高中物理公式推导(完全弹性碰撞后速度公式的推导)

合集下载

[完全]弹性碰撞后的速度公式

[完全]弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2'①②由①③由②④由④/③⑤联立①⑤解得⑥⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。

为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得:m1v1= (m1+m2) v共解出v共=m1v1 /(m1+m2)。

而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。

如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。

在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。

因为只有m1>m2,才有v1'>0。

否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。

由此可轻松记住⑤式。

再结合①式也可很容易解得⑥⑦式。

二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2'①②由①③由②④由④/③⑤由③⑤式可以解出⑥⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。

[完全]弹性碰撞后的速度公式

[完全]弹性碰撞后的速度公式

[完全]弹性碰撞后的速度公式-CAL-FENGHAI.-(YICAI)-Company One1如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2'①②由①③由②④由④/③⑤联立①⑤解得⑥⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。

为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v,由动量守恒共定律得:m1v1=(m1+m2)v共=m1v1/(m1+m2)。

而两球从球心相距最近到分开过程中,球m2继解出v共续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。

如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。

在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。

因为只有m1>m2,才有v1'>0。

否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。

由此可轻松记住⑤式。

再结合①式也可很容易解得⑥⑦式。

二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2'①②由①③由②④由④/③⑤由③⑤式可以解出⑥⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。

(完全)弹性碰撞后的速度公式

(完全)弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2'①②由①③由②④由④/③⑤联立①⑤解得⑥⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。

为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得:m1v1= (m1+m2) v共解出v共=m1v1 /(m1+m2)。

而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。

如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。

在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。

因为只有m1>m2,才有v1'>0。

否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。

由此可轻松记住⑤式。

再结合①式也可很容易解得⑥⑦式。

二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2'①②由①③由②④由④/③⑤由③⑤式可以解出⑥⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。

(完全)弹性碰撞后的速度公式

(完全)弹性碰撞后的速度公式

(完全)弹性碰撞后的速度公式如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2'①②由①③由②④由④/③⑤联立①⑤解得⑥⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。

为此可做如下分析:当两球碰撞至球心,由相距最近时,两球达到瞬时的共同速度v共动量守恒定律得:m1v1= (m1+m2) v共解出v=m1v1 /(m1+m2)。

而两球从球心相共距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。

如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。

在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。

因为只有m1>m2,才有v1'>0。

否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。

由此可轻松记住⑤式。

再结合①式也可很容易解得⑥⑦式。

二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2'①②由①③由②④由④/③⑤由③⑤式可以解出⑥⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。

完全弹性碰撞速度公式

完全弹性碰撞速度公式

完全弹性碰撞速度公式
完全弹性碰撞速度公式是一种用来描述两个或多个物体在实现完全弹性碰撞过程中其相对速度变化规律的公式。

它被广泛应用到物理学中,用于研究物体碰撞运动规律。

完全弹性碰撞是物理学中最基本的一种碰撞类型,在碰撞过程中,碰撞物体在动能和动量守恒的基础上相互弹回,因此可以运用牛顿第二定律,推导出两个物体发生完全弹性碰撞的速度公式。

由此可以得出,两个物体进行完全弹性碰撞时,两个物体的线速度发生了对称的反向变化。

考虑两个物体A和B,质量分别为mA和mB,速度分别为uA和uB,它们在完全弹性碰撞过程中相互反弹后,A和B的速度变为vA和vB,那么,可以用以下公式计算出他们的线速度变化:vA=2mB/(mA+mB)uB - (mA-mB)/(mA+mB)uA,vB=2mA/(mA+mB)uA - (mA-mB)/(mA+mB)uB。

从公式可以非常清楚地看出,即使mA≠mB,只要两个物体总质量相等,其发生完全弹性碰撞后,两个物体的线速度也是完全对称的。

总结一下,完全弹性碰撞速度公式是描述两个或多个物体在实现完全弹性碰撞过程中其相对速度变化规律的公式。

它可以帮助我们理解物体碰撞运动规律,从而运用碰撞物理学尽可能充分地发挥出它的作用。

完全)弹性碰撞后的速度公式

完全)弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2'①②由①③由②④由④/③⑤联立①⑤解得⑥⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。

为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得:m1v1= (m1+m2) v共解出v共=m1v1 /(m1+m2)。

而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。

如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。

在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。

因为只有m1>m2,才有v1'>0。

否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。

由此可轻松记住⑤式。

再结合①式也可很容易解得⑥⑦式。

二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2'①②由①③由②④由④/③⑤由③⑤式可以解出⑥⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。

高中物理公式推导完全弹性碰撞后速度公式的推导

高中物理公式推导完全弹性碰撞后速度公式的推导

高中物理公式推导完全弹性碰撞后速度公式的推导高中物理中,完全弹性碰撞是指在碰撞过程中,物体之间没有能量损失,且动量守恒。

完全弹性碰撞的速度公式可以通过动量守恒方程的推导得到。

假设有两个物体1和2,它们的质量分别为m1和m2,初始时的速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。

根据动量守恒的原理,可以得到以下方程:m1*v1+m2*v2=m1*v1'+m2*v2'(1)另外,由于完全弹性碰撞没有动能的损失,所以动能也应该守恒。

动能的守恒可以通过最后速度的平方和初始速度的平方之和来表示:0.5*m1*v1^2+0.5*m2*v2^2=0.5*m1*v1'^2+0.5*m2*v2'^2(2)我们将方程(1)和方程(2)求解,即可得到完全弹性碰撞后的速度公式。

首先,将方程(1)从加速度公式中解出v1'和v2'。

m1*v1+m2*v2=m1*v1'+m2*v2'整理得:v1'=(m1*v1+m2*v2-m2*v1')/m1v2'=(m1*v1+m2*v2-m1*v2')/m2然后,将以上得到的v1'和v2'代入方程(2)中,即可得到完全弹性碰撞后的速度公式。

0.5*m1*v1^2+0.5*m2*v2^2=0.5*m1*((m1*v1+m2*v2-m2*v1')/m1)^2+0.5*m2*((m1*v1+m2*v2-m1*v2')/m2)^2将上述方程进行整理和简化,得到完全弹性碰撞后的速度公式。

注意:由于公式较为复杂,在此只给出了推导的思路和步骤。

实际应用中,可以通过将具体的数值代入公式进行计算,以得到完全弹性碰撞后的速度。

(完全)弹性碰撞后的速度公式

(完全)弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式一、“一动碰一静”的弹性碰撞公式问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?图1设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:m1v1=m1v1'+m2v2'①②由①③由②④由④/③⑤联立①⑤解得⑥⑦上面⑥⑦式的右边只有分子不同,但记忆起来容易混。

为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得:m1v1= (m1+m2) v共解出v共=m1v1 /(m1+m2)。

而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。

如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。

在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。

因为只有m1>m2,才有v1'>0。

否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。

由此可轻松记住⑤式。

再结合①式也可很容易解得⑥⑦式。

二、“一动碰一动”的弹性碰撞公式问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?图2设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:m1v1+m2v2=m1v1'+m2v2'①②由①③由②④由④/③⑤由③⑤式可以解出⑥⑦要记住上面⑥⑦式更是不容易的,而且推导也很费时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理公式推导一
完全弹性碰撞碰后速度的推导
1、简单说明:
1m 、2m 为发生碰撞的两个物体的质量,1v 、2v 为碰撞前1m 、2m
的速度,'1v 、'
2v
为碰撞后
1m 、2m 的速度。

2、推导过程:
第一,由动量守恒定理,得
'
2'1
122112v m v m v m v m +=+ (1)
第二,由机械能守恒定律,得
2'22'112222112
2
1212121v m v m v m v m +=+(2) 令
12/m m k =,(1)、(2)两式同时除以1m ,得
'
'
1
212kv v kv v +=+ (3)
2
'2
'1
2
2212
kv v kv v +=+ (4)
(3)、(4)两式变形,得
(
)
2
'
'1
1--2v v k v v = (5)
()()()(
)
2
'
2'
'1
1
'1
1
22
-v v v v
k v v v v -+=+ (6)
将(5)式代入(6)式,得
2'
'
1
12v v v v +=+ (7)
联立(5)、(7)两式,将'
1v

'
2v 移到方程的左侧,则有
21'
'1
2kv v kv v +=+ (8) 21'
'1
--2v v v v += (9)
由(8)-(9),得
()()21'
1-212
v k v v
k +=+
21'
11-122v k k v k v +++=
21212112'
1/1
-/1/22v m m m m v m m v +++=
2121
21121'
-22v m m m m v m m m v +++= (10)
或者 ()2
12
1211'
-22m m v m m v m v ++= (10)
由(8)+k*(9),得
()()21'
2111
kv v k v k +-=+
21'
12111v k k
v k k v +++-=
2121
211212'
1//21//11v m m m m v m m m m v +++-=
2212
12121'
21v m m m v m m m m v +++-= (11)
或者 ()2
12
2121'
21
m m v m v m m v ++-=
(11)
3、意外收获:
第一,物理公式推导过程中,为了避免未知量过多引起混淆,可以适当地选取某个量来代替这些量;
第二,在物理学中,我们应该充分利用数学公式来进行简化; 第三,我们推导出的碰撞后速度公式是一种普适的公式,我们可以根据具体的情况进行简化,比如: (1)若
21m m =,则有
2'
1v v =
1'2
v v =
也就是说,当两个质量相同的物体发生弹性碰撞,那么,这两个物体将会交换它们的速度; (2)若
02=v ,则有
()2
1121'
1
m m v m m v +-=
2
11
1'
22m m v m v +=
4、注意:
需要指出的是,物理公式的推导并不仅仅是为了让大家记住公式,其根本目的是培养大家的物理思维模式,以便大家能很好地应用物理知识来解决所遇到的问题!。

相关文档
最新文档