模拟集成电路的设计流程.ppt
合集下载
CMOS 模拟集成电路课件完整

反偏电压将使耗尽区变宽,从而降低了有效沟道深度。因此,需 要施加更大的栅极电压以弥补沟道深度的降低,VSB偏压会影响 MOSFET的有效阈值电压VTH。随着VSB反偏电压的增加导致VTH的增 加,这种效应称为“体效应”。这种效应也称为“衬底偏置效应” 或“背栅效应”。
VTHN VTHN0
2qsi Na Cox
VGS 1 0 1.0 VDS 2 0 5
.op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7
.end
Systems
Ch13 开关电容电路
Ch14 DAC/ADC
complex Ch10 运算放大器 Ch7 频率响应
Ch11 稳定性和频 率补偿
Ch8 噪声
Ch12 比较器 Ch9 反馈
Ch3 电流源电流镜 simple Ch4 基准源 Circuits
Devices
Ch5 单级放大器 ch2 MOS器件
*Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u
VGS 1 0 1.0 VDS 2 0 5
设计
属性/规范
系统/电路1
系统/电路2 系统/电路3
……
一般产品描述、想法 系统规范要求的定义
系统设计 电路模块规范定义
电路实现 电路仿真
否
是否满足系统规范
是 物理(版图)设计
物理(版图)验证
寄生参数提取及后仿真
否
是否满足系统规范
VTHN VTHN0
2qsi Na Cox
VGS 1 0 1.0 VDS 2 0 5
.op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7
.end
Systems
Ch13 开关电容电路
Ch14 DAC/ADC
complex Ch10 运算放大器 Ch7 频率响应
Ch11 稳定性和频 率补偿
Ch8 噪声
Ch12 比较器 Ch9 反馈
Ch3 电流源电流镜 simple Ch4 基准源 Circuits
Devices
Ch5 单级放大器 ch2 MOS器件
*Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u
VGS 1 0 1.0 VDS 2 0 5
设计
属性/规范
系统/电路1
系统/电路2 系统/电路3
……
一般产品描述、想法 系统规范要求的定义
系统设计 电路模块规范定义
电路实现 电路仿真
否
是否满足系统规范
是 物理(版图)设计
物理(版图)验证
寄生参数提取及后仿真
否
是否满足系统规范
CMOS模拟集成电路分析与设计 ppt课件

如果栅电压为负,则耗尽层变薄,栅 与衬底间电容增大。
对于大的负偏置,则电容接近于CGC。
PPT课件
24
1.2 MOS管的极间电容(1)
G
S
C1
C2 C4
C3
Cbs
反型层 耗尽层
d
L
d
p型衬底
D
Cbd
PPT课件
25
1.2 MOS管的极间电容(2)
栅与沟道之间的栅氧电容:
C2=WLCox,其中Cox为单位面积栅氧电容εox/tox;
CMOS模拟集成电路分析与设计
主讲教师:吴建辉 Tel:83795677
E-mail:wjh@
PPT课件
1
教材及参考书
教材:
吴建辉编著:“CMOS模拟集成电路分析与设 计”(第二版),电子工业出版社。
参考书:
Razavi B: Design of analog CMOS integrated circuits
11
1、有源器件
主要内容:
1.1 几何结构与工作原理 1.2 极间电容 1.3 电学特性与主要的二次效应 1.4 低频及高频小信号等效模型 1.5 有源电阻
PPT课件
12
1.1 MOS管几何结构与工作原理(1)
B p+
G
tox
S
D
G D
n+
n+
p+
n阱 p型衬底
(a)
S
B
p+
n+
W
多晶
d p+接触孔
PPT课件
3
模拟电路与模拟集成电路
分立元件音频放大电路
晶体管数 匹配性 电阻值 电容值 寄生效应影响
模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件

定义从D流 向S为正 PMOS管电流驱动能力比NMOS管差 0.8 m nwell:p=250cm2/V-s, n=550cm2/Vs 0.5 m nwell:p=100cm2/V-s, n=350cm2/V-
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结
模拟集成电路版图设计基础

集成电路工艺基础
以上每道工序都是需要掩膜 版的,那掩膜版的大小怎么
定呢?如何精确呢?
P-Si N+ (e)
P-Si
N+
(f)
SiO2 (5) 淀积SiO2, 将整个结构用SiO2覆盖起来, 刻
淀积SiO2
出与源区和漏区相连的接触孔。 (6) 把铝或其它金属蒸上去, 刻出电极及互连线
铝电极引出 SiO2 (场氧)
七、如何绘制版图
1.需要的软件工具
七、如何绘制版图
2.需要做的准备
七、如何绘制版图
2.需要做的准备
七、如何绘制版图
3.打开软件
七、如何绘制版图
3.打开软件
七、如何绘制版图
3.打开软件
七、如何绘制版图
4.相关设置
七、如何绘制版图
4.相关设置
七、如何绘制版图
4.相关设置
七、如何绘制版图
划分时需考虑的因素:模块的大小,模块的数目、模块之间的连 线数。
四、版图设计的过程
2.布图规划和布局:布图规划是根据模块所包含的器件数估计其面 积,再根据该模块与其他模块的连接关系以及上一层模块或芯片的 形状估计该模块的形状和相对位置。 3.布局的任务是确定模块在芯片上的精确位置,其目标是保证在布 通的前提下使芯片面积尽可能小。 4.布线:百分之百的完成模块之间的互连,在完成布线的前提下进 一步优化布线结果,如:提高电性能、减少通孔数。
✓ PMOS管,做在N阱中,沟 道为N型,源漏为P型
2) 包括层次:
✓ NWELL,N阱 ✓ PIMP,P+注入 ✓ DIFF,有源区 ✓ Poly,栅 ✓ M1,金属 ✓ CONT,过孔
3) MOS管的宽长确定
PMOS版图
最新模拟集成电路设计流程课件

Session菜单
Schematic Window Save State Load State Options Reset Quit
回到电路图
2021/1/15
保存当前 所设定的 模拟所用 到的各种
参数
加载已 经保存 的状态
共88页
一些显 示选项 的设置
重置
analog artist。 相当于 重新打 开一个 模拟窗
ac(交流分析)是 分析电路性能随着 运行频率变化而变
化的仿真。
既可以对频率进行 扫描也可以在某个 频率下进行对其它
变量的扫描。
2021/1/15
共88页
22
其它有关的菜单项
Outputs/Setup
当然我们需要输出的有时不仅仅是电流、电压,还有一 些更高级的。比如说:带宽、增益等需要计算的值,这时 我们可以在Outputs/setup中设定其名称和表达式。在运行 模拟之后,这些输出将会很直观的显示出来。
2021/1/15
共88页
11
编辑完成的电路图
2021/1/15
共88页
12
一些快捷键
以下是一些常用的快捷键: i 添加元件,即打开添加元件的窗口; [ 缩小两倍; ] 扩大两倍; w 连线(细线); f 全图显示; p 查看元件属性; m 整体移动(带连接关系); shift+m 移动(不带连接关系)。
2021/1/15
共88页
13
生成symbol
进入“Virtuoso Schematic Editing: mylib nand2 schematic”窗口。
Design -> Create Cellview->From Cellview
模拟cmos集成电路设计拉扎维第1章绪论

总结词
拉扎维模拟方法在CMOS比较器设计中 具有重要作用,可以预测比较器的性能 和行为。
VS
详细描述
CMOS比较器是模拟集成电路中的关键元 件,用于信号的阈值检测和整形。拉扎维 模拟方法可以准确地模拟CMOS比较器的 静态和动态特性,包括响应时间、失调电 压、比较精度等参数,有助于设计者优化 比较器的性能,提高整个电路的稳定性。
应用实例二:模拟CMOS滤波器设计
总结词
利用拉扎维模拟方法,可以高效地设计和优化CMOS滤波器的性能。
详细描述
CMOS滤波器在通信、音频处理等领域有广泛应用。通过拉扎维模拟方法,可以快速设计和优化 CMOS滤波器的性能,包括频率响应、群延迟、线性相位等参数,从而缩短设计周期并提高滤波器的 性能。
应用实例三:模拟CMOS比较器设计
拉扎维模拟方法的优缺点
优点
拉扎维模拟方法基于物理模型,能够精确模拟CMOS集成电路的性能,对于复杂电路和新型器件具有较高的预测 精度。此外,该方法还支持多物理效应和多尺度模拟,能够模拟电路在不同工艺、温度和电压条件下的性能。
缺点
由于拉扎维模拟方法基于物理模型,因此需要较长的计算时间和较大的计算资源,对于大规模电路的模拟可能会 面临性能瓶颈。此外,该方法需要手动设定电路元件的参数,对于不同工艺和不同设计需求需要进行相应的调整 和优化。
04
拉扎维模拟方法的应用实例
应用实例一:模拟CMOS放大器设计
总结词
通过拉扎维模拟方法,可以有效地模拟CMOS放大器的性能,包括增益、带宽、 噪声等参数。
详细描述
CMOS放大器是模拟集成电路中的基本元件,其性能对于整个电路的性能至关 重要。拉扎维模拟方法可以准确地模拟CMOS放大器的直流和交流特性,包括 增益、带宽、噪声等参数,为设计者提供可靠的参考依据。
集成电路设计与制造的主要流程图

集成电路芯片设计过程框架
否 否
否
3
引言
半导体器件物理基础:包括PN结的物理机制、双极管、 MOS管的工作原理等
器件
小规模电路
大规模电路
超大规模电路
甚大规模电路
电路的制备工艺:光刻、刻蚀、氧化、离子注入、扩散、 化学气相淀积、金属蒸发或溅射、封装等工序
集成电路设计:另一重要环节,最能反映人的能动性
✓ 高度复杂电路系统的要求 ✓ 什么是分层分级设计? 将一个复杂的集成电路系统的设计问题分解为复杂性较低的设 计级别,这个级别可以再分解到复杂性更低的设计级别;这样 的分解一直继续到使最终的设计级别的复杂性足够低,也就是 说,能相当容易地由这一级设计出的单元逐级组织起复杂的系 统。一般来说,级别越高,抽象程度越高;级别越低,细节越 具体
集成电路 设计与制造的主要流程
1
集成电路设计与制造的主要流程框架
系 统 需 求 设计
掩膜版
芯片制造 过程
芯片检测
封装 测试
单晶、外 延材料
2
集成电路的设计过程:
设计创意 +
仿真验证
功能要求 行为设计(VHDL)
行为仿真 是
综合、优化——网表
时序仿真 是
布局布线——版图
—设计业—
后仿真 是
Sing off
没有单元库支持:对各单元进行电路设计,通过电
路模拟与分析,预测电路的直流、交流、瞬态等特性, 之后再根据模拟结果反复修改器件参数,直到获得满 意的结果。由此可形成用户自己的单元库
21
单元库:一组单元电路的集合
经过优化设计、并通过设计规则检查和反复工艺验证, 能正确反映所需的逻辑和电路功能以及性能,适合于工 艺制备,可达到最大的成品率。
否 否
否
3
引言
半导体器件物理基础:包括PN结的物理机制、双极管、 MOS管的工作原理等
器件
小规模电路
大规模电路
超大规模电路
甚大规模电路
电路的制备工艺:光刻、刻蚀、氧化、离子注入、扩散、 化学气相淀积、金属蒸发或溅射、封装等工序
集成电路设计:另一重要环节,最能反映人的能动性
✓ 高度复杂电路系统的要求 ✓ 什么是分层分级设计? 将一个复杂的集成电路系统的设计问题分解为复杂性较低的设 计级别,这个级别可以再分解到复杂性更低的设计级别;这样 的分解一直继续到使最终的设计级别的复杂性足够低,也就是 说,能相当容易地由这一级设计出的单元逐级组织起复杂的系 统。一般来说,级别越高,抽象程度越高;级别越低,细节越 具体
集成电路 设计与制造的主要流程
1
集成电路设计与制造的主要流程框架
系 统 需 求 设计
掩膜版
芯片制造 过程
芯片检测
封装 测试
单晶、外 延材料
2
集成电路的设计过程:
设计创意 +
仿真验证
功能要求 行为设计(VHDL)
行为仿真 是
综合、优化——网表
时序仿真 是
布局布线——版图
—设计业—
后仿真 是
Sing off
没有单元库支持:对各单元进行电路设计,通过电
路模拟与分析,预测电路的直流、交流、瞬态等特性, 之后再根据模拟结果反复修改器件参数,直到获得满 意的结果。由此可形成用户自己的单元库
21
单元库:一组单元电路的集合
经过优化设计、并通过设计规则检查和反复工艺验证, 能正确反映所需的逻辑和电路功能以及性能,适合于工 艺制备,可达到最大的成品率。
拉扎维模拟CMOS集成电路设计 前十章全部课件

重邮光电工程学院
同一衬底上的NMOS和PMOS器件
MOS管所有pn结必须反偏: *N-SUB接VDD! *P-SUB接VSS! *阱中MOSFET衬底常接源极S
重邮光电工程学院
MOS器件符号
MOS管等效于一个开关!
重邮光电工程学院
MOS器件的阈值电压VTN(P)
(a)栅压控制的MOSFET (c)反型的开始
nCox
W L
[(VGS
VTH)VDS
)v(x) 1 2
1 VDS2 2
v(x)
]
2
)]vDS 0
重邮光电工程学院
I/V特性的推导(4)
ID
nCox
W L
[(VGS
VTH)VDS
1 VDS2 ] 2
三极管区(线性区)
每条曲线在VDS=VGS-VTH时
取最大值,且大小为:
ID nCox W (VGS VTH )2
。
t ≈ 50A, C
ox
ox
t ≈ 0.02 m, C
ox ox
6.9 fF/ m 2 1.75fF/ m 2
t ≈ 0.1 m, C 0.35fF/ m 2
ox
ox
重邮光电工程学院
MOS器件电容
模拟集成电路设计绪论 Ch.1# 45
重邮光电工程学院
减小MOS器件电容的版图结构
对于图a:CDB=CSB = WECj + 2(W+E)Cjsw 对于图b: CDB=(W/2)ECj+2((W/2)+E)Cjsw CSB=2((W/2)ECj+2((W/2)+E)Cjsw= = WECj +2(W+2E)Cjsw
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/2/10
共88页
9
二、建立可进行SPECTRE模拟 的单元文件
主窗口分为信息窗口 CIW、命令行以及主 菜单。信息窗口会给 出一些系统信息(如 出错信息,程序运行 情况等)。在命令行 中可以输入某些命令。
主菜单包括:
1、File菜单 2、Tools菜单 3、Options菜单
2021/2/10
Hspice: 作为业界标准的电路仿真工具,它自带了许多器 件模型,包括小尺寸的MOSFET和MESFET。Cadence提 供了hspice的基本元件库并提供了与Hspice的全面的接口。
Spectre: 由Cadence开发的电路仿真器,在SPICE的基础 上进行了改进,使得计算的速度更快,收敛性能更好。
2、Cell(单元)可以是一个简单的单元,像一个与非门, 也可以是比较复杂的单元(由symbol搭建而成)。
3、View则包含多种类型,常用的有schemetic,symbol, layout,extracted,ivpcell等等 ,新建Cellview要注意选择 View的类型。
2021/2/10
共88页
12
Tools菜单
在Tools菜单下,比较常 用的菜单项有
Library Manager
Library Path Editor
Technology File Manager
Library Manager项打开的是库管 理器。在窗口的各部分中,分别 显示的是Library、Category、Cell、 View相应的内容。
Layers 可以使用在版图
编辑中,用来修改原始
图层的一些属性。
共88页
14
Options菜单
Options菜单主要是对 Cadence的一些参数 进行调整和设置,如 快捷键等。一般无需 设置,直接使用默认 值。
2021/2/10
共88页
15
三、编辑可进行SPECTRE模拟 的单元文件
选择主窗口 File→Open→Open file, 打开相应的Schematic View,即进入了 Composer-Schematic Editing 窗口,如右图 所示。
2021/2/10
共88页
16
2021/2/10
工具栏介绍
从上至下:
1.Check andom in by 2 ]
4.Zoom out by 2 [
5.Stretch
s
6.Copy
c
7.Delete
Del
8.Undo
9.Property
q
10.Instance
i
共88页
共88页
10
File菜单
在File菜单下,主要的菜单 项有New、Open、Exit等
New菜单项的子菜单下有 Library、Cell view两项。 Library项打开New Library窗 口,Cell view项打开Create New File窗口。
Open菜单项打开相应的 Open File窗口。
5
Cadence中Spectre的模拟仿真
1、进入Cadence软件包 2、建立可进行SPECTRE模拟的单元文件 3、编辑可进行SPECTRE模拟的单元文件 4、模拟仿真的设置(重点) 5、模拟仿真结果的显示以及处理 6、分模块模拟(建立子模块) 7、运算放大器仿真实例
2021/2/10
共88页
2021/2/10
共88页
3
高精度电路仿真器
1、Spectre/SpectreRF(cadence) 2、Hspice/HspiceRF(avanti) 3、Ads(Agilent 主要针对RF) 4、eldo(Mentor Graphics) 5、saber(Synopsys)
2021/2/10
2、setenv DISPLAY 本机ip:0.0(回车),再 键入icfb&,出现的主 窗口如图所示:
2021/2/10
共88页
8
方法二
1、安装winvnc软件 2、运行putty软件键入 用户名和密码,在提示 符处键入 vncserver命 令申请vnc端口 3、运行winvnc,填入 主机名称:端口号码
Hspice/Spectre 介绍
罗豪 2019.9.22
2021/2/10
共88页
1
模拟集成电路的设计流程
1.交互式电路图输入
2.电路仿真 3.版图设计
全定制
4.版图的验证(DRC LVS)
5.寄生参数提取
6.后仿真
7.流片
2021/2/10
共88页
2
各种仿真器简介
SPICE : 由UC Berkeley 开发。用于非线性 DC分析,非 线性瞬态分析和线性的AC分析。
6
一、进入Cadence软件包
方法一
安装并运行exeed软件, 使用putty软件(缘网下 载),在Host name处填 工作站地址,端口默认, 协议(protocol)选SSH, 如图所示,然后点击 Open。
2021/2/10
共88页
7
1、键入用户名和密码, 在提示符处键入: source/opt/demo/cds. env(回车)
2021/2/10
共88页
13
Library Path Editor & Technology File Manager
Library Path Editor 可以对本用户的文件 路径进行修改
2021/2/10
Technology File
Manager基本上都是和
工艺相关的功能和设置。
比较常用的是Edit
Exit项退出Cadence软件包。
Schematic
Library
Symbol
Cell
Layout (View)
Verilog
2021/2/10
共88页
11
Library,Cell以及View
1、library(库)的地位相当于文件夹,它用来存放一整个设计 的所有数据,包括子单元(cell)以及子单元(cell)中的 多种视图(view)。新建时注意选择是否链接techfile。
共88页
4
Cadenc软件简介
Cadence 提供了一个大型的EDA 软件包,它包括: ASIC 设计
全定制IC设计工具Virtuoso Schematic Composer 电路仿真工具Analog Design Environment FPGA 设计 PCB设计
2021/2/10
共88页