明 4 可用此法.
(5)分离常数法:形如求 y=acxx++db(ac≠0)的函数的值域或最值常用分离 常数法求解.如举例说明 4 可用此法.
(2)图象法:如果 f(x)是以图象形式给出的,或者 f(x)的图象易作出,则 可由图象的直观性确定它的单调性.如举例说明 2.
(3)导数法:利用导数取值的正负确定函数的Βιβλιοθήκη 调性.如举例说明 3 可 用此法.
2.熟记函数单调性的三个常用结论 (1)若 f(x),g(x)均是区间 A 上的增(减)函数,则 f(x)+g(x)也是区间 A 上 的增(减)函数; (2)若 k>0,则 kf(x)与 f(x)单调性相同;若 k<0,则 kf(x)与 f(x)单调性相 反; (3)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这 两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个 函数的复合函数为减函数,简称“同增异减”.如举例说明 1.
fxx11--fx2x2>0⇔(x1-x2)[f(x1)-f(x2)]>0.(
)
(3)若函数 y=f(x),x∈D 的最大值为 M,最小值为 m(M>m),则此函数
的值域为[m,M].( )
(4)闭区间上的单调函数,其最值一定在区间端点取到.( )
答案 (1)× (2)√ (3)× (4)√
答案
2.小题热身 (1)设定义在[-1,7]上的函数 y=f(x)的图象如图所示,则函数 y=f(x)的 增区间为__[-__1_,_1_]_,__[5_,_7_]___. 解析 由图可知函数的单调递增区间为[-1,1]和[5,7].

高中数学第2讲 函数概念与表示(教案)新人教版必修1

高中数学第2讲  函数概念与表示(教案)新人教版必修1

函数概念与表示教学目标:掌握函数的基本概念〔高考要求 B 〕教学重难点:了解函数的定义方法,掌握函数“三要素〞及其求法。

教学过程: 一、知识要点:1.函数的“三要素〞: 定义域、对应关系 、值域。

2.常用的函数表示法:〔1〕列表法:〔2〕图象法:〔3〕解析法〔分段函数〕:〔4〕复合函数: 〔1〕求函数定义域一般方法:①给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;②实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义; ③复合函数定义域:()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域。

由()a g x b ≤≤解出。

[()]f g x 的定义域[],a b ,求()f x 的定义域。

是()g x 在[],a b 上的值域〔2〕求函数解析式的方法:①函数类型,求函数的解析式:待定系数法;②复合关系,求函数的解析式:换元法、配凑法; ③函数图像,求函数解析式;数形结合法; 〔3〕求函数值域的类型与求法:类型:①求常见函数值域;②复合函数的值域;③组合函数的值域。

求法:①直接法、②配方法、 ③离常数法、④换元法、⑤逆求法、⑥叛别式法、⑦数形结合。

二、基础练习:1、下各组函数中表示同一函数的有〔4〕〔1〕f 〔x 〕=2x ,g 〔x 〕=33x ; 〔2〕f 〔x 〕=x x ||,g 〔x 〕=⎩⎨⎧<-≥;01,01x x〔3〕f 〔x 〕=x1+x ,g 〔x 〕=x x +2; 〔4〕f 〔x 〕=x 2-2x -1,g 〔t 〕=t 2-2t -1。

2、〔2008·全国Ⅰ理,1〕函数y=x x x +-)1(的定义域为 {x|x ≥1}∪{0}3、函数()f x 定义域为(0,2),求2()23f x +定义域;解:〔1〕由0<x 2<2,得4、函数2()42f x x x =-+,(0,3)x ∈的值域是[)2,2-5、〔07某某文13〕设函数1()f x =112223()(),x f x x f x x -==,,那么123(((2007)))f f f =1/2007. 三、例题精讲:题型1:函数关系式 例1.〔1〕设函数).89(,)100()]5([)100(3)(f x x f f x x x f 求⎩⎨⎧<+≥-=解:〔1〕这是分段函数与复合函数式的变换问题,需要反复进行数值代换,)))101((())))104(((()))99((())94(()89(f f f f f f f f f f f f f =====)99())102(()97())100(()))103((())98((f f f f f f f f f f f ===== =.98)101())104((==f f f变式1:〔07文14〕函数()f x ,()g x 分别由下表给出[(1)]f g 的值为那么1当[()]2g f x =;时,x =1 .变式2:函数f(x)=2,0,1,0,1,0.x x x x x⎧⎪>⎪=⎨⎪⎪-<⎩ 〔1〕画出函数的图象;〔2〕求f(1),f(-1),f [])1(-f 的值. 解 〔1〕分别作出f(x)在x >0,x=0,x <0段上的图象,如下图,作法略.〔2〕f(1)=12=1,f(-1)=-,111=-f [])1(-f =f(1)=1. 题型2:求函数解析式例2.〔1〕f(x +1)=x+2x ;求f(x)(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式. 〔3〕()f x 满足12()()3f x f x x+=,求()f x 。

高等数学:第二讲 导函数的定义

高等数学:第二讲 导函数的定义


y (x2 ) 2x.
常用的导函数
(C) = 0. (xμ) = μxμ-1 (μ≠0) . (sin x) = cos x. (cos x) = sin x.
(ln x) 1 .
x
(log a
x)
1 x ln
. a
(ex) = e数的定义
为什么有的时候看到 导数是一个数,有的时候
却是一个函数呢?
那你得先要弄清楚 导函数的概念咯!
导函数存在的前提条件
如果函数 f (x) 在开区间 (a, b) 内每一点可导, 则称 f (x) 在开区间 (a, b)内可导.
导函数的定义
对于区间(a, b)内的任意一个x,均对应着一个确定的导数值, 这样就确定了一个新的函数,此函数便称为原来函数 f (x) 的导函数(简称导数).
自变量x
0
1
2 = (x 3+ x)24 - x2 5= 2x1x0 + (…x) 2.
y第=函f (数二x)值=步x2 算比0值:1
y x
2xx (x)2
4
9
16
x
2x25 x.
100

y 第=导f 数三(x值)=步2x 取极0限:2 lim
4y
6
8
lim (2x x)
10
2x.
20

x0 x x0
记作 f( x), 或 y, 或 dy . dx
即 f (x) lim f (x x) f (x) .
x0
x
显然, f (x0)就是f (x)在x =x0处的函数值.
例题:
求函数y = x2 在任意点 x( , )处的导数.
解 第一步求增量 y: y = f (x + x) - f (x)

第二讲函数概念及其性质

第二讲函数概念及其性质

第二讲函数概念及其性质考点分布1 函数的概念2 函数的三个要素3 判断两个函数是否为同一函数4 函数的定义域及其求法5 函数的值域6 函数解析式的求解及其常用方法7 区间与无穷的概念8 函数的表示方法9 函数的对应法则 10 映射11 函数的单调性及单调区间 12 函数的单调性的判断与证明 13 函数单调性的性质 14 复合函数的单调性15 函数的最值及其几何意义 16 奇函数 17 偶函数18 函数奇偶性的判断 19 函数奇偶性的性质20 奇偶函数图像的对称性 21 奇偶性与单调性的综合 22 函数图像23 抽象函数及其应用 24 函数的周期性 25 函数恒成立问题 26 函数的连续性 27 函数的值基础自测1、函数)1lg()(-=x x f 的定义域是( ) A 、),2(+∞ B 、),1(+∞ C 、[)+∞,1 D 、[)+∞,22、函数⎩⎨⎧<-≥-=0),4(0,12)(x x x x x x f 则f(f(-1))= ( )A 、5B 、9C 、-5D 、-33、设函数⎩⎨⎧<--≥-=1,221,32)(2x x x x x x f 若f(x 0)=1,则x 0 =( )A 、-1或3B 、2或3C 、-1或2D 、-1或2或3 探究突破类型一:函数概念4、已知函数f(x)的定义域为[]3,1-,在同一坐标系下,函数y=f(x)的图像与直线x=1的交点个数为 ( ) A 、0 B 、1 C 、2 D 、0或1 类型二、函数的定义域 类型一;具体函数5、)34(log 12-=x y6、 23843-+=x x y7、 xx x y -+=||)1(0类型二:抽象函数8、已知函数)(x f 的定义域为)1,0(,求)(2x f 的定义域9、已知函数)12(+x f 的定义域为)1,0(,求函数)(x f 的定义域要素二:求函数解析式 类型一:换元法10、已知函数x x x f 2)1(+=+,求)(x f 的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档