数学简易逻辑 知识点+题型

合集下载

新高考数学题型归纳,第一章 集合与简易逻辑

新高考数学题型归纳,第一章  集合与简易逻辑

第一章集合与简易逻辑第一节集合题型1、元素与集合的关系元素与集合的关系:属于和不属于。

常用数集的表示:C —复数集;R —实数集;Q —有理数集;Z —整数集;N —自然数集;N+或N*—正整数集。

1、【多选】下列关系中正确的是()A.{}102,∉-B.(){}2|42x y x =∈,C.R ∈πD.Φ∈02、【2022·全国乙卷】设集合{}54321,,,,=U ,集合M 满足{}31,=M C U ,则()A.M ∈2B.M ∈3C.M ∉4D.M∉53、【2018·北京】已知集合(){}241|≤-+≥-=ay x y ax y x y x A ,>,,,则()A .()A R a ∈∈∀12,,B .()AR a ∉∈∀12,,C .当且仅当0<a 时,()A ∉12,D .当且仅当23≤a 时,()A ∉12,4、若集合{}2024||≤∈=x N x x P ,45=a ,则()A.P a ∈B.{}P a ∈C.{}Pa ⊆D.Pa ∉题型2、集合相等集合元素的特征:确定性、互异性、无序性。

集合相等,集合中元素完全相同,集合中元素之和相等,集合中元素之积相等。

1、若},,0{},,1{2b a a ab a +=,求20242024b a+的值.【答案:1】2、已知集合,,且B A },,0{B },,,{A ==-=y x y x xy x 求实数x 与y 的值.【答案:x=y=-1】3、设R b a ∈,,集合b}ab {0a}b a {1,,,,=+,则=-a b ()【答案:C 】A.1B.-1C.2D.-24、【2014·福建】若}2,1,0{},,{=c b a ,且下列三个关系:①2≠a ;②2=b ;③0≠c 有且只有一个正确,求c b a ++10100的值.5、集合},2,0{a A =,},1{2a B =.若}16,4,210{,,=B A 则a 的值为()【答案:D 】A .0B .1C .2D .4题型3、集合之间的基本关系集合与集合之间的关系:①包含关系,②相等关系,③真子集关系。

(完整word版)数学简易逻辑-知识点归纳+题型

(完整word版)数学简易逻辑-知识点归纳+题型

原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互文科数学选修1—1 第一章 简易逻辑 一.四种命题及关系1。

命题:__________的语句;2。

分类:①简单命题:不含有逻辑联结词的命题;②复合命题:由_________和逻辑联结词“___”、“___"、“____”构成的命题;构成复合命题的形式:p 或q 记作______;p 且q 记作____;非p 记作_____。

3。

命题的四种形式与相互关系 原命题:若p 则q ; 逆命题:________; 否命题:________; 逆否命题:________.注:①互为_____关系的两个命题同真假.②命题中一些关键词的否定:1、下列说法:①若一个命题的否命题是真命题,则这个命题不一定是真命题;②若一个命题的逆否命题是真命题,则这个命题是真命题;③若一个命题的逆命题是真命题,则这个命题不一定是真命题;④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;其中正确的说法是 ( )A 。

①②B 。

①③④C 。

②③④D 。

①②③2、已知m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A 、若α,β垂直于同一个平面,则α//β B 、若m,n 平行于同一个平面,则m//nC 、若α,β不平行,则α内不存在与β平行的直线D 、若m,n 不平行,则m 与n 不可能垂直于同一个平面3.原命题:“设a ,b ,c ∈R ,若a 〉b ,则ac 2〉bc 2",在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为( )4.有四个命题:①“若0x y +=,则x 、y 互为相反数"的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则关于x 的方程220x x q ++=有实根"的逆命题;④“A B B =,则A B ⊇”的逆否命题。

数学逻辑推理题目

数学逻辑推理题目

20 道数学逻辑推理题目一、数字推理题1. 找规律填数字:2,4,6,8,()。

-答案:10。

规律是后一个数比前一个数大2。

2. 1,3,7,15,()。

-答案:31。

规律是后一个数比前一个数依次多2、4、8、16。

3. 2,5,11,23,()。

-答案:47。

规律是后一个数比前一个数依次多3、6、12、24。

4. 3,6,9,12,()。

-答案:15。

规律是后一个数比前一个数大3。

5. 4,8,16,32,()。

-答案:64。

规律是后一个数是前一个数的2 倍。

二、图形推理题1. 观察图形:○△□,△□○,□○△,下一个图形是什么?-答案:○△□。

规律是三个图形依次循环。

2. 有一组图形,第一个是正方形,第二个是圆形,第三个是三角形,第四个是正方形,第五个是圆形,那么第六个图形是什么?-答案:三角形。

规律是正方形、圆形、三角形依次循环。

3. 观察图形序列:△△△△△△△△△,下一个图形是什么?-答案:△。

规律是△后面的△依次增加一个。

4. 一组图形为:△○□,□△○,○□△,下一组图形是什么?-答案:△○□。

规律是三个图形依次循环换位。

5. 图形序列:△△△△△△△△△,下一个图形是什么?-答案:△。

规律是△后面的△依次增加一个。

三、逻辑推理题1. 小明、小红、小刚三人中,一人是医生,一人是教师,一人是警察。

已知小明不是医生,小红不是教师,小刚不是警察。

那么小明是(),小红是(),小刚是()。

-答案:教师、警察、医生。

通过排除法推理得出。

2. 桌子上有三个盒子,一个盒子里装着糖,一个盒子里装着饼干,一个盒子里装着糖和饼干。

三个盒子上分别贴着标签:A 盒“糖”,B 盒“饼干”,C 盒“糖和饼干”。

但标签都贴错了。

现在从一个盒子里取出一个物品,如果是糖,那么这个盒子里实际装着什么?-答案:糖和饼干。

因为标签都贴错了,如果从贴着“糖”标签的盒子里取出糖,那么这个盒子实际装着糖和饼干。

3. 甲、乙、丙三人参加跑步比赛,甲说:“我不是第一名。

简易逻辑精选练习题和答案

简易逻辑精选练习题和答案

简易逻辑精选练习题一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 ,(3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式(4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是(5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为: ,否定形式: 。

专题训练:高中数学简易逻辑常见重难点题型

专题训练:高中数学简易逻辑常见重难点题型

专题:简易逻辑常见重难点题型※题型讲练【例1】写出命题“若x ≥2且y ≥3,则x +y ≥5”的逆命题、否命题、逆否命题,并判断其真假.变式训练1:1.写出命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等.”的逆命题、否命题、逆否命题,并判断其真假.【例2】写出下列命题的“非P ”命题,并判断其真假: (1)若21,20m x x m >-+=则方程有实数根. (2)平方和为0的两个实数都为0.(3)若0abc =,则,,a b c 中至少有一为0.(4)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角. (5)若0)2)(1(=--x x ,则21≠≠x x 且 .(6)91()AB ∈(其中全集*U N =,{}|A x x =是质数,{}|B x x =是正奇数).变式训练2:1.已知命题“存在实数x 0,y 0,使得x 0+y 0>1”. (1)用符号表示为 ;(2)此命题的否定是 (用符号表示),是________(填“真”或“假”)命题.【例3】已知命题p :存在实数x ,使sin x =π2成立;命题q :x 2-3x +2<0的解集为(1,2).给出下列四个结论: ①命题“p ∧q ”是真命题; ②命题“p ∧¬p ”是假命题; ③命题“¬p ∧q ”是真命题; ④命题“¬p ∨¬q ”是假命题. 其中正确的结论是( )A .②③B .②④C .①②④D .①②③④变式训练3:1.如果命题“非p 或非q ”是假命题,给出下列四个结论: ①命题“p 且q ”是真命题; ②命题“p 且q ”是假命题; ③命题“p 或q ”是真命题; ④命题“p 或q ”是假命题. 其中正确的结论是( ) A .①③ B .②④ C .②③D .①④【例4】用合适的序号填空:①充分不必要 ②必要不充分 ③充要 ④既不充分也不必要 (1)p q ∨为真命题是p q ∧为真命题的 条件;(2):23A x -<, 是2:4150B x x --<的 条件; (3)设集合M={x | x >2},P={x |x <3},那么“x ∈M ,或x ∈P”是“x ∈M∩P”的 条件;(4)若a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的 条件; (5)“tan θ≠1”是“θ≠π4”的的 条件;(6)“cos A =2sin B sin C ”是“△ABC 为钝角三角形”的 条件; (7)“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的 条件; (8)已知p 是q 的必要条件,r 是q 的充分条件,p 是r 的充分条件,那么q 是p 的 条件;【例5】已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx +1>0.若“p ∨q ”的否定为真命题,求实数m 的取值范围.变式训练4:1.已知p :∀x ∈R,2x >m (x 2+1),q :∃x 0∈R ,x 20+2x 0-m -1=0,且p ∧q 为真,求实数m 的取值范围.【例6】已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :函数y =(2a -1)x 为减函数,若“p 且q ”为真命题,求实数a 的取值范围.变式训练5:1.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)非p 是非q 的充分不必要条件,求实数a 的取值范围.※课后练习1.下列命题中的假命题是()A.∀a,b∈R,a n=an+b,有{a n}是等差数列B.∃x0∈(-∞,0),2x0<3x0C.∀x∈R,3x≠0D.∃x0∈R,lg x0=02.与命题“若a∈M,则b∉M”等价的命题是() A.若a∉M,则b∉M B.若b∉M,则a∈M C.若a∉M,则b∈M D.若b∈M,则a∉M 3.下列命题中正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”D.命题p:∃x∈R,x2+x-1<0,则非p:∃x∈R,x2+x-1≥0 4.下列说法错误的是()A.如果命题“非p”与命题“p或q”都是真命题,那么命题q一定是真命题B.命题“若a=0,则ab=0”的否命题是:若“a≠0,则ab≠0”C.若命题p:∃x0∈R,ln(x20+1)<0,则非p:∀x∈R,ln(x2+1)≥0D.“sin θ=12”是“θ=30°”的充分不必要条件5.已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x +a=0”,若命题“p∧q”是真命题,则实数a的取值范围是() A.(4,+∞) B.[1,4] C.[e,4] D.(-∞,1] 6.设f(x)是R上的减函数,且f(0)=3,f(3)=-1,设P={x||f(x +t)-1|<2},Q={x|f(x)<-1},若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围是()A.t≤0 B.t≥0 C.t≤-3 D.t≥-3 7.命题“∃x<0,有x2>0”的否定是______________.8.“lg x>lg y”是“10x>10y”的条件.9.下列结论:①若命题p:∃x0∈R,tan x0=2;命题q:∀x∈R,x2-x+1 2>0.则命题“p∧(綈q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是ab=-3;③“设a、b∈R,若ab≥2,则a2+b2>4”的否命题为:“设a、b∈R,若ab<2,则a2+b2≤4”.其中正确结论的序号为________.(把正确结论的序号都填上)10.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°. 11.已知命题p:|x2-x|≥6; q:x∈Z,若“p∧q”与“非q”同时为假命题,求x的值.12.已知命题p:∃x∈R,2x2-3ax+9<0.(1)写出非p:;(2)若非p为真命题,求实数a的取值范围.13.已知命题p:关于x的不等式x4-x2+1x2>m的解集为{x|x≠0,x∈R};命题q:f(x)=-(5-2m)x是减函数.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.。

数学逻辑推理题目

数学逻辑推理题目

数学逻辑推理题目
逻辑推理题目一直是数学领域中的重要内容,它要求我们通过严密的推理和分
析来解决问题。

今天我将给大家提供一些数学逻辑推理题目,希望能够帮助大家提升逻辑推理能力。

1. 题目一:有三个罐子,分别标有"A"、"B"、"C",其中一个罐子里装有红球,另外两个罐子里各有一个白球。

现在一个人随机选择一个罐子,从中抽取一球,结果是红球。

问:这个红球来自哪个罐子的概率最大?
2. 题目二:有两个箱子,一个标有"苹果",另一个标有"橙子"。

实际情况是,
标有"苹果"的箱子里有苹果和橙子,标有"橙子"的箱子里只有橙子。

现在随机选择
一个箱子,从中抽取一个水果,结果是苹果。

问:这个水果来自哪个箱子的概率最大?
3. 题目三:有两个人,一个总是说真话,另一个总是说谎话。

现在你遇到了一
个人,他说他是说真话的那个人,问:他到底是说真话的人还是说谎话的人?
以上是三道数学逻辑推理题目,希望大家可以认真思考,分析问题,找到合适
的解决方法。

逻辑推理是一种重要的思维方式,通过不断练习和思考,可以提升我们的逻辑思维能力,帮助我们更好地解决问题。

希望大家能够善用逻辑推理,解决更多有趣的问题。

最新高中数学简单逻辑专题解析(精编版)

最新高中数学简单逻辑专题解析(精编版)

全国高考数学试题分类解析——简单逻辑1.(安徽理科第7题)命题“所有能被2整除的数都是偶数”的否定..是( ) (A )所有不能被2整除的数都是偶数(B )所有能被2整除的数都不是偶数(C )存在一个不能被2整除的数是偶数(D )存在一个不能被2整除的数不是偶数解析:全称命题的否定是特称命题,选D2.(北京文科第4题)若p 是真命题,q 是假命题,则( )(A )p q ∧是真命题 (B)p q ∨是假命题(C)p ⌝是真命题 (D)q ⌝是真命题答案: D3.(福建理科第2题)若R a ∈,则2=a 是0)2)(1(=--a a 的( )A.充分而不必要条件 B 必要而不充分条件C.充要条件D.既不充分又不必要条件答案:A4.(福建文科3)若a ∈R ,则“a=1”是“|a|=1”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件答案:A5.(湖北理科9、文科10)若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补( )A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件 答案:C解析:若实数b a ,满足0,0≥≥b a ,且0=ab ,则a 与b 至少有一个为0,不妨设0=b ,则()0,2=-=-=a a a a b a ϕ,反之,若()0,22=--+=b a b a b a ϕ 则022≥+=+b a b a ,两边平方得ab b a b a 22222++=+0=⇔ab ,则a 与b 互补,故选C.6.(湖南理科2)设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。

简单的数学逻辑题

简单的数学逻辑题

简单的数学逻辑题简介:数学逻辑题是一种通过推理关系和运用逻辑思维解决问题的数学题目。

本文将介绍一些简单的数学逻辑题,并提供解题方法和技巧,帮助读者更好地理解和应用数学逻辑。

1. 数列题数列是一组按照一定规律排列的数字的集合。

解决数列题的关键在于找出数列中的规律,从而确定下一个数字。

例如,给定数列1, 2, 4, 7, 11,要求找出下一个数字。

解析:观察数列,可以发现每个数字与前一个数字之间的差均递增1,即2-1=1,4-2=2,7-4=3,11-7=4。

因此,下一个数字应为11+5=16。

2. 排列组合题排列组合是数学中研究对象选择与排列的方法。

解决排列组合题的关键在于确定选择的规则和计算的方法。

例如,有5个不同的颜色的球,从中选择3个球的不同组合有多少种?解析:根据排列组合的公式,计算选择3个球的不同组合数为:C(5, 3) = 5! / (3! * (5-3)!) = 10。

因此,有10种不同的组合方式。

3. 图形推理题图形推理题是一种通过观察图形之间的相似性和变化规律来确定下一个图形的题目。

解决图形推理题的关键在于找出图形之间的规律和变化方式。

例如,给定下面的图形序列,请找出下一个图形。

解析:观察图形,可以发现每个图形在下一个图形中都增加了一圈小圆点,并且旋转了一定角度。

因此,下一个图形应为四个小圆点组成的正方形,并旋转一定角度。

4. 逻辑推理题逻辑推理题是一种通过分析前提条件和推理规则来确定结论的题目。

解决逻辑推理题的关键在于理清思路,找出逻辑关系和推理规律。

例如,给定以下命题:- 如果今天下雨,那么路会湿。

- 路不湿。

请问今天是否下雨?解析:根据第一个命题,如果下雨,则路会湿。

根据第二个命题,路不湿。

根据逻辑推理,如果前提条件成立,那么结论也应成立。

即,如果路不湿,那么今天没有下雨。

结论:数学逻辑题是一种训练逻辑思维和推理能力的有效方法。

通过多练习和掌握解题技巧,可以更好地理解和应用数学逻辑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原命题若p 则q 否命题若┐p 则┐q
逆命题若q 则p
逆否命题若┐q 则┐p
互为逆否互逆否互为逆


互逆

互文科数学选修1-1 第一章 简易逻辑 一.四种命题及关系
1.命题:__________的语句;
2.分类:①简单命题:不含有逻辑联结词的命题;
②复合命题:由_________和逻辑联结词“___”、“___”、“____”构成的命题;
构成复合命题的形式:p 或q 记作______;p 且q 记作____;非p 记作_____. 3.命题的四种形式与相互关系 原命题:若p 则q ; 逆命题:________; 否命题:________; 逆否命题:________.
注:
①互为_____关系的两个命题同真假.
1、下列说法:①若一个命题的否命题是真命题,则这个命题不一定是真命题;②若一个命
题的逆否命题是真命题,则这个命题是真命题;③若一个命题的逆命题是真命题,则这个命题不一定是真命题;④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;其中正确的说法是 ( ) A.①② B.①③④ C.②③④ D.①②③
2、已知m,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A 、若α,β垂直于同一个平面,则α//β B 、若m,n 平行于同一个平面,则m//n
C 、若α,β不平行,则α内不存在与β平行的直线
D 、若m,n 不平行,则m 与n 不可能垂直于同一个平面
3.原命题:“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2
”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
4.有四个命题:①“若0x y +=,则x 、y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;
③“若1q ≤,则关于x 的方程220x x q ++=有实根”的逆命题;
④“A B B =U ,则A B ⊇”的逆否命题. 其中真命题是____________________.
5、写出“平行四边形的对边平行且相等”的逆命题、否命题、逆否命题,并判断真假。

二.充分条件和必要条件
1.命题“若p 则q ”为真,记作“_____”;“若p 则q ”为假,记作“______”
2.条件与结论的关系:①若p ⇒q ,且p ⇐q ,即p q ⇔则p 是q 的________条件; ②若p ⇒q ,且p q ,则p 是q 的__________条件;
③若p q ,且p ⇐q ,则p 是q 的___________条件; ④若p
q ,且p
q ,则p 是q 的___________条件.
注:①解题时要注意条件p 和结论q 分别是什么.
②解题时可先求出范围,小范围_______大范围,但大范围________小范围 练习:
1、(潮州市2015届期末)在C ∆AB 中,“C 0AB⋅A >”是“C ∆AB 为锐角三角形”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
2、(湛江市2015届高三二模)“11c -<<”是“直线0x y c ++=与圆2
2
1x y +=相交”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
3、(佛山市2015届高三上期末)已知()2
f x x x =-,且a ,b ∈R ,则“1a b >>”是
“()()f a f b <”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件 4.2x 2-5x -3<0的一个必要不充分条件是 ( )
A .-
2
1
<x <3 B .-
21<x <0 C .-3<x <2
1 D .-1<x <6
5.已知p:2
2
430x ax a -+<,其中0a >,q:|x-3|<1, 若q 是p 的充分不必要条件,求实数a 的取值范围。

三.逻辑联结词
1.“或”、“且”、“非”称为逻辑联结词,
2.“非p ”指的是命题的否定形式,它与否命题的区别:
命题的否定是对___________,它与原命题的真假性______. 否命题是要对________________.
3、“p 或q ”、“p 且q ”、“非p ”形式的复合命题的真假性的判断 ①“非p ”形式复合命题的真假与p 的真假相反(真假相反);
②“p 且q ”形式复合命题当p 与q 同为真时为真,其他情况时为假(一假___假); ③“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真(一真___真).
注:“p 或q ”,“p 且q ”,“非p ”命题中的“p ”、“q ”是两个命题.而原命题,
逆命题,否命题,逆否命题中的“p ”,“q ”是一个命题的条件和结论两个部分. 练习:
1、已知命题p :对任意x ∈R ,总有20x
>;q :“1x >”是“2x >”的充分不必要条件.
则下列命题为真命题的是 ( ) A .p q ∧
B .p q ⌝∧⌝
C .p q ⌝∧
D .p q ∧⌝
2、(2013年全国I 卷)已知命题p :∀x ∈R ,2x
<3x
;命题q :∃x ∈R ,x 3
=1-x 2
,则下列命题中为真命题的是( )
A .p ∧q
B .⌝p∧q
C .p ∧⌝q
D .⌝p∧⌝q
3、(华南师大附中2015届高三三模)已知命题ααπαcos )cos(
,:=-∈∃R p ;命题
01,:2>+∈∀x R x q .则下面结论正确的是( )
A .¬q 是真命题
B .p 是假命题
C .p ∧q 是假命题
D .p ∨q 是真命题 4、已知0c >且1c ≠,设p :指数函数(21)x y c =-在实数集R 上为减函数,
q :不等式2(2)1x x c +->的解集为R .若命题p q ∨是真命题, p q ∧是假命题,求c 取值范围.
四.全称量词与存在量词
1.全称量词:__________________________________等;
全称命题p :)(,∈∀x p M x 否定为p ¬: ______________
2.存在量词:__________________________________等;
存在性命题p :)(,∈∃x p M x 否定为p ¬: ______________
练习:1、“2
000,220x R x x ∃∈++≤” 的否定是________________________________
2、“1,12x x ∀>+>” 的否定是________________________________
3、“所有正方形都是矩形”的否定是_______________________________ 4.若“∀x ∈R ,x 2
-2x -m>0”是真命题,则实数m 的取值范围是____________ 【综合练习】
1、若函数()()(2)f x x a bx a =++,(,)a b R ∈,则“0a =”是“()f x 为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既充分也不必要条件
2、(汕头市2015届高三上期末)下列说法中,正确的是( ) A .命题“若2
2
am bm <,则a b <”的逆命题是真命题
B .命题“R x ∃∈,2
0x x ->”的否定是“R x ∀∈,2
0x x -≤” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题
D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件
3、(深圳市2015届高三二模)命题0:0p x ∃>,
00
1
2x x +=,则p ⌝为____________________ 4、下列叙述中正确的是( )
A .若a b c R ∈,
,,则“20ax bx c ++≥“的充分条件是”240b ac -≤” B .若a b c R ∈,
,,则“22ab cb >“的充要条件是”a c >” C .命题“对任意x ∈R ,有20x ≥”的否定是“存在x ∈R ,有2
0x ≥”
D .l 是一条直线,αβ,是两个不同的平面,若,l l αβ⊥⊥,则α∥β 5. 已知命题)0(012:;23
1
1:22>≤-+-≤--
m m x x q x p ; 若p ⌝是q ⌝的充分非必要条件,试求实数m 的取值范围.。

相关文档
最新文档