2.5 等比数列的前n项和练习题及答案解析 (2)必修5
【人教A版】高中数学必修5教学同步讲练第二章《等比数列前n项和的示解》练习题(含答案)

第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .1282.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)43.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .1934.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 7.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.8.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .B级能力提升1.在等比数列{a n}中,a1+a2+…+a n=2n-1(n∈N*),则a21+a22+…+a2n等于()A.(2n-1)2 B.13(2n-1)2C.4n-1 D.13(4n-1)2.设等比数列{a n}的公比为q,前n项和为S n,若S n+1,S n,S n+2成等差数列,则q的值为________.3.等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n+14a n(n∈N*),求数列{bn}的前n项和T n.第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解(参考答案)一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16, 所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127. 答案:C2.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)4解析:因为a n =2×3n -1,则数列{a n }是以2为首项,3为公比的等比数列,由此数列的偶数项所组成的新数列是以6为首项,以9为公比的等比数列,则前n 项和为S n =6(1-9n )1-9=3(9n -1)4.答案:D3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15解析:由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.答案:B 二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 解析:因为a 1+a 2=a 1(1+q )=30,a 3+a 4=a 1q 2(1+q )=60,所以q 2=2,所以a 7+a 8=a 1q 6(1+q )=[a 1(1+q )]·(q 2)3=30×8=240.答案:2407.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.解析:法一:a 1+|a 2|+a 3+|a 4|=1+|1×(-2)|+1×(-2)2+|1×(-2)3|=15. 法二:因为a 1+|a 2|+a 3+|a 4|=|a 1|+|a 2|+|a 3|+|a 4|,数列{|a n |}是首项为1,公比为2的等比数列,故所求代数式的值为1-241-2=15.答案:158.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1,所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1 121 三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解:(1)设等差数列{a n }的公差为d ,由已知条件可得 ⎩⎨⎧a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n 2n -1,故S 1=1,S n2=a 12+a 24+…+a n2n . 所以,当n >1时,S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-⎝ ⎛⎭⎪⎫12+14+…+12n -1-2-n 2n =1-⎝ ⎛⎭⎪⎫1-12n -1-2-n 2n =n 2n ,所以S n =n2n -1,综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1, 所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn =1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n 。
2016-2017学年高二数学人教A版必修5第2.5 等比数列的前n项和 含解析 精品

绝密★启用前人教A 版数学 必修五 第二章2.5等比数列的前n 项和一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】已知数列{}n a 满足1320n n a a ++=,253a =-,则{}n a 的前10项和等于( )A. 102313⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦B. 102313⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦C.1032123⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D. 1032123⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【答案】C【解析】1320n n a a ++= ,123n n a a +∴=-,{}n a ∴是等比数列,公比为23q =-,∴首项为152a =,()10101101321123a q S q -⎡⎤⎛⎫∴==-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦. 考点:等比数列前n 项和. 【题型】选择题 【难度】一般2.【题文】等比数列{}n a 中,a 3=27,a 6=729,{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 【答案】B【解析】设等比数列{}n a 的公比为q ,则3637292727a q a ===,解得q =3. 又3122739a a q ===,所以等比数列{}n a 的前4项和S 4=()431313--=120,故选B.考点:等比数列的性质与前n 项和. 【题型】选择题 【难度】较易3.【题文】等比数列{}n a 中,397,91S S ==,则6S =( )A .28B .32C .35D .49 【答案】A【解析】 {}n a 是等比数列,∴每相邻两项的和也成等比数列,3S ∴、63S S -、96S S -成等比数列,即、67S -、691S -成等比数列.()()2667791S S ∴-=⨯-,解得628S =,故选A .考点:等比数列前n 项和的性质. 【题型】选择题 【难度】一般4.【题文】已知等比数列{}n a 中,132n n a -=⨯,则由此数列的奇数项所组成的新数列的前n 项和S n 的值为( )A .()314n -B .()341n -C .14n -D .41n - 【答案】D【解析】设新数列为{}n b ,则222133244n n n n b a --==⨯=⋅,则{}n b 是以3为首项,4为公比的等比数列,()3144114n n n S ⨯-==--.考点:等比数列的通项公式与前n 项和. 【题型】选择题 【难度】一般5.【题文】已知n S 表示正项等比数列{}n a 的前项和.若26a =,35576a a =,则10S 的值是 ( )A.511B.1023C.1533D.3069 【答案】D【解析】设等比数列{}n a 的公比为q ,因为{}n a 是由正项等比数列,35576a a =,所以424a =, 所以2422446a q a ===,解得2q =,所以21632a a q ===,由等比数列的前项和公式得10103(12)306912S -==-,故选D . 考点:等比数列的前项和. 【题型】选择题 【难度】一般6.【题文】等比数列{}n a 的前项和记为n S ,若84:2:3S S =,则124:S S =( ) A.7∶9 B.1∶3 C.5∶7 D.3∶5 【答案】A【解析】设82,S k =则43S k =,令143x S k ==,284x S S k =-=-,3128122x S S S k =-=-,由题意知321,,x x x 成等比数列,因此2213x x x =⋅,代入解得1273k S =,因此12477339kS S k ==.考点:等比数列前项和的性质. 【题型】选择题 【难度】一般7.【题文】设等比数列{}n a 的前项和为n S ,若23=S ,186=S ,则=510S S ( ) A .17 B .33 C .−31 D .−3 【答案】B【解析】由题意可得公比1q ≠,因为3611(1)(1)2,1811a q a q q q--==-- ,所以61663331(1)1811,9,980,(1)211a q q qq q a q q q---==-+=---解得1q =(舍去)或2q =,故10101055511233112S q S q --===--,故选B. 考点:等比数列的前项和. 【题型】选择题【难度】一般8.【题文】在等比数列{}n a 中,13a =,前n 项和为n S ,若数列{}2n a +也是等比数列,则n S 等于( ) A.221-+n B.n 3 C.n 2 D.13-n 【答案】B【解析】设等比数列{}n a 的公比q ,则1113n n n a a q q --==,由数列{}2n a +也是等比数列得{}132n q -+是等比数列,所以032q +,132q +,232q +为等比数列,所以()()()2102323232qq q +=++,得0122=+-q q ,即1=q ,所以13n S na n ==.考点:等比数列的通项及前n 项和. 【题型】选择题 【难度】一般二、填空题:本题共3小题.9.【题文】已知等比数列{}n a 中,a 2+a 3=12,a 1a 2a 3=64,则{}n a 的前n 项和 n S =. 【答案】122n +-【解析】∵a 1a 2a 3=64,∴a 2=4,又∵a 2+a 3=12,∴a 3=8,公比q =2,∴a 1=2, ∴()12122212n n n S +-==--,.考点:等比数列的性质,等比数列的前n 项和. 【题型】填空题 【难度】较易10.【题文】等比数列{}n a 中,363,9S S ==,则9____S =. 【答案】21【解析】由等比数列前n 项和的性质知:36396,,S S S S S --成等比数列,因为3633,6,S S S =-=所以9612S S -=,解得921S =. 考点:等比数列前n 项和的性质.【题型】填空题 【难度】一般11.【题文】已知数列{}n a ,新数列1a -,12a a -,23a a -,…,1n n a a --,…是首项为1,公比为12的等比数列,则n a =. 【答案】1212n ⎛⎫-- ⎪⎝⎭【解析】依题意可得()()()11223111112211212n n n n a a a a a a a -⎛⎫⨯- ⎪⎛⎫⎝⎭-+-+-++-==- ⎪⎝⎭- ,即1212n na ⎛⎫-=- ⎪⎝⎭,所以1212n n a ⎛⎫=-- ⎪⎝⎭. 考点:累加法求数列的通项公式,等比数列的前项和公式. 【题型】填空题 【难度】一般三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】已知等差数列{}n a 的前n 项和为n S ,公差d ≠0,且42366,,,S a a a =成等比数列.(1)求数列{}n a 的通项公式;(2)设2n a n b =,求数列{n b }的前n 项和n T . 【答案】(1)n a =9−3n (2)3512178n n T -=- 【解析】(1)由题意得2326a a a =,即()()()211125a d a d a d +++=,解得112d a =-或d =0(舍去). ∴41113414622S a a a ⨯=-⨯==,得d =−3.∴n a =1a +(n −1)d =6−3(n −1)=9−3n ,即n a =9−3n . (2)∵n b =9331228n a n n --==,∴1b =64,118n n b b +=. ∴{n b }是以64为首项,18为公比的等比数列,∴131641(1)51218117818n n n n b q T q -⎛⎫- ⎪-⎝⎭===---.考点:等差数列的前n 项和公式,等差数列通项公式,等比数列前n 项和公式. 【题型】解答题 【难度】一般13.【题文】已知等差数列{}n a 的前n 项和为n S ,且3612,84a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,*n ∈Ν. (1)求数列{}n a ,{}n b 的通项公式;(2)设, ,n n na n cb n ⎧=⎨⎩为奇数,为偶数,求数列{}n c 的前21n +项和21n P +.【答案】(1)4n a n =,132n n b -=⋅(2)212212482n n P n n ++=+++ 【解析】(1)设等差数列{}n a 的公差为d ,则11212,61584,a d a d +=⎧⎨+=⎩解得14,44,n a a n d =⎧∴=⎨=⎩.230n n T b -+= ,∴当1n =时,13b =,当2n ≥时,11230n n T b ---+=,两式相减,得12(2)n n b b n -=≥, 数列{}n b 为公比为2的等比数列,132n n b -∴=⋅.(2)14,32,n n n n c n -⎧=⎨⋅⎩为奇数,为偶数, 211321242()()n n n P a a a b b b ++=+++++++2122482n n n +=+++.【考点】等差数列和等比数列,数列的求和方法. 【题型】解答题 【难度】一般14.【题文】已知数列{}n a 满足114a =,()1112n n nn a a a --=--(2n ≥,*n ∈Ν), 设()11nn nb a =+-. (1)求证:数列{}n b 是等比数列,并求数列{}n a 的通项公式;(2)求数列32n n b ⎧⎫-⎨⎬⎩⎭的前项和n S .【答案】(1)()()111321n n n a --=⨯-+-(2)1132n n n S -⎛⎫=- ⎪⎝⎭【解析】(1)由114a =,()1112n n nn a a a --=--(2n ≥,*n ∈Ν), 得()()1111121n n n n a a --⎡⎤+-=-+-⎢⎥⎣⎦,所以12n n b b -=-(2n ≥), 又()1111130b a =+-=≠, 所以数列{}n b 是等比数列,故()132n n b -=⨯-(*Νn ∈),()()111321n n n a --=⨯-+-(*n ∈Ν). (2)()1323232n n n n b ---=⨯-, ()()()()1211473232323232n n n S --=+++⋅⋅⋅+⨯-⨯-⨯-⨯-,①()()()()()12311147353223232323232n n n n n S ----=+++⋅⋅⋅++⨯-⨯-⨯-⨯-⨯-,②①-②得,()()()()()1231311111321232222232nn n n n S n --⎛⎫=++++⋅⋅⋅+-=-⋅- ⎪⎝⎭----⨯-.故1132nnnS-⎛⎫=-⎪⎝⎭.【考点】构造数列求通项,错位相减法求数列的和. 【题型】解答题【难度】一般。
高中数学人教A版必修五优化练习:第二章 2.5 第1课时 等比数列的前n项和公式 含解析

[课时作业] [A 组 基础巩固]1.等比数列{a n }中,a n =2n ,则它的前n 项和S n =( ) A .2n -1 B .2n -2 C .2n +1-1D .2n +1-2解析:a 1=2,q =2, ∴S n =2×(1-2n )1-2=2n +1-2.答案:D2.在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和S 10=( )A .2-128B .2-129C .2-1210D .2-1211解析:设等比数列{a n }的公比为q ,由a 1=1,a 4=18,得q 3=18,解得q =12,于是S 10=a 1(1-q 10)1-q =1-(12)101-12=2-129.答案:B3.等比数列{a n }中,已知前4项之和为1,前8项和为17,则此等比数列的公比q 为( ) A .2 B .-2 C .2或-2D .2或-1解析:S 4=a 1·(1-q 4)1-q =1,①S 8=a 1·(1-q 8)1-q =17,②②÷①得1+q 4=17,q 4=16. q =±2. 答案:C4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33 C .31D .29 解析:设数列{a n }的公比为q ,∵a 2·a 3=a 21·q 3=a 1·a 4=2a 1, ∴a 4=2.又∵a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×54,∴q =12.∴a 1=a 4q 3=16.S 5=a 1·(1-q 5)1-q =31.答案:C5.等比数列{a n }中,a 3=3S 2+2,a 4=3S 3+2,则公比q 等于( ) A .2 B.12 C .4D.14解析:a 3=3S 2+2,a 4=3S 3+2,等式两边分别相减得a 4-a 3=3a 3,即a 4=4a 3,∴q =4. 答案:C6.若数列{a n }满足a 1=1,a n +1=2a n ,n =1,2,3,…,则a 1+a 2+…+a n =________. 解析:由a n +1a n =2,∴{a n }是以a 1=1,q =2的等比数列,故S n =1×(1-2n )1-2=2n-1.答案:2n -17.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 解析:∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3, 即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2), ∴4(1+q )=1+3(1+q +q 2),解之得q =13.答案:138.等比数列的前n 项和S n =m ·3n +2,则m =________. 解析:设等比数列为{a n },则 a 1=S 1=3m +2,S 2=a 1+a 2=9m +2⇒a 2=6m , S 3=a 1+a 2+a 3=27m +2⇒a 3=18m , 又a 22=a 1·a 3⇒(6m ) 2=(3m +2)·18m ⇒m =-2或m =0(舍去).∴m =-2. 答案:-29.在等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20. 解析:设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d , 由a 3,a 6,a 10成等比数列,得a 3a 10=a 26, 即(10-d )(10+6d )=(10+2d )2.整理,得10d 2-10d =0.解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7, 于是S 20=20a 1+20×192d =20×7+190=330.10.已知数列{a n }的前n 项和S n =2n -n 2,a n =log 5b n ,其中b n >0,求数列{b n }的前n 项和T n .解析:当n ≥2时,a n =S n -S n -1 =(2n -n 2)-[2(n -1)-(n -1)2] =-2n +3,当n =1时,a 1=S 1=2×1-12=1也适合上式, ∴{a n }的通项公式a n =-2n +3(n ∈N *). 又a n =log 5b n , ∴log 5b n =-2n +3, 于是b n =5-2n +3,b n +1=5-2n +1,∴b n +1b n =5-2n +15-2n +3=5-2=125. 因此{b n }是公比为125的等比数列,且b 1=5-2+3=5,于是{b n }的前n 项和T n =5⎣⎡⎦⎤1-⎝⎛⎭⎫125n 1-125=12524⎣⎡⎦⎤1-⎝⎛⎭⎫125n .[B 组 能力提升]1.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1) C .4n -1D.13(4n -1) 解析:根据前n 项和S n =2n -1,可求出a n =2n -1,由等比数列的性质可得{a 2n }仍为等比数列,且首项为a 21,公比为q 2,∴a 21+a 22+…+a 2n =1+22+24+…+22n -2=13(4n -1). 答案:D2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B. 答案:B3.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.解析:由题意,⎩⎪⎨⎪⎧a 1+a 4=9a 2·a 3=a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n=a 1(1-q n )1-q =1-2n 1-2=2n -1.答案:2n -14.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=________.解析:由S n +a 1=2a n ,得a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,所以a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n ,所以a 1+a 5=2+25=34. 答案:345.(2016·高考全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.6.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解析:(1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1.(2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n ,∴b n =ln 23n =3n ln 2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.。
最新人教A版高中数学必修五2.5等比数列前n项和同步测试题(含解析)

2. 5《等比数列前n 项和》(第二课时)作业1、 在等比数列中,3,6432321-=++=++a a a a a a ,则=++++76543a a a a a( )A. 811B. 1619C. 89D. 43 2、在等比数列{}na 中,55,551==S a,则公比q 等于( )A. 4B. 2C. 2-D. 2-或4 3、某工厂去年产值为a ,计划5年内每年比上一年产值增长10%,从今年起五年内这个工厂地总产值为 ( )A. a 41.1 B. a 51.1 C. ()a 11.1105- D. ()a 11.1115-4、若等比数列{}na 地前n 项和rS n n +=2,则=r( )A. 2B. 1C. 0D. 1- 5、已知等比数列{}na 中,132-⨯=n na,则由此数列地偶数项所组成地新数列地前n 项和为 ( ) A. 13-n B. ()133-n C. ()1941-nD. ()1943-n6、等比数列前n 项和为54,前n 2项和为60,则前n 3项和为 ( )A. 54B. 64C. 3266D. 3260 7、一张报纸,其厚度为a ,面积为b ,现将此报纸对折(沿对边中点连线折叠)7次,这时报纸地厚度和面积分别为 ( )A. b a 81,8B. b a 641,64C. b a 1281,128D. b a 2561,256 8、已知公比为q ()1≠q 地等比数列{}na 地前n 项和为nS ,则数列⎭⎬⎫⎩⎨⎧na1地前n 项和为 ( ) A. nn S q B. nnq S C. 11-n nq S D. 121-n n q a S9、设等比数列{}na 地前n 项和为nS ,若9632S S S=+,求公比q 。
10、已知实数c b a ,,成等差数列,4,1,1+++c b a 成等比数列,且15=++c b a 。
求c b a ,,。
参考答案:1、 A2、 C3、 D4、 D5、 D6、 D7、 C8、 D9、解: 法一:若1=q ,9111632963S a a a S S≠=+=+1≠∴q()()()qq a q q a q q a --=--+--∴111111916131()1202363369=--∴=--q q q q q q≠q Θ ()()1210123336=+-∴=--∴q q q q213-=∴q 或13=q(舍) 243-=∴q法二:由9632S S S=+可得()()()()9876543216543212222a a a a a a a a a a a a a a a ++++++++=+++++()()9876542a a a a a a ++=++- ()()65436542a a a q a a a ++=++-∴213-=∴q 243-=∴q10、8,5,2===c b a 或1,5,11-===c b a。
等比数列的前n项和练习题及答案解析_(2)必修5

等比数列前n 项和练习1.设数列{(-1)n -1·n }的前n 项和为S n ,则S 2011等于( )A .-2011B .-1006C .2011D .1006 2.已知数列{1n n +1}的前n 项和为S n ,则S 9等于( )A.910 B.710 C.109D.1073.在等差数列{a n }中,已知a 1=2,a 9=10,则前9项和S 9=( )A .45B .52C .108D .544.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15=( )A .-29B .29C .30D .-305.数列9,99,999,9999,…,的前n 项和等于( )A .10n-1 B.10 10n-1 9-nC.109(10n-1)D.109(10n-1)+n6.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .297.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6, 则当S n 取最小值时,n 等于( ) A .6 B .7 C .8D .98.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }={1a n a n +1}前n 项的和为( ) A .4(1-1n +1) B .4(12-1n +1)C .1-1n +1D.12-1n +19.已知a n =n +13n ,则数列{a n }的前n 项和S n =__________.10.若数列{a n }的通项公式a n =1n 2+3n +2,则数列的前n 项和S n =__________.11.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数n 为__________.12.已知数列{a n }中,a n =⎩⎨⎧2n -1n 为正奇数 ,2n -1 n 为正偶数 ,则a 9=________(用数字作答),设数列{a n }的前n 项和为S n ,则S 9=________(用数字作答). 13.求数列112,314,518,…,[(2n -1)+12n ]的前n 项和14.已知数列{a n}的通项a n=2·3n,求由其奇数项所组成的数列的前n项和S n.15.已知{a n}是首项为19,公差为-2的等差数列,S n为{a n}的前n项和.(1)求通项a n及S n;(2)设{b n-a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及前n项和T n.16.在数列{a n}中,a1=1,a n+1=2a n+2n.(1)设b n=a n2n-1,证明:数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.。
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。
高中数学人教A版必修五优化练习:第二章 2.5 第2课时 等比数列的前n项和公式的性质及应用 含解析

[课时作业] [A 组 基础巩固]1.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n解析:S n =a 1(1-q n )1-q =a 1-a n q1-q =3-2a n .答案:D2.设S n 为等比数列{a n }的前n 项和,8a 2-a 5=0,则S 4S 2=( )A .5B .8C .-8D .15解析:∵8a 2-a 5=0,∴8a 1q =a 1q 4,∴q 3=8,∴q =2,∴S 4S 2=1-q 41-q 2=1+q 2=5.答案:A3.已知在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( ) A .514 B .513 C .512D .510解析:由已知得⎩⎪⎨⎪⎧a 1+a 1q 3=18,a 1q +a 1q 2=12,解得q =2或q =12.∵q 为整数,∴q =2.∴a 1=2,∴S 8=2(1-28)1-2=29-2=510.答案:D4.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=( ) A.152 B.314 C.334D.172解析:由a 2a 4=1⇒a 1=1q 2,又S 3=a 1(1+q +q 2)=7,联立得:⎝⎛⎭⎫1q +3⎝⎛⎭⎫1q -2=0,∴q =12,a 1=4, S 5=4⎝⎛⎭⎫1-1251-12=314.答案:B5.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =________. 解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列, ∴S n =2(1-2n )1-2=126,∴2n =64,∴n =6.答案:66.等比数列{a n }的公比q >0,已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________. 解析:由a n +2+a n +1=6a n ,得q n +1+q n =6q n -1,即q 2+q -6=0,q >0,解得q =2, 又∵a 2=1,∴a 1=12,∴S 4=12·(1-24)1-2=152.答案:1527.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:设等比数列{a n }的公比为q (q ≠0),依题意得a 2=a 1·q =q ,a 3=a 1q 2=q 2,S 1=a 1=1,S 2=1+q ,S 3=1+q +q 2,又3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(1+q )=3+1+q +q 2,所以q =3(q =0舍去).所以a n =a 1q n -1=3n -1. 答案:3n -18.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:log 0.5S n +log 0.5S n +2>2log 0.5S n +1.证明:设{a n }的公比为q ,由已知得a 1>0,q >0. ∵S n +1=a 1+qS n ,S n +2=a 1+qS n +1,∴S n S n +2-S 2n +1=S n (a 1+qS n +1)-(a 1+qS n )S n +1=S n a 1+qS n S n +1-a 1S n +1-qS n S n +1=a 1(S n -S n +1)=-a 1a n +1<0, ∴S n ·S n +2<S 2n +1.根据对数函数的单调性可以得到log 0.5(S n S n +2)>log 0.5S 2n +1, 即log 0.5S n +log 0.5S n +2>2log 0.5S n +1.9.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式. 解析:由题设知a 1≠0,S n =a 1·(1-q n )1-q,则⎩⎪⎨⎪⎧a 1q 2=2, ①a 1·(1-q 4)1-q=5×a 1·(1-q 2)1-q , ② 由②得1-q 4=5(1-q 2),(q 2-4)(q 2-1)=0.(q -2)(q +2)(q -1)(q +1)=0, 因为q <1,解得q =-1或q =-2. 当q =-1时,代入①得a 1=2, 通项公式a n =2×(-1)n -1; 当q =-2时,代入①得a 1=12;通项公式a n =12×(-2)n -1.综上,当q =-1时,a n =2×(-1)n -1; 当q =-2时,a n =12×(-2)n -1.[B 组 能力提升]1.在等比数列{a n }中,公比q =2,log 2a 1+log 2a 2+log 2a 3+…+log 2a 10=35,则S 10=( ) A.1 0232B.1 0242C .235D.1 0222解析:由题意知log 2(a 1·a 2·…·a 10)=35, ∴a 1·a 2·a 3·…·a 10=235. ∴a 1·(a 1q )·(a 1q 2)·…·(a 1q 9)=235.∴a 101q1+2+3+…+9=235.∴a 101·245=235,即a 101=1210, ∴a 1=12.∴a 1+a 2+…+a 10=a 1(1-q 10)1-q =1 0232.答案:A2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0解析:因为{a n }是等差数列,a 3,a 4,a 8成等比数列, 所以(a 1+3d )2=(a 1+2d )(a 1+7d )⇒a 1=-53d ,所以S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,所以a 1d =-53d 2<0,dS 4=-23d 2<0.答案:B3.一个项数是偶数的等比数列,它的偶数项的和是奇数项的和的两倍,它的首项为1,且中间两项的和为24,则此等比数列的项数为________. 解析:由题意可知q =2, 设该数列为a 1,a 2,a 3,…,a 2n , 则a n +a n +1=24,又a 1=1, ∴q n -1+q n =24,即2n -1+2n =24, 解得n =4,∴项数为8项. 答案:84.(2019·高考全国Ⅰ卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设{a n }的公比为q , 于是a 1(1+q 2)=10,① a 1(q +q 3)=5,②联立①②得a 1=8,q =12,∴a n =24-n ,∴a 1a 2…a n =23+2+1+…+(4-n )=2-12n n 2+72n n =2-12 (n -72 )2+498≤26=64.∴a 1a 2…a n的最大值为64. 答案:645.已知等差数列{a n }的前n 项和为S n ,a 3=5,S 6=36, (1)求数列{a n }的通项公式;(2)设b n =2a n ,求数列{b n }的前n 项和T n .解析:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+2d =5,6a 1+6×52d =36, 即⎩⎪⎨⎪⎧a 1+2d =5,a 1+52d =6,∴a 1=1,d =2. ∴a n =1+2(n -1)=2n -1,(n ∈N *). (2)∵b n =2a n =22n -1, ∴T n =21+23+25+…+22n -1 =2(1-4n )1-4=2(4n -1)3.6.已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x -y +2=0上.(1)求数列{a n },{b n }的通项公式; (2)记T n =a 1b 1+a 2b 2+…+a n b n ,求T n .解析:(1)由S n =2a n -2得S n -1=2a n -1-2(n ≥2), 两式相减得a n =2a n -2a n -1,即a na n -1=2(n ≥2),又a 1=S 1=2a 1-2,∴a 1=2,∴{a n }是以2为首项,2为公比的等比数列. ∴a n =2n .∵点P (b n ,b n +1)在直线x -y +2=0上, ∴b n -b n +1+2=0,即b n +1-b n =2, ∴{b n }是等差数列. 又b 1=1,∴b n =2n -1.(2)∵T n =1×2+3×22+…+(2n -3)2n -1+(2n -1)·2n ,① ∴2T n =1×22+3×23+…+(2n -3)2n +(2n -1)2n +1.② ①-②,得-T n =1×2+2×(22+23+…+2n )-(2n -1)·2n +1 =2+2·22-2n ·21-2-(2n -1)2n +1=2+4·2n -8-(2n -1)2n +1=(3-2n )·2n +1-6. ∴T n =(2n -3)·2n +1+6.。
高二数学人教A必修5练习:2.5 等比数列的前n项和(二) Word版含解析

§2.5 等比数列的前n 项和(二)课时目标1.熟练应用等比数列前n 项和公式的有关性质解题. 2.能用等比数列的前n 项和公式解决实际问题.1.等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q;当q =1时,S n =na 1.2n 项和的性质:(1)连续m 项的和(如S m 、S 2m -S m 、S 3m -S 2m ),仍构成等比数列.(注意:q ≠-1或m 为奇数)(2)S m +n =S m +q m S n (q 为数列{a n }的公比).(3)若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q .3.解决等比数列的前n 项和的实际应用问题,关键是在实际问题中建立等比数列模型.一、选择题1.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( )A .33B .72C .84D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3,得q +q 2-6=0.∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.2.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为( )A .1.14aB .1.15aC .10a (1.15-1)D .11a (1.15-1) 答案 D解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a . ∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1).3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.158或5B.3116或5C.3116D.158 答案 C解析 若q =1,则由9S 3=S 6得9×3a 1=6a 1, 则a 1=0,不满足题意,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q,解得q =2.故a n =a 1q n -1=2n -1, 1a n =(12)n -1. 所以数列{1a n }是以1为首项,12为公比的等比数列,其前5项和为S 5=1×[1-(12)5]1-12=3116.4.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( )A .300米B .299米C .199米D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米).5.在等比数列中,S 30=13S 10,S 10+S 30=140,则S 20等于( ) A .90 B .70 C .40 D .30 答案 C解析 q ≠1 (否则S 30=3S 10), 由⎩⎪⎨⎪⎧ S 30=13S 10S 10+S 30=140,∴⎩⎪⎨⎪⎧S 10=10S 30=130, ∴⎩⎪⎨⎪⎧a 1(1-q 10)1-q=10a 1(1-q 30)1-q=130,∴q 20+q 10-12=0.∴q 10=3,∴S 20=a 1(1-q 20)1-q=S 10(1+q 10)=10×(1+3)=40.6.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( )A.a (1+γ)(1+γ)5-1万元B.aγ(1+γ)5(1+γ)5-1万元C.aγ(1+γ)5(1+γ)4-1万元 D.aγ(1+γ)5万元 答案 B解析 设每年偿还x 万元,则:x +x (1+γ)+x (1+γ)2+x (1+γ)3+x (1+γ)4=a (1+γ)5,∴x =aγ(1+γ)5(1+γ)5-1.二、填空题 7.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________.答案 13解析 由已知4S 2=S 1+3S 3,即4(a 1+a 2)=a 1+3(a 1+a 2+a 3). ∴a 2=3a 3,∴{a n }的公比q =a 3a 2=13.8.在等比数列{a n }中,已知S 4=48,S 8=60,则S 12=________________________________________________________________________. 答案 63解析 方法一 ∵S 8≠2S 4,∴q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q 4)1-q=48 ①a 1(1-q 8)1-q =60 ②由②÷①得1+q 4=54,∴q 4=14③将③代入①得a 11-q =64,∴S 12=a 1(1-q 12)1-q=64(1-143)=63.方法二 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),所以S 3n =(S 2n -S n )2S n +S 2n ,所以S 12=(S 8-S 4)2S 4+S 8=(60-48)248+60=63.9.一个蜂巢里有一只蜜蜂,第1天,它飞出去找回了2个伙伴;第2天,3只蜜蜂飞出去,各自找回了2个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂.答案 729解析 每天蜜蜂归巢后的数目组成一个等比数列,a 1=3,q =3,∴第6天所有蜜蜂归巢后,蜜蜂总数为a 6=36=729(只).10.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为________. 答案 (1+q )12-1解析 设第一年第1个月的生产总值为1,公比为(1+q ),该厂第一年的生产总值为S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,∴该厂生产总值的平均增长率为S 2-S 1S 1=S 2S 1-1=(1+q )12-1.三、解答题11.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2010年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2010年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2010年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910).∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910,∴a ≤12.3.故2010年最多出口12.3吨. 12.某市2008年共有1万辆燃油型公交车,有关部门计划于2009年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:(1)该市在2015年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?(lg 657=2.82,lg 2=0.30,lg 3=0.48)解 (1)该市逐年投入的电力型公交车的数量组成等比数列{a n },其中a 1=128,q =1.5,则在2015年应该投入的电力型公交车为a 7=a 1·q 6=128×1.56=1 458(辆).(2)记S n =a 1+a 2+…+a n ,依据题意,得S n 10 000+S n >13,于是S n =128(1-1.5n )1-1.5>5 000(辆),即1.5n >65732.两边取常用对数,则n ·lg 1.5>lg 65732,即n >lg 657-5lg 2lg 3-lg 2≈7.3,又n ∈N +,因此n ≥8.所以到2016年底,电力型公交车的数量开始超过该市公交车总量的13.能力提升13.有纯酒精a L(a >1),从中取出1 L ,再用水加满,然后再取出1 L ,再用水加满,如此反复进行,则第九次和第十次共倒出纯酒精________L.答案 ⎝⎛⎭⎫1-1a 8⎝⎛⎭⎫2-1a 解析 用{a n }表示每次取出的纯酒精,a 1=1,加水后浓度为a -1a =1-1a ,a 2=1-1a,加水后浓度为⎝⎛⎭⎫1-1a ⎝⎛⎭⎫a -1a =⎝⎛⎭⎫1-1a 2,a 3=⎝⎛⎭⎫1-1a 2, 依次类推:a 9=⎝⎛⎭⎫1-1a 8,a 10=⎝⎛⎭⎫1-1a 9. ∴⎝⎛⎭⎫1-1a 8+⎝⎛⎭⎫1-1a 9=⎝⎛⎭⎫1-1a 8⎝⎛⎭⎫2-1a . 14.现在有某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元,两方案使用期都是10年,到期后一次性归还本息,若银行贷款利息均按本息10%的复利计算,试比较两种方案谁获利更多?(精确到千元,数据1.110≈2.594,1.310≈13.79)解 甲方案10年中每年获利数组成首项为1,公比为1+30%的等比数列,其和为1+(1+30%)+(1+30%)2+…+(1+30%)9=1.310-11.3-1≈42.63(万元),到期时银行贷款的本息为10(1+0.1)10≈10×2.594=25.94(万元), ∴甲方案扣除贷款本息后,净获利约为 42.63-25.94≈16.7(万元).乙方案10年中逐年获利数组成等差数列, 1+1.5+…+(1+9×0.5) =10(1+5.5)2=32.50(万元), 而贷款本利和为1.1×[1+(1+10%)+…+(1+10%)9]=1.1×1.110-11.1-1≈17.53(万元).∴乙方案扣除贷款本息后,净获利约为32.50-17.53≈15.0(万元),比较得,甲方案净获利多于乙方案净获利.1.准确理解等比数列的性质,熟悉它们的推导过程是记忆的关键.用好其性质也会降低解题的运算量,从而减少错误.2.利用等比数列解决实际问题,关键是构建等比数列模型.要确定a1与项数n的实际含义,同时要搞清是求a n还是求S n的问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设数列{(-1)n -1
·n }的前n 项和为S n ,则S 2011等于( )
A .-2011
B .-1006
C .2011
D .1006
答案:D
2.已知数列{1n (n +1)
}的前n 项和为S n ,则S 9等于( ) A.910 B.710
C.109
D.107
答案:A
3.数列{a n }的通项公式a n =1n +n +1
,若前n 项的和为10,则项数n 为__________. 答案:120
4.求数列112,314,518,…,[(2n -1)+12
n ]的前n 项和. 解:S n =112+314+518+…+[(2n -1)+12
n ] =(1+3+5+…+2n -1)+(12+14+18+…+12
n )
1[1(1)n
9=( )
(-1)n -1(4n -3),则S 15
n C.109(10-1) D.109
(10-1)+n 解析:选B.a n =10n -1,
∴S n =a 1+a 2+…+a n
=(10-1)+(102-1)+…+(10n -1)
=(10+102+…+10n )-n =10(10n -1)9
-n . 4.(2010年高考广东卷)已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,
且a 4与2a 7的等差中项为54
,则S 5=( ) A .35 B .33
C .31
D .29
解析:选C.设公比为q (q ≠0),
则由a 2·a 3=2a 1知a 1q 3=2,∴a 4=2.
又a 4+2a 7=52,∴a 7=14.∴a 1=16,q =12
. ∴S 5=a 1(1-q 5)1-q =16[1-(12)5]1-12
=31. 5.(2010年高考福建卷)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )
A .6
B .7
C .8
D .9
解析:选A.设等差数列的公差为d ,
则由a 4+a 6=-6得2a 5=-6,X k b 1 . c o m
∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,
∴S n =-11n +n (n -1)2
×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值,故选A. 6.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }={1a n a n +1
}前n 4(12-1n +1) D.12-1n +1 8.若数列{a n }的通项公式a n =1n 2+3n +2
,则数列的前n 项和S n =__________. 解析:a n =1n 2+3n +2
=1(n +1)(n +2)=1n +1-1n +2
, S n =(12-13)+(13-14)+…+(1n +1-1n +2
)
=12-1n +2=n 2n +4
. 答案:n 2n +4
9.已知数列{a n }中,a n =⎩⎪⎨⎪⎧
2n -1 (n 为正奇数),2n -1 (n 为正偶数),则a 9=________(用数字作答),设数列{a n }的前n 项和为S n ,则S 9=________(用数字作答).
解析:a 9=29-1=256.
S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)
=1-451-4
+4×(3+15)2=377. 答案:256 377
三、解答题
10.已知数列{a n }的通项a n =2·3n ,求由其奇数项所组成的数列的前n 项和S n .
解:由a n =2·3n 得a n +1a n =2·3n +1
2·3n
=3,又a 1=6, ∴{a n }是等比数列,其公比为q =3,首项a 1=6,
∴{a n }的奇数项也成等比数列,公比为q 2=9,首项为a 1=6,
∴S n =6(1-9n )1-9
=34(9n -1). 11.(2010年高考重庆卷)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.
{b n }的通项公式及前n 项和T n .
(2)由第(1)问得,a n 2
n 1=120+(n -1)×1=n . ∴a n =n ·2n -1,
∴S n =20+2×21+3×22+…+n ×2n -1.①
∴2S n =21+2×22+…+(n -1)2n -1+n ·2n .②
∴①-②得-S n =20+21+22+…+2n -1-n ·2n =1-2n
1-2
-n ·2n =(1-n )·2n -1. ∴S n =(n -1)·2n +1.。