高考数学知识点题型测试2

高考数学知识点题型测试2
高考数学知识点题型测试2

高考数学知识点题型测试2

【高考考情解读】 高考对本讲知识的考查主要是以下两种形式:1.以选择题、填空题的形式考查,主要利用等差、等比数列的通项公式、前n 项和公式及其性质解决与项、和有关的计算问题,属于基础题;2.以解答题的形式考查,主要是等差、等比数列的定义、通项公式、前n 项和公式及其性质等知识交汇综合命题,考查用数列知识分析问题、解决问题的

能力,属低、中档题.

1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =???

??

S 1, n =1,

S n -S n -1, n ≥2.

2.等差数列和等比数列

S n =

n a 1+a n

2

=na 1+

n n -1

2

d

(1)q ≠1,S n =

a 11-q n 1-q =

a 1-a n q

1-q

(2)q =1,S n =na 1

考点一 与等差数列有关的问题

例1 在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.

(1)若a 1>0,当S n 取得最大值时,求n 的值; (2)若a 1=-46,记b n =

S n -a n

n

,求b n 的最小值. 解 (1)设{a n }的公差为d ,则

由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d =-2

23a 1.

∴S n =na 1+

n n -1

2

×? ??

??-223a 1=-123a 1n 2

+2423a 1n

=-123a 1(n -12)2

+14423

a 1.

∵a 1>0,∴当n =12时,S n 取得最大值. (2)由(1)及a 1=-46,得d =-2

23×(-46)=4,

∴a n =-46+(n -1)×4=4n -50,

S n =-46n +n n -12

×4=2n 2

-48n .

∴b n =S n -a n n =2n 2-52n +50n

=2n +50

n

-52≥2

2n ×50

n

-52=-32,

当且仅当2n =50

n

,即n =5时,等号成立.

故b n 的最小值为-32.

(1)在等差数列问题中其最基本的量是首项和公差,只要根据已知条件求出这两个量,其他问题就可随之而解,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用.

(2)等差数列的性质

①若m ,n ,p ,q ∈N *

,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ?d =a m -a n m -n

(m ,n ∈N *

); ④a n b n =

A 2n -1

B 2n -1

(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和).

(3)数列{a n }是等差数列的充要条件是其前n 项和公式S n =f (n )是n 的二次函数或一次函

数且不含常数项,即S n =An 2+Bn (A 2+B 2

≠0).

(1)(2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错.误.

的是( ) A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0

C .若数列{S n }是递增数列,则对任意n ∈N *

,均有S n >0 D .若对任意n ∈N *

,均有S n >0,则数列{S n }是递增数列

(2)(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则

m 等于( )

A .3

B .4

C .5

D .6 答案 (1)C (2)C

解析 (1)利用函数思想,通过讨论S n =d

2n 2

+?

?

???

a 1-d 2n 的单调性判断.

设{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d 2n 2+?

?

???a 1-d 2n .

由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;

因为{S n }为递增数列,则d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;

对任意n ∈N *

,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确. (2)a m =2,a m +1=3,故d =1, 因为S m =0,故ma 1+m m -1

2

d =0,

故a 1=-

m -1

2

因为a m +a m +1=5, 故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5.

考点二 与等比数列有关的问题

例2 (1)(2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( )

A .7

B .5

C .-5

D .-7

(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________. 答案 (1)D (2)3

2

解析 (1)利用等比数列的性质求解.

由?????

a 4+a 7=2,a 5a 6=a 4a 7=-8解得???

??

a 4=-2,

a 7=4

或?????

a 4=4,

a 7=-2.

∴?

??

??

q 3

=-2,a 1=1或?????

q 3=-12,

a 1=-8,

∴a 1+a 10=a 1(1+q 9

)=-7.

(2)利用等比数列的通项公式及前n 项和公式求解.

S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,

将a 3=a 2q ,a 4=a 2q 2

代入得,

3a 2+2+a 2q +a 2q 2

=3a 2q 2

+2,化简得2q 2

-q -3=0, 解得q =3

2

(q =-1不合题意,舍去).

(1)证明数列是等比数列的两个方法:①利用定义:

a n +1a n

(n ∈N *

)是常数,②利用等比中项a 2n =a n -1a n +1(n ≥2,n ∈N *

).

(2)等比数列中的五个量:a 1,a n ,q ,n ,S n 可以“知三求二”. (3){a n }为等比数列,其性质如下:

①若m 、n 、r 、s ∈N *

,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m q

n -m

③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (4)等比数列前n 项和公式

S n =????

?

na 1q =1,a 11-q n 1-q

=a 1-a n q

1-q q ≠1.

①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.

(1)(2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +1

3,则{a n }的通项公式是a n =

________. 答案 (-2)

n -1

解析 当n =1时,a 1=1;当n ≥2时,

a n =S n -S n -1=2

3a n -23

a n -1,

a n a n -1

=-2,故a n =(-2)n -1

. (2)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+

a 4=-18.

①求数列{a n }的通项公式;

②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.

解 ①设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得

?????

S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即?????

-a 1q 2-a 1q 3=a 1q 2

a 1q 1+q +q 2

=-18,

解得?

??

??

a 1=3,q =-2.

故数列{a n }的通项公式为a n =3×(-2)n -1

.

②由①有S n =

3[1--2

n

]1--2

=1-(-2)n .

假设存在n ,使得S n ≥2 013,

则1-(-2)n ≥2 013,即(-2)n

≤-2 012. 当n 为偶数时,(-2)n

>0.上式不成立; 当n 为奇数时,(-2)n =-2n

≤-2 012, 即2n

≥2 012,则n ≥11.

综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 考点三 等差数列、等比数列的综合应用

例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.

(1)求数列{a n }的通项公式a n 与前n 项和S n ;

(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *

,使对任意n ∈N *

,总有S n

解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =

n 9-n

2

.

(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,

则q =b 2b 1=12

∴T m =

4[1-

1

2

m

]

1-12

=8[1-(12

)m

],

∵(12)m

随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =

n 9-n

2=-12

(n 2

-9n )

=-12[(n -92)2-814],

故(S n )max =S 4=S 5=10,

若存在m ∈N *

,使对任意n ∈N *

总有S n 6.

等差(比)数列的综合问题的常见类型及解法

(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.

(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可. 已知数列{a n }满足a 1=3,a n +1-3a n =3n

(n ∈N *

),数列{b n }满足b n =3-n

a n . (1)求证:数列{

b n }是等差数列;

(2)设S n =a 13+a 24+a 35+…+a n n +2,求满足不等式1128

的所有正整数n 的值.

(1)证明 由b n =3-n

a n 得a n =3n

b n , 则a n +1=3

n +1

b n +1.

代入a n +1-3a n =3n

中,得3n +1

b n +1-3n +1b n =3n ,

即得b n +1-b n =1

3

.

所以数列{b n }是等差数列.

(2)解 因为数列{b n }是首项为b 1=3-1

a 1=1, 公差为1

3的等差数列,

则b n =1+13(n -1)=n +2

3,

则a n =3n

b n =(n +2)×3n -1

从而有

a n

n +2

=3n -1

故S n =a 13+a 24+a 35+…+a n

n +2

=1+3+32

+…+3

n -1

=1-3n 1-3=3n

-1

2

则S n S 2n =3n -132n -1=1

3n +1

, 由

1128

, 即3<3n

<127,得1

故满足不等式1128

4

的所有正整数n 的值为2,3,4.

1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两

个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快

捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 3.等差、等比数列的单调性

(1)等差数列的单调性

d >0?{a n }为递增数列,S n 有最小值. d <0?{a n }为递减数列,S n 有最大值. d =0?{a n }为常数列.

(2)等比数列的单调性

当?

????

a 1>0,q >1或?

??

??

a 1<0,

0

??

??

a 1>0,

0

????

a 1<0,

q >1时,{a n }为递

减数列. 4.常用结论

(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S n n

}仍为等差数列,其中m ,k 为常数.

(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2

n },{1a n

}等也是等比数列.

(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,

a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1q

a 2-a 1

=q .

(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公差为q k

.

等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为

k 2d .

5.易错提醒

(1)应用关系式a n =???

??

S 1,n =1,

S n -S n -1,n ≥2

时,一定要注意分n =1,n ≥2两种情况,在求出

结果后,看看这两种情况能否整合在一起. (2)三个数a ,b ,c 成等差数列的充要条件是b =a +c

2

,但三个数a ,b ,c 成等比数列的

必要条件是b 2

=ac .

1.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9

a 6+a 7

等于( )

A .1+2

B .1- 2

C .3+22

D .3-2 2 答案 C

解析 记等比数列{a n }的公比为q ,其中q >0, 由题意知a 3=a 1+2a 2,即a 1q 2

=a 1+2a 1q . 因为a 1≠0,所以有q 2

-2q -1=0, 由此解得q =1±2, 又q >0,所以q =1+ 2.

所以a 8+a 9a 6+a 7=q 2a 6+a 7a 6+a 7

=q 2=(1+2)2

=3+2 2.

2.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4

n

的最小

值为( ) A.32B.53C.9

4D .不存在 答案 A

解析 因为a 7=a 6+2a 5,所以q 2

-q -2=0, 解得q =2或q =-1(舍去). 又a m a n =a 21q

m +n -2

=4a 1,

所以m +n =6.

则1m +4n =16? ??

??

1m +4n (m +n )

=16? ????1+n m +4m n +4≥32

.

当且仅当n m

=4m

n

,即n =2m 时,等号成立.

此时m =2,n =4.

3.已知等差数列{a n }的前n 项的和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:

a 1=3,

b 1=1,b 2+S 2=12,S 2=b 2q .

(1)求a n 与b n ;

(2)设c n =3b n -λ·2a n

3

,若数列{c n }是递增数列,求λ的取值范围.

解 (1)由已知可得?????

q +3+a 2=12,

3+a 2=q 2

所以q 2

+q -12=0,解得q =3或q =-4(舍), 从而a 2=6,所以a n =3n ,b n =3

n -1

.

(2)由(1)知,c n =3b n -λ·2a n

3=3n

-λ·2n

.

由题意,得c n +1>c n 对任意的n ∈N *

恒成立, 即3

n +1

-λ·2

n +1

>3n -λ·2n

恒成立,

亦即λ·2n <2·3n

恒成立,即λ<2·? ????32n 恒成立.

由于函数y =? ??

??32n

是增函数,

所以??????2·? ????32n min =2×32=3, 故λ<3,

即λ的取值范围为(-∞,3).

(推荐时间:60分钟)

一、选择题

1.(2013·江西)等比数列x,3x +3,6x +6,…的第四项等于( )

A .-24

B .0

C .12

D .24 答案 A

解析 由x,3x +3,6x +6成等比数列得,(3x +3)2

=x (6x +6). 解得x =-3或x =-1(不合题意,舍去). 故数列的第四项为-24.

2.(2013·课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于

( )

A.13B .-13C.19D .-19 答案 C

解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,

q 2=9,又a 5=a 1q 4=9,所以a 1=19

.

3.(2013·课标全国Ⅰ)设首项为1,公比为2

3

的等比数列{a n }的前n 项和为S n ,则( )

A .S n =2a n -1

B .S n =3a n -2

C .S n =4-3a n

D .S n =3-2a n 答案 D

解析 S n =

a 11-q n

1-q

=a 1-q ·a n

1-q =1-23a n

1

3

=3-2a n .

故选D.

4.在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )

A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0

B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0

C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0

D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 C

解析 由题意可知a 6+a 5>0,故

S 10=

a 1+a 10×10

2=a 5+a 6×10

2>0,

而S 9=

a 1+a 9×92

2a 5×9

2

=9a 5<0,故选C.

5.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,

a 2 011),则OP →·OQ →

等于( )

A .2 011

B .-2 011

C .0

D .1 答案 A

解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →

=2 011+a 2 011a n =2 011.

6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *

).若b 3=-2,b 10=12,则a 8

等于( )

A .0

B .3

C .8

D .11 答案 B

解析 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12--2

10-3=2.于是b 1=-6,

且b n =2n -8(n ∈N *

),即a n +1-a n =2n -8, 所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…= =a 1+(-6)+(-4)+(-2)+0+2+4+6=3. 二、填空题

7.(2013·广东)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.

答案 20

解析 设公差为d ,则a 3+a 8=2a 1+9d =10,∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20. 8.各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6

a 2a 6+a 4a 5

=________.

答案

5-1

2

解析 依题意,有a 3=a 1+a 2,设公比为q ,则有q 2

-q -1=0,所以q =1+52

(舍去负值).

a 3a 4+a 2a 6a 2a 6+a 4a 5=a 2a 4q +q 2a 2a 4q 2+q 3

=1q =21+5=5-1

2

. 9.在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.

答案 9

解析 由a 1+a 2+…+a 10=30得

a 5+a 6=30

5

=6,

又a n >0,∴a 5·a 6≤?

????a 5+a 622=? ??

??622=9.

10.已知数列{a n }的首项为a 1=2,且a n +1=12

(a 1+a 2+…+a n ) (n ∈N *

),记S n 为数列{a n }的前

n 项和,则S n =________,a n =________.

答案 2×? ????32n -1

?????

2 n =1,? ??

??32n -2

n ≥2.

解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *

),可得a n +1=12S n ,所以S n +1-S n =12

S n ,即

S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32

,所以S n =

2×? ????32n -1

,由此得a n =?????

2 n =1,? ????32n -2

n ≥2.

三、解答题

11.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.

(1)当S 1,S 3,S 4成等差数列时,求q 的值;

(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列. (1)解 由已知,得a n =aq

n -1

,因此

S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).

当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1, 可得aq 3

=aq +aq 2

,化简得q 2

-q -1=0. 解得q =1±5

2

.

(2)证明 若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列. 若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,

即a q m -1q -1+a q l -1q -1=2a q n

-1q -1

,整理得q m +q l =2q n .

因此,a m +k +a l +k =aq

k -1

(q m +q l )=2aq

n +k -1

=2a n +k .

所以a m +k ,a n +k ,a l +k 成等差数列.

12.设数列{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7且a 1+3,3a 2,

a 3+4构成等差数列.

(1)求数列{a n }的通项公式;

(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .

解 (1)依题意,得?

???

?

a 1+a 2+a 3=7,a 1+3+a 3+4

2=3a 2,

解得a 2=2.

设等比数列{a n }的公比为q ,由a 2=2,

可得a 1=2

q

,a 3=2q .

又S 3=7,可知2

q

+2+2q =7,

即2q 2

-5q +2=0, 解得q 1=2,q 2=1

2

.

由题意,得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项公式是a n =2

n -1

.

(2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n

, ∴b n =ln 23n

=3n ln 2, 又b n +1-b n =3ln 2, ∴数列{b n }是等差数列. ∴T n =b 1+b 2+…+b n =n b 1+b n

2

n 3ln 2+3n ln 2

2

3n n +1

2

ln 2.

13.(2013·湖北)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.

(1)求数列{a n }的通项公式;

(2)是否存在正整数m ,使得1a 1+1a 2+…+1

a m

≥1?若存在,求m 的最小值;若不存在,说

明理由.

解 (1)设等比数列{a n }的公比为q ,

则由已知可得?

????

a 31q 3

=125,

|a 1q -a 1q 2

|=10,

解得?????

a 1=53,q =3

或?

??

??

a 1=-5,

q =-1.

故a n =53·3n -1或a n =-5·(-1)n -1

.

(2)若a n =53·3n -1

,则1a n =35? ??

??13n -1,

故数列????

??1a n 是首项为35,公比为1

3的等比数列.

从而∑n =1

m

1a n =35?

?????1-? ????13m 1-13=910·??????1-? ????13m <910<1.

若a n =(-5)·(-1)

n -1

,则1a n =-15

(-1)n -1

故数列????

??1a n 是首项为-1

5,公比为-1的等比数列,

从而∑n =1m

1

a n =?????

-15

,m =2k -1k ∈N +,

0,m =2k k ∈N +.

故∑n =1

m

1

a n

<1.

综上,对任何正整数m ,总有∑n =1

m

1

a n

<1.

故不存在正整数m ,使得1a 1+1a 2+…+1

a m

≥1成立.

高考数学高考必备知识点总结精华版

高考前重点知识 第一章?集合 (一)、集合:集合元素的特征:确定性、互异性.无序性. 工集合的性质:①任何一个集合是它本身的子集,记为A胃A ; ②空集是任何集合的子集,记为。包A ; ③空集是任何非空集合的真子集; ①〃个元素的子集有2〃个.〃个元素的真子集有2〃 -1个.〃个元素的非空真子集有2〃-2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题。逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题。逆否命题. 交:A,且x e B} 2、集合运算:交、并、补产AU6Q{xlxeA或xe* 未卜:或A o {% £ (/, 且x任A} (三)简易逻辑 构成复合命题的形式:p或q (记作〃pvq〃); p且q (记作〃p 八q〃);mEp(i己作、q〃) o 工〃或〃‘〃且"、"非"的真假判断 种命题的形式及相互关系: 原命题:若P则q;逆命题:若q则p; 否命题:若1 P则1 q ;逆否命题:若1 q则]Po ④、原命题为真,它的逆命题不一定为真。 i命题为真它的否命题不一定为真。

@、原命题为真,它的逆否命题一定为真。 6、如果已知p=q那么我们说,P是q的充分条件,q是P的必要条 件。 若p=q且q = p,则称p是q的充要条件,记为p<=>q. 一.函数的性质 (工)定义域:(2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:/(—x) = /(x),②奇函数:/(—x) = -/(X) ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点 对称;c.求/(-X);&比较/(T)与/(X)或/(T)与—/(X)的关系。 (4 )函数的单调性 定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值X1f X2, 。语当X1VX2时,都有f(XT)Vf(X2),则说f(X)在这个区间上是增函数; (2语当X1f(X)则说f(X)在这个区间上是减函数? 二.指数函数与对数函数 指数函数> = /(〃>。且"。1)的图象和性质

高一数学单元测试题附答案

高一数学单元测试题 一、选择题 1.已知{}2),(=+=y x y x M ,{} 4),(=-=y x y x N ,则N M ?=( ) A .1,3-==y x B .)1,3(- C .{}1,3- D .{})1,3(- 2.已知全集U =N ,集合P ={ },6,4,3,2,1Q={}1,2,3,5,9则() P C Q =U I ( ) A .{ }3,2,1 B .{}9,5 C .{}6,4 D {}6,4,3,2,1 3.若集合{} 21|21|3,0,3x A x x B x x ?+? =-<=

高考数学新题型测试研究

第24卷第1期 数 学 教 育 学 报 Vol.24, No.1 2015年2月 JOURNAL OF MATHEMATICS EDUCATION Feb., 2015 收稿日期:2014–10–18 基金项目:全国教育科学规划教育部重点课题——高考能力考查与内容改革创新研究(GFA111006) 高考数学新题型测试研究 任子朝,章建石,陈 昂 (教育部考试中心,北京 100084) 摘要:为深化高考内容和形式改革,数学科研制了5种新题型:多选题、逻辑题、数据分析题、举例题和开放题.从中国东部、中部、西部省份中各选取一省,每个省抽取省重点、市重点和普通中学3个层次学校的高三学生进行试测,各省抽样一千多人,总共有4 205人参加测试.试测统计数据、问卷调查和考后座谈表明:数学科开发的题型新颖别致,能有效考查数学能力,区分度良好,促进中学教学方式的转变,受到学生和教师的欢迎. 关键词:高考;新题型;试测 中图分类号:G420 文献标识码:A 文章编号:1004–9894(2015)01–0021–05 1 研究背景 1.1 问题提出 党的十八届三中全会提出“推进考试招生制度改革”的目标:“探索全国统考减少科目、不分文理科”.改革的出发点主要有两方面:首先是更好地体现高考的选拔功能.高考选拔的目标发生了巨大转变,已经从对学科知识的全面评价向学习能力的重点测量转变,高考成为有力推动选拔有创造力的高素质人才的重要途径.其次是有利于推进素质教育、促进学生全面发展、个性发展和可持续发展.高考科目的设置主要着眼于在高校人才选拔中发挥基础性和通用性的作用,这样的科目设置模式可以为学生个性潜能和学科特长发展提供更大的空间.数学作为高考中重要的基础学科,要积极进行考试内容和形式的改革,发挥基础学科的重要作用. 1.2 题型试测 题型是题目的呈现方式,是实现考查目的的重要手段.高考的考查目标和考查重点进行改革以后,需要新的题型呈现考查要求,实现考查目的.为更好地考查考生的数学能力,高考数学科进行了题型创新设计的专题研究,开发了5种新题型.为检验新题型的考查效果,抽取考生进行试测. 2 研究方法 2.1 样本的选取 试测的考生为当年参加高考高三学生,考虑到中国教育地区之间存在差异,不同学校的学生之间也存在差异,为了检测新题型的效果,选取不同地区的学生作为被试.根据被试样本的抽样原则,从东部、中部、西部省份中各选取一省进行试测,每个省抽取省重点、市重点和一般学校的高三学生进行试测,每省抽样一千多人,样本基本代表了中国高三学生的平均水平.这次试测总共发放试卷4 205份,其中有效试卷3 800份,有效率90.36%.试卷不分文理科,所有考生使用相同的试卷,试测考生中文科考生占38%,理科考生 占62%. 2.2 研究内容 这次试测研究的主要内容包括:试题的难度[1]、区分 度[1],新题型与传统题型的相关性[1],学生对新题型的适应程度,教师和学生对新题型的接受程度和改进建议. 2.3 研究工具 2.3.1 试测试卷 数学科开发了5种新题型(参见附录),分别是: 1. 多项选择题:选择题的答案不唯一,存在多个正确选项. 2. 逻辑题:以日常生活的语言和情景考查推理、论证、比较、评价等逻辑思维能力. 3. 数据分析题:给出一些材料背景以及相关数据,要求考生自己读懂材料,获取信息,根据材料给出的情境、原理以及猜测等,自主分析数据,得出结论,并解决问题. 4. 举例题:要求考生通过给出已知结论、性质和定理等条件,从题干中获取信息,整理信息,写出符合题干的结论或是具体实例. 5. 开放题:试题开放设问,答案并不唯一,要求考生能综合运用所学知识,进行探究,分析问题并最终解决问题. 试测试卷将新题型和高考中现有的题型组合成卷,测试时长60分钟,满分75分,时间和满分都是正式高考的一半.高考中现有题型选取了单项选择题,目的是为和新题型进行对比,测试新题型的考查效果.试卷测试结构如表1所示. 1 需要指出的是,有些新题型是在现有题型的基础上发展

2021届新高考高三数学新题型专题01三角函数解答题 开放性题目 第三篇(原卷版)

第三篇备战新高考狂练新题型之高三数学提升捷径 专题01 三角函数解答题

1. 已知OA =(2asin 2x ,a),(1,cos 1)OB x x =-+,O 为坐标原点,a≠0,设f(x)=OA OB ?+b ,b>a. (1)若a>0,写出函数y =f(x)的单调递增区间; (2)若函数y =f(x)的定义域为[ 2 π ,π],值域为[2,5],求实数a 与b 的值. 2. 已知直线12,x x x x ==分别是函数()2sin(2)6f x x π=-与3()sin(2)2g x x π=+图象的对称轴. (1)求12()f x x +的值; (2)若关于x 的方程()()1g x f x m =+-在区间[0,]3π 上有两解,求实数m 的取值范围. 3. 已知函数f (x ),g (x )满足关系g (x )=f (x )?f (x +α),其中α是常数.

(1)设()cos sin f x x x =+,2 πα=,求g (x )的解析式; (2)设计一个函数f (x )及一个α的值,使得()()2g x cosx cosx =+; (3)当()sin cos f x x x =+,2π α=时,存在x 1,x 2∈R ,对任意x ∈R ,g (x 1)≤g (x )≤g (x 2)恒成立, 求|x 1-x 2|的最小值. 4. 已知函数()21111cos cos sin ,2222f x x x x x x R ??=-+∈ ???. (1)求函数()f x 的值域; (2)在ABC ?中,角,,A B C 所对的边分别为,,a b c ,()2,f B b ==ABC S ?=,求a c +的值; (3)请叙述余弦定理(写出其中一个式子即可)并加以证明. 5. 已知函数()2sin cos sin .f x x x x =- (1)求()f x 的最小正周期; (2)设ABC ?为锐角三角形,角A 角B 若()0f A =,求ABC ?的面积. 6. 已知函数()sin cos f x a x b x =+,其中a 、b 为非零实常数. (1)若4f π??= ??? ()f x ,求a 、b 的值. (2)若1a =,6x π =是()f x 图像的一条对称轴,求0x 的值,使其满足0()f x =0[0,2]x ∈π. 7. 已知函数()2sin 2sin 2cos2f x x x x =-. (1)化简函数()f x 的表达式,并求函数()f x 的最小正周期; (2)若点()00,A x y 是()y f x =图象的对称中心,且00,2x π??∈???? ,求点A 的坐标. 8. 已知函数21()2cos 22 f x x x x R =--∈,. (1)求函数()f x 的最小正周期和单调递减区间; (2)设△ABC 的内角A B C ,,的对边分别为a b c ,,且c =,()0f C =,若sin 2sin B A =,求a b , 的

高考数学高考必备知识点总结

高考数学高考必备知识点 总结 Jenny was compiled in January 2021

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补. {|,}{|} {,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。 ③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ?q 且q ?p,则称p 是q 的充要条件,记为pq. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:偶函数: )()(x f x f =-,奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求 )(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 x 且对数函数y=log a x (a>0且a ≠1)的图象和性质:

高考数学新题型归纳

2019年高考数学新题型归纳 (一)解析几何中的运动问题 解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。即新课标高考数学思维从传统分析静态模型转变为分析动态模型。因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结。 在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。 (二)新距离 近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。比如2019年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。在大题具体解题中

笔者会详细叙述。 (三)新名词 对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2019届高三上学期期末考试题的解析几何大题属于非常规思路)。比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。 (四)知识点性质结合 此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。比如2019年高考北京卷填空压轴题,需要考生掌握轨迹与方程思想,方程与曲线关于变量与坐标的一一对应关系。再比如2009年北京卷填空压轴题,就是对数列递推关系进行了简单的扩展,考生只要严格按照题目的规则代入就可得到答案。此类题型需要考生对于知识点的原理、思维方法有深层次的理解才能够很快做出答案。上面提到的两道题均没有考对应知识点的细节处理问题,而是上升的数学思维方法的层次。

高考数学主要考查哪些知识点

2019年高考数学主要考查哪些知识点 第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计。这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。 第七,解析几何。是高考的难点,运算量大,一般含参数。 “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”

为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。 对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧

高三数学基本初等函数单元测试题

高三数学基本初等函数 单元测试题 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

时杨中学2009届高三数学单元检测卷(2) 基本初等函数 时量:60分钟 满分:80分 班级: 姓名: 计分: 个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 二.填空题:本大题共8小题,每小题5分,满分40分. 1. 若{|1}A x y x ==-,2{|1}B y y x ==+,则A B ?=_____________ 2. 已知函数:①2sin y x =;②3y x x =+;③cos y x =-;④5y x =,其中偶函数的个数为_______________ 3. 一次函数()g x 满足[]()98g g x x =+, 则()g x ______________ 4. 函数2 12x x y -+-=的单调递增区间是_________________ 5. 一水池有2个进水口,1个出水口,进出水速度如图甲.乙所示. 某天0点到6点,该水池的蓄水量如图丙所示. (至少打开一个水口) 给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水; ③4点到6点不进水不出水. 则一定能确定正确的论断是____________ 6. 函数12y x =-,[3,4]x ∈的最大值为 . 7. 设函数2 12,1, ()1,1,1x x f x x x ?--≤?=?>?+? 则[](1)f f = . 8. 函数()2 2231m m y m m x --=--是幂函数且在(0,)+∞上单调递减,则实数m 的值为 . 二、解答题:本大题共3小题,满分40分,第9小题12分,第小题各14分. 解答须写出文字说明.证明过程或演算步骤. 9. 已知函数22()log (32)f x x x =+- . (1) 求函数()f x 的定义域;(2) 求证()f x 在(1,3)x ∈上是减函数;(3) 求函数()f x 的值域.

2021届新高考版高考数学专项突破训练:专项4 新高考·新题型专练

2021届新高考版高考数学专项突破训练 专项4 新高考·新题型专练 一、多项选择题:在每小题给出的选项中,有多项符合题目要求. 1.已知集合M={0,1,2},N={x||x - 1|≤1},则() A.M=N B.N?M C.M∩N=M D.(?R M)∪N=R 2.已知i为虚数单位,则下列结论正确的是() A.复数z=的虚部为 B.复数z=的共轭复数= - 5 - 2i C.复数z=i在复平面内对应的点位于第二象限 D.若复数z满足∈R,则z∈R 3.采购经理指数(简称PMI)是国际上通行的宏观经济监测指标体系之一,对国家经济活动的监测和预测具有重要作用.制造业PMI在50%以上,通常反映制造业总体扩张,低于50%,通常反映制造业总体衰退.如图1 - 1是2018年10月到2019年10月我国制造业PMI的统计图,下列说法正确的是() 图1 - 1 A.大部分月份制造业总体衰退 B.2019年3月制造业总体扩张最大 C.2018年11月到2019年10月中有3个月的PMI比上月增长 D.2019年10月的PMI为49.3%,比上月下降0.5个百分点 4.已知函数f (x)=则下列结论中正确的是() A.f ( - 2)=4 B.若f (m)=9,则m=±3

C.f (x)是偶函数 D.f (x)在R上单调递减 5.已知(ax2+)n(a>0)的展开式中第5项与第7项的二项式系数相等,且展开式中各项系数之和 为1 024,则下列说法正确的是() A.展开式中奇数项的二项式系数之和为256 B.展开式中第6项的系数最大 C.展开式中存在常数项 D.展开式中含x15项的系数为45 6.已知向量a=(1,2),b=(m,1)(m<0),且满足b·(a+b)=3,则() A.|b|= B.(2a+b)∥(a+2b) C.向量2a- b与a- 2b的夹角为 D.向量a在b方向上的投影为 7.已知函数f (x)=sin(2x - ),下列结论正确的是() A.f (x)的最小正周期是π B.f (x)=是x=的充分不必要条件 C.函数f (x)在区间(,)上单调递增 D.函数y=|f (x)|的图象向左平移个单位长度后所得图象的对称轴方程为x=π(k∈Z) 8.同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件A={第一个四面体向下的一面出现偶数},事件B={第二个四面体向下的一面出现奇数},事件C={两个四面体向下的一面同时出现奇数,或者同时出现偶数}.则下列说法正确的是() A.P(A)=P(B)=P(C) B.P(AB)=P(AC)=P(BC) C.P(ABC)= D.P(A)P(B)P(C)=

高考数学必备知识点总结

2019年高考数学必备知识点总结 1、混淆命题的否定与否命题 命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。 2、忽视集合元素的三性致误 集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。 3、判断函数奇偶性忽略定义域致误 判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。 4、函数零点定理使用不当致误 如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。 5、函数的单调区间理解不准致误 在研究函数问题时要时时刻刻想到“函数的图像”,学会从函

数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。 6、三角函数的单调性判断致误 对于函数y=Asin(ωx+φ)的单调性,当ω0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x 的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数 y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。 7、向量夹角范围不清致误 解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b0时,a与b的夹角不一定为钝角,要注意θ=π的情况。 8、忽视零向量致误 零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

高考数学 极限单元测试卷

极限单元测试卷 (满分:150分 时间:120分钟) 一、选择题(本大题共12小题,每小题5分,共60分) 1.下面四个命题中,不正确... 的是( ) A .若函数f (x )在x =x 0处连续,则lim x →x +0f (x )=lim x →x -0f (x ) B .函数f (x )=x +2 x 2-4 的不连续点是x =2和x =-2 C .若函数f (x )、g (x )满足lim x →∞[f (x )-g (x )]=0,则lim x →∞f (x )=lim x →∞g (x ) D.lim x →1 x -1x -1=1 2 答案:C 解析:A 中由连续的定义知函数f (x )在x =x 0处连续,一定有lim n →x +0 f (x )=lim x →x -0f (x ),且还满足lim x →x +0f (x )=lim x →x -0f (x )=f (x 0),故A 对.B 中函数f (x )=x +2 x 2-4在x =2和x =-2无定义,故不连续,B 对.C 中只有lim x →∞f (x ),lim x →∞g (x )存在时,才有lim x →∞f (x )=lim x →∞ g (x ),否则不成立. D 中lim x →1 x -1x -1=lim x →1 1x +1=1 2 ,故D 对.故选C. 2.下列命题中: ①如果f (x )=1 3x ,那么lim x →∞ f (x )=0 ②如果f (x )=1 x ,那么lim x →∞f (x )=0 ③如果f (x )=x 2+3x x +3 ,那么lim x →-3f (x )不存在 ④如果f (x )=??? x (x ≥0)x +2 (x <0) ,那么lim x →0 f (x )=0 其中错误命题的个数是( ) A .0 B .1 C .2 D .3 答案:D 解析:②中x →-∞时无意义; ③中lim x →-3f (x )=lim x →-3 x =-3; ④中左、右极限不相等.故选D. 3.(2009·阳泉模拟)lim n →∞ 1+2+3+…+n n 2 等于( ) A .2 B .1 C.1 2 D .0 答案:C 解析:lim n →∞ 1+2+3+…+n n 2=lim n →∞ n +12n =lim n →∞ 1+1n 2=1 2 .故选C. 4.已知函数f (x )=????? x 2+2x -3x -1 (x >1)ax +1 (x ≤1) 在点x =1处连续,则a 的值是( )

高考数学新题型分类

2019年高考数学新题型分类 新课标以来,高考数学中出现了创新题型,以第8、14、20题为主,创新题型是建立在高中数学思维体系之上的一中新数学题型。2019年高考数学新题型分类为以下几点: (一)解析几何中的运动问题 解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。即新课标高考数学思维从传统分析静态模型转变为分析动态模型。因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结。 在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。 (二)新距离 近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。比如2019年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。在大题具体解题中笔者

会详细叙述。 (三)新名词 对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2019届高三上学期期末考试题的解析几何大题属于非常规思路)。比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。 (四)知识点性质结合 此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。比如2019年高考北京卷填空压轴题,需要考生掌握轨迹与方程思想,方程与曲线关于变量与坐标的一一对应关系。再比如2009年北京卷填空压轴题,就是对数列递推关系进行了简单的扩展,考生只要严格按照题目的规则代入就可得到答案。此类题型需要考生对于知识点的原理、思维方法有深层次的理解才能够很快做出答案。上面提到的两道题均没有考对应知识点的细节处理问题,而是上升的数学思维方法的层次。(五)情境结合题 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、

上海高考数学知识点重点详解

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 高考前数学知识点总结 1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.已知集合A 、B ,当A B ?=?时,你是否注意到“极端”情况:A =?或B =?; 4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-, n 2 2.- ()若,;2A B A B A A B B ??== (3):空集是任何集合的子集,任何非空集合的真子集。 5. 学会用补集思想解决问题吗?(排除法、间接法) 6.可以判断真假的语句叫做命题。 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。 13. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性;

例谈近几年高考题中的新题型

例谈近几年高考题中的新题型 江苏省泰州市民兴实验中学丁益民(225300) 综观这两年各地高考数学试题便会发现几乎每份试卷,都有一定量的新定义题.这类题目的特点是命题者通过文字或图表等给出了中学数学内容中没有遇到过的新知识,这些新知识可以是新概念、新定义、新定理、新规则或新情境,并且这些解题的信息有可能不是直接给出的,要求解题者通过观察、阅读、归纳、探索进行迁移,即读懂新概念,理解新情境,获取有用的新信息,然后运用这些有用的信息进一步演算和推理,从而考察学生在新的情景下,独立获取和运用新信息的能力,综合运用数学知识解决问题的能力和探索能力. 就这两年高考题型的走势来看,高考新题型的结构形式大约有以下的7种。 一、情境新颖型 新的立意,新的背景,新的表述,新的设问都能创设试题的新颖情境. 【例1】(2020年全国卷Ⅲ)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9 十六进制0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 例如,用十六进制表示:E+D=1B,则A×B=【】 A.6E B.72 C.5F D.B0 【点示】情境新颖有三:(1)数符新颖,除熟悉的0,1,…,9这10个数字之外,还有新数字A、B、C、D、E、F. (2)数制新颖,16进制. (3)数意新颖,16进制中的数11,如果说个位数上的1与10进制中的1“数意”相同的话,那么十位数上的1则是另外一种“数意”了;自然,F1这个数在10进制中已经不是两位数了. 【解答】我们用符号[x](10) ,[y] (16) 分别表示10进制和16进制中的数. 依题意,有 [16](10)=[10](16) 则有A×B=[10×11](10) =[110](10)=[6×16+14](10)=[6×10+E](16) =6E. 答案为A. 二、研究学习型 【例2】(2020年江苏卷)相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点 ...均在正方体的面上,则这样的几何体体积的可能值有 (A)1个(B)2个 (C)3个(D)无穷多个 【点示】研究有三:(1)正方体内接几何体 的空间模型;(2)截面图形;(3)新课标要求的 三视图. 【解答】法一:本题可以转化为一个正方形可以有多少个内接正方形,显然有无穷多个.

2021届新高考高三数学新题型专题03 三角形解答题 开放性题目第三篇(原卷版)

第三篇 备战新高考狂练新题型之高三数学提升捷径 专题03 三角形解答题 在①ABC ?面积2ABC S ?=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34 ABC π∠= ,BAC DAC ∠=∠,______,24CD AB ==,求AC .

1. 在ABC ?中,7,5,8a b c ===. ()1求sin A 的值; ()2若点P 为射线AB 上的一个动点(与点A 不重合),设AP k PC =. ①求k 的取值范围;

②直接写出一个k 的值,满足:存在两个不同位置的点P ,使得AP k PC =. 2. cos )sin b C a c B -=;②22cos a c b C +=;③sin sin 2 A C b A += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题. 在ABC ?中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,b =4a c +=,求ABC ?的面积. 3. 在①34asinC ccosA =;②22 B C bsin +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题. 在ABC 中,角,,A B C 的对边分别为,,a b c ,已知 ,a =. (1)求sinA ; (2)如图,M 为边AC 上一点,,2MC MB ABM π =∠=,求ABC 的面积 4. 在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-. (1)求A 的大小; (2)再在①2a =,②4B π =,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面 的问题中,并解答问题.若________,________,求ABC 的面积. 5. 在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a B b A π=+,③sin sin 2 B C b a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ?中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ?的面积. 6. 某地计划在一处海滩建造一个养殖场.

(完整版)高考数学高考必备知识点总结精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

2020高考数学(文)刷题卷单元测试八:概率与统计(含解析)

单元质量测试(八) 时间:120分钟 满分:150分 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.同时抛掷3枚硬币,那么互为对立事件的是( ) A.“至少有1枚正面”与“最多有1枚正面” B.“最多有1枚正面”与“恰有2枚正面” C.“至多有1枚正面”与“至少有2枚正面” D.“至少有2枚正面”与“恰有1枚正面” 答案 C 解析两个事件是对立事件必须满足两个条件:①不同时发生,②两个事件的概率之和等于1.故选C. 2.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,

300,200.为做好小学放学后“快乐30分”的活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120 B .40 C .30 D .20 答案 B 解析 ∵一年级学生共400人,∴抽取一个容量为200的样本,用分层抽样的方法抽取的一年级学生人数为4002000 ×200=40.选B . 3.(2018·合肥质检一)某广播电台只在每小时的整点和半点开始播放新闻,时长均为5分钟,则一个人在不知道时间的情况下打开收音机收听该电台,能听到新闻的概率是( ) A .114 B .112 C .17 D .16 答案 D 解析 我们研究在一个小时内的概率即可,不妨研究在一点至两点之间听到新闻的时间段.由题可知能听到新闻的时间段为1点到1点5分,以及1点30分到1点35分,总计10分钟的时间可以听到新闻,故能听到新闻的概率为1060=1 6 .故选D . 4.(2018·湖南邵阳二模)假设有两个分类变量X 和Y 的2×2列联表如下: 对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为( ) A .a =45,c =15 B .a =40,c =20 C .a =35,c =25 D .a =30,c =30 答案 A 解析 根据2×2列联表与独立性检验可知, 当 a a +10与c c +30相差越大时,X 与Y 有关系的可能性越大,即a ,c 相差越大,a a +10 与c c +30 相差越大.故选A . 5.(2018·河南安阳二模)已知变量x 与y 的取值如下表所示,且2.5

相关文档
最新文档