小半径曲线
最小曲线半径

最小曲线半径| [<<][>>]最小曲线半径(minim um ra diu s of cu rve)铁路全线或某一路段内规定的圆曲线半径的最小值。
最小曲线半径对运营条件影响较大,且影响程度随运量和行车速度的增大而增大。
若半径过小,不仅会限制速度,加剧轮轨磨耗,增加维修工作量,增大运营支出,影响旅客舒适,甚至危及行车安全。
从工程方面看,若选项用的曲线半径偏大不适应地形,甚至危及行车安全。
从工程方面看,若选用的曲线半径偏大不适应地形,则会增加桥、隧和路基工程数量,增大工程费;过小的半径对工程也会产生不利影响,如增加线路长度,需要加强轨道,增加接触导线的支柱数量(对于电力牵引线路),导致粘着系数降低及在紧坡地段因曲线阻力和黏着系数降低导致坡度折减增大而展长线路等。
影响最小曲线半径标准的因素可归纳为以下五个方面。
①行车速度。
曲线半径是限制列车在曲线上的运行速度的主要因素之一,因此,最小曲线半径应满足设计线的旅客列车最高行车速度(或路段设计速度)的要求,同时还应考虑客、货列车或高、低速度列车共线运行时的速度差的影响。
②设计线的运输性质。
客运专线主要保证旅客舒适度,重载运输线重视轮轨磨耗均匀,客货列车共线运行线路则需两者兼顾。
③运行安全。
为保证机车车辆在曲线上的运行安全,保证轮轨间的正常接触,车辆上所受的力应保持在安全范围内。
最小曲线半径应保证车辆通过曲线的安全性、稳定性及客车平稳性的评价指标符合相关规定。
还应保证列车在曲线上运行时不倾覆。
抗倾覆安全系数与曲线半径、行车速度、曲线超高、风力大小、车辆类型、装载情况与重心高度、振动性能等因素有关,在其他条件一定的情况下,最小曲线半径决定于最小的抗倾覆安全系数。
④地形条件。
在保证运营安全的前提下,曲线半径应与沿线的地形条件相适应。
山区地形复杂,坡陡弯急,采用较小半径的曲线既可避免破坏山体,影响环境,也可减少工程,节约投资。
⑤经济因素。
小半径曲线可更大程度地适应地形,从而减少工程及投资,但增大运营支出,在一定的地形条件和运输需求下,存在经济合理的最小曲线半径,故应全面权衡得失,经技术经济比选确定最小曲线半径标准。
城市轨道线路平面曲线最小半径选择

4、中低速磁悬浮交通线路平面最小曲线半径选择 磁悬浮列车与普通轮轨列车相比,具有低噪音、无污染、安全舒适和高速高效的特点,大力发展城轨磁悬浮交通对解决我国大城市交通问题有重要意义。 线路所允许的最小曲线半径主要由安全条件、舒适条件确定。磁浮铁路系统从构造上采取了避免列车脱轨和倾覆的措施。列车环抱线路,而电磁力会随着间隙的减小而成几何级数增大,几乎排除了列车脱轨和倾覆的可能性。因此,城轨磁悬浮交通的平面最小曲线半径主要由舒适条件确定的。
2、国外城市轨道曲线半径的选取 美国、日本、法国等国家为了降低工程造价而采取较为灵活的最小曲线半径标准值,主要线路上的曲线半径比我国的标准小得多。纽约地铁的最小曲线半径为107m,芝加哥和波士顿地铁为100m;东京、大阪等城市的地铁线路的最小曲线半径大部分不足200m;巴黎地铁的最小曲线半径仅为75m。
HSST曲线线路
在线路纵坡度为零时,未平衡的侧向离心加速度为 线路中通过限制侧向离心加速度的最大允许值来保证旅客舒适度。当平曲线半径、横坡角等线路设计参数一定时,保证侧向离心加速度不超过允许的最大值的平曲线半径,根据旅客列车通过曲线的最高速度用下式计算: 因此,当速度一定时,选定曲线半径的关键是确定曲线地段轨道梁最大横坡角和未被平衡的侧向加速度。
b、曲线半径对运营费的影响 曲线半径越小,钢轨磨耗越严重,钢轨更换周期越短。根据国内对铁路曲线磨耗的研究结果推算出200 m半径曲线的换轨周期大约比400 m半径曲线换轨周期约缩短40%。 钢轨磨耗h与曲线半径R的关系曲线
c、曲线半径对工程的影响 较小的曲线半径,能够较好地适应地形、地物、地质等条件的约束。缩小曲线半径可减少的工程拆迁量。有时,一处曲线采用大、小半径引起的拆迁工程费差异达数千万元甚至上亿元。
3、最小曲线半径的合理选择 随着城市空间密度不断加大,城市轨道交通的最小曲线半径标准将会对工程造价和换乘设计方案等方面产生越来越大的影响。400m以下的小半径曲线具有限制列车速度、养护比较困难、钢轨侧面磨耗严重及噪声大等缺点。因此,曲线半径宜按标准半径系列从大到小合理选用,在实际工作中,最大曲线半径一般不超过3000m。在困难地段,站台段线路也可设在曲线上,为了保证行车安全和合理的踏步距离,其半径不应小于800m。
小半径曲线常见病害的分析及整治措施可修改全文

一、南昆线 小半径曲线的主要病 害
(4)轨枕失效严重
主要集中在小半径曲线上, 病害表现为轨枕挡肩破损、 轨枕开裂、沉轨槽溃烂等
二、原因分析及防治措施
(1)钢轨伤损病害
原因分析: ①线路的先天不足是钢轨
磨耗的最主要原因。列车驶 经小半径曲线时,由于车轮 踏面与钢轨面发生滑动,使 相同牵引力下列车的行驶速 度大大降低,使钢轨受到的 力较直线地段大的多,导致 机车车辆与轨道部件都受到 伤损,特别是钢轨的侧磨较 大,使用寿命变短。
巩固拨道成果:在传统概念中,拨道是整治曲线方向的主要方 法。但是,仅仅依赖于拨道想较长时间保持曲线方向是难以实 现的。还需要将“起、拨、捣、改”等方法与正矢递增(减)、加 强钢轨硬弯矫直、更换失效联结零件等方法进行综合使用。与 此同时,还需加宽曲线外股道床宽度、堆高碴肩、增加道床的 横向水平移动阻力等方式来不断增强道床横向阻力。
概述
小半径曲线钢轨伤损病害严重
二是钢轨接头病害突出
主要是由于南昆线的胶接绝缘接头因铺设上道时间较早, 已进入疲劳期,普遍存在轨头低踏、轨面掉块、夹板和螺 孔裂纹、电阻不良等病害
2013年至今全段共更换189副 厂焊接头低踏病害严重
主要原因是厂焊接头在焊接时由于材料强度比母材低,在 列车的冲击力作用下被压踏,并造成接头吊板、道碴打白、 接头扣件松动等次生病害。再次是伤损钢轨更换导致铝热 焊接头、临时处理接头大量增加,接头的增加造成线路次 生病害的大量存在
原因分析: ①与曲线受力有着直接关系,当列车
在曲线地段运行时,产生的力十分复杂。 通过力的分析,可将列车作用于钢轨上 的力分为3个方向,即竖直方向、水平 横向以及水平纵向。垂直力即或作用于 钢轨上车轮的静压力(即分配到该车轮 上的车辆重量——轴重),列车通过轨 道不平顺地段以及不平顺车轮运行时会 产生附加力。在曲线地段还有因外轨超 高以及车架对车轮横向压力而引起的附 加垂直力。横向水平力主要指车轮对钢 轨的侧压力和曲线上的附加横向力。曲 线地段产生的横向水平力比较大。曲线 半径愈小,横向水平力愈大。曲线上产 生的离心力和因外轨超高使车辆倾斜而 产生的机车车辆重力分力有关。
小半径曲线桥梁设计要点探析

小半径曲线桥梁设计要点探析一、小半径曲线桥梁的结构受力特点小半径曲线桥梁由于主梁的平面弯曲使得下部结构墩柱的支承点不在同一条直线上,形成了其独有的受力特点:(1)主梁受曲率影响,梁截面发生竖向弯曲的同时会产生扭转,而产生的弯矩和扭矩相互影响,使梁处于弯扭耦合状态;(2)由于弯扭耦合作用,弯桥的变形比同跨径的直桥要大,主梁外边缘的挠度大于内边缘的,而且曲率半径越小,桥越宽,这一趋势越明显。
同时在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势;(3)曲线桥梁上汽车荷载的偏心布置及其行驶时的离心力,也会造成曲线梁桥向外偏转并增加主梁扭矩和扭转变形。
另外,曲线桥梁即使在对称荷载作用下也会产生较大的扭矩,该扭矩通常会使得外梁超载,内梁卸载;(4)主梁的扭转传递到梁端部时,会造成端部各支座横向受力分布严重不均,通常呈曲线外侧支反力变大,内侧变小的趋势,有时内侧支座甚至会出现负反力。
(5)曲线桥的中横梁是保持全桥稳定的重要构件,与直线桥相比,其刚度一般较大。
(6)采用连续梁体系的曲线桥,预应力效应对支反力的分配有较大的影响,在计算支座反力时必须考虑预应力效应的影响。
二、小半径曲线桥梁的设计要点(一)小半径曲线桥梁支座的布置形式曲线箱梁桥支座的布置型式通常采用三种形式(如下图):a. 全部采用抗扭支承, b. 两端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。
近年来,在曲线箱梁桥工程实际应用中,两端为抗扭支座(双支座),联内安置几个单点铰支座,即中支点下部采用独柱支承的曲线桥多次发生侧倾事故。
其主要原因多为主梁在偏心荷载作用下发生扭转,当转角大到一定程度时,支反力的下滑分力将超过支座侧向的约束能力,扭矩将全部转移到梁端造成曲线内侧支座脱空,主梁发生倾覆。
所以此类支座布置的形式在工程应用中已不多见。
对于小半径的曲线箱梁,通常全部采用抗扭支承。
小半径曲线病害的成因和整治

小半径曲线病害的成因和整治我是四川遂宁人,1991年7月1日入路,通过培训后分配到高平铺任线路工,2003年考取高级工等级合格证。
在2009年2月调小西堡工区,2010年2月调龙里专业修,在此期间,多次荣获“先进生产者”、“工会先进积极分子”、“青工技术能手”、“优秀共青团号”等称号。
作为一名现代的铁路职工,面对铁路运量的大幅提升,行车速度提高,工务工作面临着严唆的考验,所提出的技术要求也将更高,因此,对本职业务的熟识也显得尤为重要。
只有掌握了业务技术知识,才能更好的做好本职工作,更好的保证行车安全,为铁路现代化事业贡献自己的一份力量。
通过这些年的工作和学习,我总结到对曲线病害有几项整改经验。
1、摸清曲线变化规律,做好曲线苗头性的预防工作。
作为一名现代的铁路职工,面对铁路运量的大幅提升,行车速度提高,工务工作面临着严唆的考验,所提出的技术要求也将更高,因此,对本职业务的熟识也显得尤为重要。
只有掌握了业务技术知识,才能更好的做好本职工作,更好的保证行车安全,为铁路现代化事业贡献自己的一份力量曲线是线路设备的薄弱环节,而小半径曲线则更是最薄弱的地段,它是病害集中,设备状态不易控制,养护维修工作量相对较大的地段,对于小半径曲线,大家都在想尽一切办法,对小半径曲线进行着各种各样的加强防范措施,千方百计的控制小半径曲线的状态,延长小半径曲线维修周期,降低小半径曲线维修成本。
一、小半径曲线上常见病害:根据这些年工作中观察,发现小半径曲线上容易出现夹板及接头螺栓折断,轨距杆折断,弹条的折断,尼龙座挤碎,轨枕挡肩破损,轨枕歪斜等病害,钢轨磨耗等。
二、小半径曲线上病害成因:小半径曲线上高低、轨距、超高、正矢相对其它线路容易发生变化,保持的周期短,特别是轨距扩大病害相当普遍,并且随着钢轨侧磨的增加,而逐渐加剧。
造成小半径曲线病害最直接因素是机车辆对小半径曲线上的附加力,如果曲线状态好,附加力小,对曲线的破坏就小,反之就对曲线破坏大,因此,保持曲线良好的技术状态,减少机车车辆对轨道的附加力,是延长曲线维修周期,降低维修成本的关键。
盾构机小曲线半径始发技术2.

盾构施工中曲线始发、掘进及接收技术一、盾构机小曲线半径始发技术1、概况1.1工程概况设计里程范围为DCK0+073.468~DCK0+660.300,区间全长为586.832m。
盾构从出段线盾构工作井始发后,沿马家沟河以小曲率半径经太平大街、马家沟河后至太平桥站接收。
线路最小平曲线半径R=249.928m,最大纵坡30‰,隧道覆土厚度5.6~12.2m。
1.2工程地质条件主要位于太平大街、东直路道路下,下穿河。
除河谷确定高程为116.7~118.0m 外,场地地形起伏较小,地面高程在118.66~121.96m 之间,场地地貌单元属松花江漫滩,马家沟河两侧为马家沟河漫滩。
隧道掘进主要穿越○A1粉质粘土和○A3中砂层。
1.3水文地质隧道掘进主要在第○A1粉质粘土、○A3中砂层中穿越。
盾构区间隧道施工地层含水量丰富,○A1粉质粘土层处于浅层潜水层、○A3中砂层处于孔隙微承压水层。
该含水层埋藏较浅,厚度大。
其中,○A2粉砂、○A3中砂、○A3T2粉砂、○A3T3砾砂层赋水性较好,透水性较强,水量丰富,盾构施工在该含水层中进展,对将来地铁运营影响较大。
1.4盾构机概况承受的是德国海瑞抑制造的S-540 土压平衡盾构机。
盾构机外径Ø6250mm,盾构机总长81.76m,总重518t,总功率1600 千瓦,最小转弯半径250m,刀盘转速为0-4.5 U/分钟,额定扭矩5380kNm,脱困扭矩6930kNm,最大推力可达35000kN,刀盘驱动为液压马达,功率为3X315KW,刀盘型式为面板式复合刀盘,开口率35%,最大开挖直径Ø6280mm,正面羊角刀20 把,中心羊角刀4 把,正面刮刀48 把,边刮刀8 把。
2、盾构小半径曲线始发设计2.1割线始发方法盾构机在始发前确认盾构机与隧道轴线和盾构机姿势正确。
出段线以249.928m 半径的曲线始发,小曲线半径始发在全国尚属少数,这为盾构机的始发提出了很高的技术要求,需要解决以下问题:①将盾构机沿曲线的割线方向掘进,预偏量为10~25mm,以减小管片因受侧向分力而引起的向圆弧外侧的偏移量;②适当降低推动速度,在盾构机推动启动时,推动速度要以较小的加速度递增;③推动时,要适当调整左右两组油缸的压力差,使曲线内侧油缸压力略小于外侧油缸压力,但纠偏幅度不要过大。
公路最小圆曲线半径计算公式

公路最小圆曲线半径计算公式
在设计和建造公路时,曲线是不可避免的。
为了确保车辆可以安全地通过曲线,必须使用最小圆曲线半径。
最小圆曲线半径是曲线的半径,使得车辆可以在不减速的情况下通过曲线。
计算最小圆曲线半径需要考虑许多因素,如车辆速度、道路坡度、车辆横向加速度和横向摩擦力等。
通常使用道路设计软件来计算最小圆曲线半径,但也有一些公式可以用来估算最小圆曲线半径。
最小圆曲线半径计算公式如下:
Rmin = V^2 / (127 * f * g)
其中:
Rmin是最小圆曲线半径,单位为米(m);
V是车辆的设计速度,单位为公里/小时(km/h);
f是纵坡(上下坡度)系数,通常为0.07;
g是重力加速度,约为9.81米/秒。
例如,如果车辆的设计速度为60公里/小时,纵坡系数为0.07,那么最小圆曲线半径将是:
Rmin = (60^2) / (127 * 0.07 * 9.81) ≈ 159.87米这意味着,在这个例子中,公路曲线的半径应该至少为159米,以确保车辆可以安全通过。
需要注意的是,这个公式只是估算最小圆曲线半径的一种方法。
在实际设计中,需要综合考虑所有因素来计算最小圆曲线半径。
- 1 -。
小半径曲线

AbstractCommon railway line uninterrupted by locomotive, the vehicles the roller compaction and impact, so line state in the constant change of. Curve radius is especially small area curve by linear sector of the impact and rolling and push is more outstanding, not only line state change quickly, the larger, and rail are also serious wear parts, so small radius of the maintenance of curve and damage control line maintenance work as an important link, its maintenance task directly relates to the maintenance of the input and safety. According to the small radius curve and causes common disease are analyzed, and the small radius curve in the daily maintenance in geometry size adjustment, strengthening technical prevention and key disease should be adopted by the measures, and the measures for the continuous improvement of have a little bit of shallow knowledge.Curve is the weak link of line equipment, and small radius is the weakest curve area, it is the disease concentration, equipment state not easy to control, maintenance workload relatively large area, for small radius curve, we are doing what we can to small radius curves for various kinds of effective prevention measures, one thousand party control of the hundreds of small radius curve state, extend the small radius curve maintenance period, lower the small radius curve maintenance cost.Keywords Smallradius curvesDisease Curing Servis1绪论 (1)2小半径曲线常见病害及成因分析 (3)2.1 小半径曲线成因分析 (3)2.2 钢轨损伤病害 (5)2.3 轨道几何尺寸易超限 (5)2.4 联接零件易松动,且破损率高 (6)2.5 易出现曲线“鹅头” (6)3 防止小半径曲线产生病害的主要对策 (6)3.1调整好小半径曲线各部尺寸是基础 (8)3.2 对小半径曲线加强防范是保证 (8)3.3 整治重点病害是关键 (9)3.4强化小半径曲线技术是细节................................... .103.5建立科学的养护技术资料是完善 (11)4 对提高小半径曲线养护效果的几点建议 (12)结论 (13)参考文献 (14)致谢 (15)中国铁路始建于1876年,铁路运输线是我国国民经济的大动脉,在我国交通运输体系中居于主导的骨干地位,它在国家的建设中占有重要地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小半径曲线病害原因及整治
铁路曲线选型由于受到地形、特殊地物的影响,采用半径小于300米的曲线来绕避障碍,这类曲线在日常工作中称为小半径曲线。
小半径曲线多出现与山区铁路、部分专用线等。
一、小半径曲线病害原因分析
1、离心力平衡难以实现
小半径曲线运用于正常线路,在行车速度不变的情况下,小半径曲线的离心力随着半径的减小而增大。
见公式(1)
R mv F 2
= (1)
F ——离心力
m ——列车质量
V ——列车行驶速度
R ——曲线半径
我们知道,在曲线上行驶列车的离心力由重力的一个分力来进行平衡,因此当行车速度v 不变时,半径越小曲线外轨的抬高量要求越大,内外轨轨面形成的斜面越陡,离心力得以平衡。
而我国采用公式(2)计算外轨超高。
R v H 2
8.11= (2) 其中v 为速度的加权平均值,它综合考虑了列车的质量、对数和每列车的行车速度得出的平均值。
∑∑=i i
i
i i m N v m N v (3) v ——速度的加权平均值
H ——外轨超高量
N i ——列车对数 由于列车正常行驶速度与v 存在差别,因此实际所需的外轨超高量与实际设置的超高量不一致,存在未被平衡的离心力。
特别列车以v max 、v min 通过曲线时,列车所受的离心力更是难以平衡。
2、横向力较大
列车在轨道上运行,其方向由钢轨控制。
列车能够转弯是由于曲线外轨对车轮的挤压作用。
车轮与外轨的挤压、碰撞,曲线外轨作用于车轮一法向向(动)量,曲线半径越小,瞬时碰撞所产生的法向向量越大,外轨对车轮作用的力越大。
根据作用力与反作用力相等原理,我们知道车轮作用于外轨的法向力也越大。
3、轮轨之间运动复杂
由于曲线半径较小,内外侧车轮与钢轨之间运动、摩擦方式既不是单一方式,也不是完全相同方式,难以描述。
4、线路实际线型与理论线型不一致。
对于曲线,曲线半径越大,实际线型与理论线型越趋于一致。
小半径曲线由于曲线半径较小,弧弦差较大,线路的圆顺性较差,线路实际线型与理论线型不一致。
二、小半径曲线的常见病害
1、外轨磨耗量大
根据上述分析,对于以V max行驶的列车来说,由于存在着较大的欠超高,因而未被平衡的离心力必然依靠外轨对车轮的挤压来平衡,造成外轨在短时间内产生较大的磨耗。
2、内轨易出现裂纹等伤损
在小半径曲线上对于以较小速度行驶的列车来说,则存在着过超高,过超高造成内外轨轨面高差较大,列车的重力过多的由内轨承担,随着时间的推移,疲劳强度下降,内轨头部、轨颚容易出现裂纹。
3、钢轨头部剥落掉块
由于小半径曲线受力复杂,车轮与钢轨之间粘着系数增加,轮轨之间的碾压、挤压、打滑往往造成钢轨轨面剥落掉块,掉块深度超过3mm。
4、轨道几何形位不易保持,钢轨接头错牙
小半径曲线的几何形位由于弦弧差别较大,再加上复杂的受力,曲线的几何形位很难控制,曲线的远圆顺度无法保持。
接头处由于冲击力加大,造成接头错牙的产生。
5、易形成翻浆冒泥
小半径曲线地段由于轨道几何形位不易保持,受力复杂,钢轨受力不均匀,道床的道砟一方面已切入路基,形成道砟槽、道砟锅、道砟囊;另一方面易磨耗成道砟粉灰,阻塞道床道砟缝隙,雨水不能及时排走。
两者的共同作用,形成翻浆冒泥,特别是接头处,翻浆出现概率和程度更大。
此外轨面剥落掉块也加大了车轮对钢轨的
冲击,加剧了翻浆冒泥的进一步形成,并造成恶性循环。
三、小半径曲线病害整治
小半径曲线的病害往往是各种因素共同作用的结果,整治小半径曲线病害要分析病害的原因、做到预防、整治相结合。
1、合理设置超高
计算超高时所用的v应科学调研,特别是随着地方经济的发展,列车种类的变化,行车速度的提高,v的数值应合理进行调整。
这样曲线外轨的超高也应进行调整,做到合理设置超高。
2、勤养护、及时维修确保轨道的几何形位
由于半径较小、弦弧差存在,小半径曲线轨道的几何形位不易保持。
只有平时加强养护维修,做到勤养护,使轨道始终处于良好状态,并将病害消除在萌芽状态,确保小半径曲线轨道的圆顺度。
养护维修时可适当增加加固装置、适当增加道床厚度,砟肩适量堆高,接头螺栓紧固程度适中,减少最不利受力状况的出现。
3、加强捣固
加强捣固,保持道床的密实度和弹性,路基面受力均匀,减小过大的冲击力出现,防止道砟切入路基,对减少翻浆冒泥的出现起重要作用。
4、轨面涂油
轨面涂油或其它润滑设备,减少轮轨之间的粘着系数,列车易于转向。
轨面应力峰值和钢轨磨耗量将随之减少,剥落掉块现象也将大为减少。
综上所述,小半径曲线的病害原因在于复杂的受力,特别是我国目前任然采用客货共线铁路,并且大规模提速,给小半径曲线的病害整治带来较大困难。
只有加强平时的养护维修,做到勤养,时刻保持轨道处于良好状态,才能确保安全。