直角三角形和勾股定理
直角三角形与勾股定理

直角三角形与勾股定理在数学中,直角三角形是一种特殊的三角形,具有一个角度为90度的直角。
与直角三角形相关的一个重要定理就是勾股定理。
下面将介绍直角三角形以及勾股定理的相关内容。
一、直角三角形的定义和性质直角三角形是指其中一个角度为90度的三角形。
在直角三角形中,直角位于两条边的交汇处,我们通常将直角对边称为斜边,另外两条边分别称为直角边。
直角三角形的性质如下:1. 直角三角形的两个直角边相互垂直。
2. 直角三角形的斜边是直角边长度的最大值。
3. 直角三角形中,任意一个角的正弦、余弦和正切值都可以通过三角函数来表示。
二、勾股定理的介绍和应用勾股定理是描述直角三角形边长关系的重要定理,它表明直角三角形的两个直角边的平方和等于斜边的平方。
具体表达式为:c² = a² + b²其中,a和b代表直角三角形的直角边的长度,c代表斜边的长度。
勾股定理有广泛的应用,下面介绍几个常见的应用场景。
1. 求解直角三角形的边长利用勾股定理,我们可以根据直角三角形的两个直角边的长度求解斜边的长度,或者根据斜边的长度求解直角三角形的直角边长度。
这在实际生活中经常用到,比如测量房间的对角线长度、计算建筑物的高度等。
2. 判断直角三角形通过勾股定理,我们可以判断一个三边长度符合勾股定理的三角形是否为直角三角形。
如果一个三角形的三边长度满足a² + b² = c²,那么这个三角形就是一个直角三角形。
3. 计算三角形的面积对于已知两个直角边的直角三角形,我们可以利用勾股定理求解斜边的长度,然后再利用三角形的面积公式求解三角形的面积。
三角形的面积公式为:S = 1/2 * a * b,其中S代表三角形的面积,a和b分别代表直角三角形的直角边的长度。
总结:直角三角形与勾股定理是数学中的基础概念和定理,它们在实际生活中有很多应用。
直角三角形的定义和性质以及勾股定理的介绍和应用都是我们学习数学时必须了解和掌握的内容。
直角三角形和勾股定理

直角三角形和勾股定理∙(1)斜边中线的指针—直角三角形的性质二(20 道)1. 直角三角形的性质2:在直角三角形中,斜边上的中线等于斜边的一半2. 当题目中出现了直角三角形时,要注意斜边上是否有中线或中点出现,如果有斜边的中点,不妨连接中点和直角顶点,构造出斜边上的中线,利用性质2进行中线与斜边之间的转化,从而迅速找到思路3. 由性质二得到的角之间的关系:∠A=∠1,∠B=∠2,∠3=2∠A,∠4=2∠B4. 两个运用性质二的基本图形∙(2)30°引爆全新体验!—直角三角形的性质三(20 道)1. 直角三角形的性质3:有一个角是30度的直角三角形,30度角的对边等于斜边的一半。
它的作用是由特殊角30度得到边的关系2. 性质3的逆定理:在直角三角形中,如果某条直角边是斜边的一半,那么这条直角边所对的角是30度。
它的作用是由边的两倍关系得到特殊角30度3. 一道难度稍大的综合题,要求你对直角三角形的三个特殊性质运用自如∙(3)等量转化的秘密通道—角平分线的性质定理及逆定理(20 道)1. 角平分线的性质定理:角平分线上的点到角两边的距离相等。
它可以用来进行边的转化或构造全等来证明边、角相等2. 角平分线性质定理的逆定理:角的内部到角的两边距离相等的点,在这个角的平分线上。
由此得到角平分线的另一种定义:角的平分线是到角的两边距离相等的所有点的集合3. 逆定理的作用是由距离相等得到角平分线,进而得到角相等的结论4. 两个定理的题设和结论刚好相反,成为了角度和垂线段—这两组等量关系相互转化的秘密通道∙(4)从地板飞向宇宙—勾股定理(20 道)1. 勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方2. 如果直角三角形两直角边分别为a、b,斜边为c,用式子表示就是:a²+b²=c²3. 一种传奇的证明方法:总统证法,通过构造梯形和面积法完成4. 勾股定理的意义:它揭示了直角三角形三边的数量关系,当知道一个直角三角形的任意两条边时,可以利用勾股定理求出另外一条边,简称“知二求一”。
勾股定理及直角三角形的判定

勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。
我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。
因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。
另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。
3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。
其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。
我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。
4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。
友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。
【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。
解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
直角三角形-勾股定理1上海学

第 讲 勾股定理知识点睛1、勾股定理:如果直角三角形的两直角边上分别为a, b ,斜边长为c ,那么222a b c +=。
即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形。
3、勾股定理的证明方法:法1(赵爽:内弦图):甲的面积=(大正方形面积)-(4个直角三角形面积).法2(赵爽:外弦图)::四个直角三角形的面积和 +小正方形的面积 =大正方形的面积,222()ab a b c +-=,22222ab a ab b c +-+=,∴222a b c +=法3(美国第20任总统伽菲尔德的证法):2111()()2222a b a b ab c ++=⨯+ 梯形面积=三个直角三角形的面积和22()2a b ab c +=+ 22222a ab b ab c ++=+∴222a b c +=法4(毕达哥拉斯的旋转证法):若设AB=a ,BC=b ,DB=c ,则梯形A′B′BC 面积()()()21122S a b a b a b =++=+梯形ABBC , 又"""2111222BCD A B D DBB S S S S ab c ab ∆∆∆=++=++""梯形A B BC ,所以()2211112222a b ab c ab +=++,则22222a b ab c ab ++=+,即222a b c +=。
甲c ccbababa cb acb acb aab ca bcb-ab-acc cc甲丙乙ab cabc法5(新娘图法):用方格来验证勾股定理法6(欧几里得证法):如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML=b2,同理可证 S BLMD=a2.相加得S ABDE=S AEML+S BLMD=b2+a2,即 c2=a2+b2.法7:如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=S ABDE+2S△ABC,另一方面S=S ACGF+S HGKD+2S△ABC,相加得所以 c2=a2+b2.练习:用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27); (2)项名达图(2-28); (3)杨作枚图(图2-29).CBA3、由勾股定理的基本关系式222a b c +=,还可得到一些变形关系式如:22c a b =+,222()()a c b c b c b =-=+-,22a c b =-,222()()b c a c a c a =-=+-,22b c a =-等。
直角三角形与勾股定理

直角三角形与勾股定理直角三角形与勾股定理是初中数学中重要的概念和定理。
直角三角形是指一个角为直角(90度)的三角形,而勾股定理是指直角三角形的一条关于三边之间关系的定理。
在本文中,我们将探讨直角三角形的性质及勾股定理的应用。
一、直角三角形的性质直角三角形具有一些特殊的性质,下面将介绍其中几个重要的性质。
1. 直角三角形的两条直角边直角三角形的两条直角边分别称为直角边和斜边。
直角边是直角三角形中与直角相邻的两条边,斜边则是直角三角形的另一边。
直角边之间的关系是垂直的,而斜边则是直角三角形最长的一条边。
2. 直角三角形的两个锐角除直角外,直角三角形的其他两个角必定是锐角。
由于三角形的内角和为180度,所以直角三角形的两个锐角之和为90度。
3. 直角三角形的边长关系根据直角三角形的边长关系,如果直角三角形的两个直角边分别为a和b,斜边的长度为c,则有勾股定理成立,即a² + b² = c²。
二、勾股定理的应用勾股定理是直角三角形中最为重要的定理之一,它的应用非常广泛。
下面将介绍勾股定理在求解三角形边长和判断三角形形状方面的应用。
1. 求解三角形的边长通过勾股定理,我们可以利用已知的两条边的长度,求解第三边的长度。
例如,已知一个直角三角形的两条直角边的长度分别为3和4,我们可以使用勾股定理计算出斜边的长度:3² + 4² = 5²,即斜边的长度为5。
2. 判断三角形形状利用勾股定理,我们可以判断一个三角形是否为直角三角形。
如果一个三角形的三条边满足勾股定理的条件,即a² + b² = c²,那么这个三角形就是直角三角形。
通过勾股定理,我们可以准确地判断三角形的形状。
三、勾股定理的证明勾股定理的证明可以通过几何方法和代数方法来完成。
其中,最著名的证明是毕达哥拉斯的证明,下面将简要介绍这个证明。
毕达哥拉斯的证明思路是基于平行线的性质和面积的相等关系。
直角三角形与勾股定理

直角三角形与勾股定理-CAL-FENGHAI.-(YICAI)-Company One1直角三角形与勾股定理【知识梳理】一、直角三角形的判定:1、有两个角互余的三角形是直角三角形。
2、勾股定理逆定理 二、直角三角形的性质 1、直角三角形两锐角互余.2、直角三角形中30°所对的直角边等于斜边的一半.3、直角三角形中,斜边的中线等于斜边的一半;4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2+b 2=c 2.5.直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2+b 2=c 2.由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC 中, (1)若c 2=a 2+b 2,则∠C =90°; (2)若c 2<a 2+b 2,则∠C <90°; (3)若c 2>a 2+b 2,则∠C >90°.勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用.5、勾股定理逆定理:如果三角形三边长a ,b ,c 有下面关系:a 2+b 2=c 2那么这个三角形是直角三角形.6、勾股数的定义:如果三个正整数a 、b 、c 满足等式a 2+b 2=c 2,那么这三个正整数a 、b 、c 叫做一组勾股数。
简单的勾股数有:3,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41。
【典例精析】◆例1:在△ABC 中,∠BAD =90°,AB =3,BC =5,现将它们折叠,使B 点与C 点重合,求折痕DE 的长。
【巩固】1、四边形ABCD 中,∠DAB =60 ,∠B =∠D =90°,BC =1,CD =2;求对角线AC 的长A BDC E ABCD◆例2:如图所示.已知:在正方形ABCD 中,∠BAC 的平分线交BC 于E ,作EF ⊥AC 于F ,作FG ⊥AB 于G .求证:AB 2=2FG 2.【巩固】已知△ABC 中,∠A =90°,M 是BC 的中点,E ,F 分别在AB ,AC 上,ME ⊥MF ,求证:EF 2=BE 2+CF 2◆例3:已知正方形ABCD 的边长为1,正方形EFGH 内接于ABCD ,AE =a ,AF=b ,且S EFGH =32求:a b 的值◆例4:已知:P 为等边△ABC 内一点,且PA =3,PB =4,PC =5,求∠APB 的度数G F AE BD CFEC MB A HDAB C E F G A BP【巩固】如图,四边形ABCD 中,AC ⊥BD ,AC 与BD 交于O 点,AB =15,BC =40,CD =50,则AD =________.◆例5:一个直角三角形的三条边长均为整数,它的一条直角边的长为15,那么它的另一条直角边的长有_______种可能,其中最大的值是______.【拓展】是否存在这样的直角三角形,它的两条直角边长为整数,且它的周长与面积的数值相等若存在,求出它的各边长;若不存在,说明理由。
直角三角形与勾股定理

直角三角形与勾股定理直角三角形是指其中一角为90度(直角)的三角形。
勾股定理是与直角三角形密切相关的定理,它描述了直角三角形中,直角边与斜边之间的关系。
在本文中,我们将讨论直角三角形和勾股定理,以及它们在几何学和实际生活中的应用。
1. 直角三角形的定义与特性直角三角形是一种特殊的三角形,其中一个内角为90度。
根据直角三角形的特性,我们可以得出以下结论:1.1 斜边:斜边是直角三角形中与直角不相邻的边,它是直角边的对边。
1.2 直角边:直角边是直角三角形中与直角相邻的边,我们通常将直角三角形的两个直角边分别称为“邻边”和“对边”。
1.3 邻边:邻边是直角三角形中与直角相邻的边,即与直角边共同组成直角的两条边之一。
1.4 对边:对边是直角三角形中与直角相邻的边,即与直角边共同组成直角的两条边之一。
2. 勾股定理的表述与证明勾股定理是描述直角三角形中直角边与斜边之间关系的定理。
它的数学表达式为:在一个直角三角形中,直角边的平方之和等于斜边的平方。
数学表达式:c² = a² + b²其中,c代表斜边的长度,a和b分别代表直角三角形的两个直角边的长度。
证明勾股定理可以采用多种方法,其中最著名的是毕达哥拉斯的证明方法。
毕达哥拉斯证明利用了平方的几何性质,通过构建几个平方,并运用几何关系,得出了直角边与斜边之间的数学关系。
3. 勾股定理的应用勾股定理在几何学和实际生活中有广泛的应用。
以下是几个勾股定理的应用例子:3.1 测量直角三角形的边长:通过已知直角边的长度,可以利用勾股定理计算出斜边的长度或其他边的长度。
3.2 解决平面几何问题:在平面几何中,利用勾股定理可以求解各种与直角三角形相关的问题,如角度、面积等。
3.3 应用于物理学和工程学:勾股定理在物理学和工程学中有广泛的应用,例如在测量、导航和建筑设计中常用到勾股定理。
4. 直角三角形的性质及应用举例除了勾股定理,直角三角形还具有其他一些重要的性质。
直角三角形与勾股定理

直角三角形与勾股定理直角三角形是一种特殊的三角形,它的一个内角为直角(度数为90度),这个特性使得直角三角形与勾股定理存在紧密的联系。
勾股定理是数学中的一条基本定理,描述了直角三角形中三边之间的关系。
在本文中,我们将探讨直角三角形与勾股定理之间的关系以及一些应用例题。
一、直角三角形的定义和性质直角三角形是由三条边组成的三角形,其中一个内角为90度。
直角三角形的另外两个内角为锐角或钝角。
直角三角形的特性包括:1. 直角三角形的两条边相互垂直。
2. 直角三角形的两条直角边可以作为直角三角形的高和底。
3. 直角三角形的斜边是其他两条边的平方和的平方根。
二、勾股定理的定义和证明勾股定理,也被称为毕达哥拉斯定理,是由古希腊数学家毕达哥拉斯提出的。
勾股定理描述了直角三角形中三边之间的关系,它的公式如下:斜边的平方 = 直角边1的平方 + 直角边2的平方即c² = a² + b²其中,c代表直角三角形的斜边,a和b代表直角三角形的两条直角边。
勾股定理的证明有多种方法,其中一种常见的证明方法是通过几何图形推导得出。
三、直角三角形与勾股定理的应用1. 解决三角形的边长问题:有时候我们已知一个直角三角形的两个直角边的长度,要求计算斜边的长度,就可以直接使用勾股定理来解决。
例如,如果一个直角三角形的直角边长度分别为3和4,我们可以通过勾股定理来计算斜边的长度:c² = 3² + 4² = 9 + 16 = 25,所以斜边的长度为5。
2. 判断三角形的形状:在有些情况下,我们已知三角形的边长,但不确定它是不是直角三角形。
此时,我们可以利用勾股定理来判断。
例如,如果一个三角形的三边长度分别为5、12、13,我们可以通过勾股定理判断:5² + 12² = 25 + 144 = 169,而13² = 169,说明这个三角形是一个直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.4 直角三角形和勾股定理
一、 温故互查
直角三角形的性质;勾股定理和勾股定理的逆定理及其应用。
二、 题组训练一
1.若直角三角形的一个锐角为20°,则另一个锐角等于__________︒.
2.将一副常规的三角尺按如图1方式放置,则图中∠AOB 的度数
为__ ___︒.
3.在△ABC 中,AB=6,AC=8,BC=10,则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形
4.如图2,一场暴雨过后,垂直于地面的一棵树在距地面1米
处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为( )
A .5米
B .3米
C .(5+1)米
D .3 米
三、题组训练二
1 如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹 角为30°,此人以每秒0.5米收绳.问:
(1)未开始收绳子的时候,图中绳子BC 的长度是多少米?
(2)收绳8秒后船向岸边移动了多少米?(结果保留根号)
2 抛物线y =-12x 2+22
x +2与x 轴交于A 、B 两点,与y 轴交于C 点. (1)求A 、B 、C 三点的坐标;
(2)证明:△ABC 为直角三角形;
(3)在抛物线上除C 点外,是否还存在另外一个点P ,使△ABP 是直角三角形,若存在,
请求出点P 的坐标,若不存在,请说明理由.
图1 A
O 图2
四、中考连接
1.如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,∠1+∠2总保持不变,那么∠1+∠2=______度.
2.已知直角三角形的两边长为3和4,则第三边的长为 ______. 3.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )
A .90°
B .60°
C .45°
D .30°
4.如图,在Rt △ABC 中,∠C=90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )
A .5
B .6
C .7
D .12
5.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号).
6.如下图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,求蚂蚁爬行的最短路径长
21C B A A B
C x 34(第1题图) (第3题图) (第4题图)。