高考数学理第一轮专题复习课件(16)
高考数学复习考点知识专题讲解课件16---导数与函数的单调性

返回导航
新高考 大一轮复习 · 数学 题型三 函数单调性的应用 命题点 1 比较大小或解不等式 例 2 (1)已知定义在 R 上的函数 f(x),g(x)满足:对任意 x∈R,都有 f(x)>0,g(x) >0,且 f′(x)g(x)-f(x)g′(x)<0.若 a,b∈R+且 a≠b,则有( ) A.fa+2 bga+2 b>f( ab)g( ab) B.fa+2 bga+2 b<f( ab)g( ab)
返回导航
新高考 大一轮复习 · 数学
②当 a>2 时,令 f′(x)=0,
得 x=a-
2a2-4或 x=a+
a2-4 2.
当 x∈0,a- 2a2-4∪a+ 2a2-4,+∞时,f′(x)<0;
当 x∈a-
2a2-4,a+
2a2-4时,f′(x)>0.
返回导航
新高考 大一轮复习 · 数学
所以
f(x)
返回导航
新高考 大一轮复习 · 数学 2.函数的极值与导数
返回导航
新高考 大一轮复习 · 数学
3.函数的最值 (1)在闭区间[a,b]上连续的函数 f(x)在[a,b]上必有最大值与最小值. (2)若函数 f(x)在[a,b]上单调递增,则 f(a) 为函数的最小值, f(b)为函数的最大值; 若函数 f(x)在[a,b]上单调递减,则 f(a)为函数的最大值,f(b) 为函数的最小值.
返回导航
新高考 大一轮复习 · 数学
高考数学专题讲座ppt课件

重视近五年新课程高考试题的演练。
21
1.选择、填空题的强化训练.
选择题要在速度,准确率上下功夫.定
时定量进行训练(每周1~2次),总量不少 于8次,14(理8+6、文10+4)道选择、填空 题一般用时30~50分钟,“优秀生” 要争取 有更多的时间完成解答题。做选择填空题要
重视直接解法的训练,不要过分依赖特殊解
强化训练 提炼方法
通过专题复习和综合演练(套卷,选择、填空题的专项 训练等),达到对知识的全面整合。在整套试卷的模拟 训练中,对错题所涉及到的知识点,题型方法、数学思 想等方面,自我检查,及时补救。做到“二个强化二个 重视” :
选择、填空题的强化训练.
前三个大题的强化训练。
重视初中与高中、高中与大学衔接知识的复习。
出同样的写出参数方程的要求。
8
减低要求部分
(1)、反函数的处理,只要求以具体的函数为例进行解释和直观理解, 不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数;
(2)、仅要求认识柱、锥、台、球及其简单组合体的结构特征,对棱 柱、正棱锥、球的性质由“掌握”降为不作要求;
(3)、不要求使用真值表; (4)、对双曲线的定义、几何图形和标准方程度要求由“掌握”降为
高考数学专题讲座:
科学备考 迈向成功
1
合理规划复习的三个阶段:
I:现在~I模(3月中旬) II :I模(3月中旬)~II模(4月下旬) III :II模(4月下旬)~5月下旬
2
第一阶段【现在~Iห้องสมุดไป่ตู้(3月中旬)】:
夯实基础 形成能力 一、全面复习基本知识和基本技能
第一轮复习,基本上涵盖数学学科的基础知 识,这一阶段应该在老师的带领下,对每一 章的知识进行梳理,构建框架,使知识系统 化、条理化,注重“通理通法”,抓住重点, 总结规律,形成知识板块和网络。
专题16 复数(习题)-2021届沪教版高考数学一轮复习(上海专用)

2021届高考数学一轮复习 专题16复数一、填空题1.(2020·上海松江·期末)已知复数z 满足,则2z i -(其中i 是虚数单位)的最小值为____________. 【答案】1 【解析】复数z 满足||1(z i =为虚数单位), 设cos sin z i θθ=+,[0θ∈,2)π.则|2||cos (sin 2)|1z i i θθθ-=+-,当且仅当时取等号.故答案为:1.2.(2020·上海高三其他)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________ 【答案】1- 【解析】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1-故答案为1- 【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力. 3.(2020·上海普陀·高三一模)设i 是虚数单位,若11z ai i=++是实数,则实数a = 【答案】12【解析】依题意,由于z 为实数,故110,22a a -==.4.(2020·上海市建平中学高三月考)已知x C ∈,且,则_____. 【答案】4或-1【解析】由()()54321110x x x x x x -=-++++=,得1x =,或43210x x x x ++++=,进而得到答案.∵x C ∈,且()()54321110x x x x x x -=-++++=,故1x =,或43210x x x x ++++=, 当1x =时,,当43210x x x x ++++=时, , 故,或-1故答案为:4或-1.5.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程有实根,则这样的复数z 的和为________ 【答案】32- 【解析】设z a bi =+,(且),将原方程变为,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;设z a bi =+,(且) 则原方程变为所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,此时1x =-,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,b =所以14z =-±综上满足条件的所以复数的和为 故答案为:32-6.(2019·上海市建平中学高三月考)设复数z 满足(4)32i z i -=+(i 是虚数单位),则z 的虚部为_______. 【答案】-3 【解析】试题分析:由题意得:32436iz i i+=+=-+,其虚部为-3 7.(2019·上海市建平中学高三月考)已知复数z 满足(1i)1i z +=-,则Re()z =________ 【答案】0 【解析】因为,所以()Re 0z =. 故答案为0.8.(2020·上海普陀·三模)在复平面内,点()2,1A -对应的复数z ,则1z +=___________【解析】由题意2z i =-+,∴。
高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(
)
A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]
)
D、[5,+∞﹚
高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本

第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1
-
a.
∴
f′(x)
=
1 x
-
ax
+
a
-
1
=
-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞
B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符
届高考数学第一轮总复习课件

(2)已知曲线求方程,已知方程画曲线是解 析几何的核心内容.
①已知曲线求方程实质就是求轨迹方程, 其方法主要有直接法,定义法,代入法等;
②已知方程画曲线就是用代数的方法,研 究方程性质(x,y的取值范围,对称性等),然 后根据性质及一些基本函数(方程)的图象作出 曲线.
12
2.圆锥曲线中的定值问题 在解析几何问题中,有些与参数有关,这 就构成定值问题.解决这类问题常通过取出参数 和特殊值来确定“定值”是多少,再将该问题涉 及的几何式转化为代数式或三角形式,证明该 式是恒定的. 3.圆锥曲线实际应用及其他知识交汇问题 以实际应用为背景,圆锥曲线的有关知识 为手段,解决实际问题的应用题,或以圆锥曲 线为载体,构建与其他数学分支相结合的问题 (如数列问题).
30
(Ⅰ)利用直接法,可求得点P 的轨迹方程.(Ⅱ)联立直线和曲线的方程, 利用韦达定理,结合假设存在,则有 DA·DB =0,可判断成立与否.
(Ⅰ)设点P(x,y), 由 MN ·MP MN ·MP 0,
得 4 x 2 2 y2 4x 8 0,化简
得y2=8x为点P的轨迹方程.
31
,
由 PA PB , 得x=2.填x=2.
易错点:处理新信息题应认真阅读并理
解好题意.
10
1.曲线与方程 (1)定义:在直角坐标系中,如果曲线C(看 作适合某种条件的点的集合或轨迹)上的点与一 个二元方程f(x,y)=0的实数解建立了如下的关系: ①曲线上的点的坐标都是这个方程的解; ②以这个方程的解为坐标的点都是曲线上 的点. 那么,这个方程叫做曲线的方程,这条曲 线叫做方程的曲线.
设点C(x,y),(x≠0),M(xM,0), N(xN,0),
当y=a时,AC∥x轴, 当y=-a时,BC∥x轴,与题意不符,所
高考数学一轮复习全程复习构想数学(理)【统考版】第二节 命题及其关系充分条件与必要条件(课件)

(2)因为p是q的必要不充分条件,所以{x|x≥2} {x|x>a},则实数a的取值范围是 a<2.
(四)走进高考 7.[2021·浙江卷]已知非零向量a,b,c,则“a·c=b·c”是“a=b” 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
三、必练4类基础题 (一)判断正误 1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)“x-3>0”是命题.( × ) (2)一个命题非真即假.( √ ) (3)命题“若p,则q”的否命题是“若p,则¬q”.( × ) (4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少 有一个为真.( √ ) (5)当q是p的必要条件时,p是q的充分条件.( √ ) (6) 命 题 “ 若 p 不 成 立 , 则 q 不 成 立 ” 等 价 于 “ 若 q 成 立 , 则 p 成 立”.( √ )
A.逆命题
B.否命题
C.逆否命题
D.否定
答案:B
解析:“正数a的平方不等于0”即“若a是一个正数,则它的平方不等于0”, 其否命题为“若a不是正数,则它的平方等于0”.故选B.
2.对于命题“单调函数不是周期函数”,下列说法正确的是( ) A.逆命题为“周期函数不是单调函数” B.否命题为“单调函数是周期函数” C.逆否命题为“周期函数是单调函数” D.以上都不正确
答案:D
解析:根据四种命题的构成可知,选项A,B,C均不正确.故选D.
3.下列命题中为真命题的是( ) A.mx2+2x-1=0是一元二次方程 B.抛物线y=ax2+2x-1与x轴至少有一个交点 C.互相包含的两个集合相等 D.空集是任何集合的真子集
第三章函数的概念与性质章末总结课件-2025届高三数学一轮复习

B.−
3
2
7
4
C.
5
2
D.
【解析】由于f x + 1 为奇函数,所以函数f x 的图象关于点 1,0 对称,即有
f x + f(2 − x) = 0,所以f 1 + f 2 − 1 = 0,得f 1 = 0,即a + b = 0 ①.
由于f x + 2 为偶函数,所以函数f x 的图象关于直线x = 2对称,即有
0.668
低谷时间段用电价格表
低谷月用电量(单位:千瓦·时)
低谷电价(单位:元/(千瓦·时))
50及以下的部分
0.288
超过50不超过200的部分
0.318
超过200的部分
0.388
若某家庭5月份的高峰时间段用电量为200千瓦·时,低谷时间段用电量为100千瓦·时,
148.4
则按这种计费方式该家庭本月应付的电费为______元.(用数字作答)
当−1 < k < 0时, f x 在x = 1处取得最小值f 1 = −1,在x = 3处取得最大值
f 3 =
1
− .
k
3−2x
例2 画出函数y =
的图象,写出函数的单调区间,并求出函数在[−1,2]上的值域.
x−3
3−2x
6−2x −3
3
【解析】y =
=
= −2 −
.
x−3
x−3
x−3
设f x =
最多
C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油
D.某城市机动车最高限速80 km/h.相同条件下,在该市
用丙车比用乙车更省油
图3-4