几种特殊的平行四边形:矩形、菱形、正方形
人教版九年级数学《第十八讲 特殊的平行四边形 第一课时 菱形、矩形》说课稿

人教版数学《第十八讲特殊的平行四边形第一课时菱形、矩形》说课稿——“学教2:1堂清”复习模式课解读一、说教材本节课教学内容安排在平行四边形与正方形之间,它既是学生前面复习三角形以及平行四边形的有关知识等的进一步延伸,研究菱形、矩形的思想方法又为我们学习后面的正方形奠定了基础,起着承上启下的作用.本节课是中考中的重点内容,而且通过近两年的考试题来看,难度也有所增加,综合运用的要求也再逐渐提高,而且解答题的设计上也由原来单纯的考查推理证明题,变为推理加计算.二、说教法、学法复习课是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型. 其目的是温故知新,查漏补缺,完善认知结构,促进学生解题思想方法的形成;发展数学能力,促进学生运用数学知识解决问题的能力.我校“学教2:1”堂清课堂教学模式主导下的课堂教学全过程始终遵循着两条线:一条是学生的自学和合作,这是明线;另一条是教师的适时的和必要的指导,这是暗线.“学教2:1”堂清教学模式的本质在于在原有的“学”、“教”的基础上增加“练”的模块,“学”指学生的自主、探究、合作学习;“教”指教师的点拨和引导;“练”指学生的知识巩固和能力提升.以学定教,以练促学.“学”、“教”、“练”三者应该是交叉的、循环的.这样既兼顾了学生主体地位和教师的指导作用的双向融合,又能使课堂教学过程变为学生自己获得信息、掌握技能、形成态度的过程.三、说教学过程(一)温故学(5——10分钟)教师展示教学目标、考情分析、知识梳理等设计意图:让学生明确本节课的重要性,引起学生的重视并能以一个端正的心态去进行本节内容的学习.1、认定目标复习课的复习目标要全面要准确要具体,突出重点,突破难点.确定复习重点可从以下几方面考虑:首先,根据教材的教学要求提出四个层次的基本要求:了解、理解、掌握和熟练掌握.这是确定复习重点的依据和标准.对教材要求“了解”的,让学生知其然即可;要求“理解”的,要领会其实质,在原有的基础上加深印象;要求“掌握”的,要巩固加深,对所涉及的各种类型的习题,能准的解答;要求“熟练掌握”的,要灵活掌握解题的技能技巧.其次,熟识每一个知识点在初中数学教材中的地位、作用;再次,中考复习要熟悉近年来的试题类型,考试中所占比重以及考试改革的情况等.依据本节内容在中考中所占的地位和复习丛书的要求,制定如下教学目标:(1)理解菱形、矩形的概念,掌握菱形、矩形的性质定理和判定定理(重点),并能够综合运用它们进行有关计算与推理证明(难点).(2)会用两种方法计算菱形面积.2、考情分析依据近几年中考情况以表格的形式明确考什么(考点、考点解读),怎么考(考的时间、考查角度、考频、命题形式、命题趋势)等,让学生对本节复习内容在考试中所占的比重有一个整体的认识以端正学生的学习态度.3、知识梳理采用结构框图、表格、树状图、大括号图等形式梳理知识,让学生了解所学的内容之间的联系,并发展其归纳能力,通过引导点拨来达到促使学生相对完善知识,并使知识逐步趋于系统化.依据本节内容的特点,把知识梳理和知新学中的典例分析进行了有机地结合,穿插进行,这样是为了让学生把知识和运用更好地衔接和融合.(二)知新学(20——30分钟)1、考点精讲挖掘教材中的例题、习题、中考题的功能,尤其对有代表性的问题和具有可变性的例习题,可变式或延伸后作为例题,引导学生进行变式训练,鼓励学生一题多解、一题多变、拓展、拓宽, 培养学生的应变能力,提高学生的技能技巧,提高学生综合分析问题、解决问题的能力,让学生从多方面感知数学的方法,总结解题规律,提高复习效率.本节所选的四个例题中的例1、例4,就是从我校的复习模式课的流程要求出发而选择的,并且注重了所复习知识的前后联系.例1设计意图:首先是为了及时巩固所复习知识点,并通过一题多解来提高学生的综合解题能力,也是对前面所复习知识的再加强;其次,本题和2016枣庄中考的第9题类似,因此选择此题作为菱形的性质的考查也具有一定的代表性.例2设计意图:此例题是借助菱形的轴对称性求线段和的最小值,这种类型的题目在正方形、圆、函数(2016枣庄中考第25题的第二问)中都有考查,是考试的一个热点题型.主要是通过此题让学生掌握这类题目的基本解法.例3设计意图:通过此例巩固菱形的判定方法的应用,并通过老师的板演进一步规范学生的解题步骤.本题是把丛书的第16题做了一些改动,主要是为了突出对菱形判定的考查,另外此题还结合了等腰三角形的“三线合一”定理,并且图形比较复杂,对学生的识图能力是一个考验.例4设计意图:原题的难度不大,多数学生应该能够独立解决,由于对轴对称的性质的遗忘而得不到OA=OC是学生解决问题1的难度所在,而且这两个问题的解决方法并不唯一,具有很强的灵活性,所以通过本题一方面是为了提高学生在做题过程中的挖掘意识,不要浅尝辄止,另一方面是为了提高学生的综合运用所学知识解决问题的能力. 而中考中对于矩形的考查多数和折叠有关,并且都具有一定的难度(结合相似三角形考查),这也是选择这道题目作为例题的一个重要原因.2、课堂小结教师引导学生总结知识方法和数学思想方法,也可让学生在小组讨论的基础上展示,再让其他学生补充完善.本节课通过课堂小结提高学生解决此类问题时的思维宽度,建立知识点之间的联系,以便学生能够快速地找到解决问题的突破口.(三)达标学(5——8分钟)即堂清.堂清的内容是让学生运用本节课所复习知识解决实际的问题,堂清的形式则是教师出示复习针对性达标题,学生独立完成,当堂完成,教师不提供任何形式的指导,学生之间也不允许进行讨论.堂清结束后教师可采取个别面批或者小组互批等方式,了解哪些学生已经达到了复习目标,哪些学生课后还需要单独进行辅导,并针对学生作业中出现的问题做出相应的处理.在此过程中教师要及时评价并点拨学生提出的疑难问题.设计意图:通过三道题目的练习,检测学生对本节课所复习要点的掌握情况,看学生能否灵活综合运用所学知识点熟练地解决问题.(四)拓展学(5分钟)预设与本节课有关的拓展内容,以让有能力的同学提高知识技能.教师也可根据学生复习情况适时链接中考,选取近两年与本节课复习内容有关的中考题进行训练.本环节可以课上进行,如果没时间可以放在课下.设计意图:本题和例4的考查类似,但比例4的难度较大,所以给出了两种解法的提示,对于程度较好的同学可以依据提示独立解决,而且方法一中所使用的直角三角形的判定方法在教材和复习丛书P84的直角三角形的判定的知识梳理中都没有提到(不用此判定,利用等边对等角和三角形的内角和定理也能得出直角的结论),方法二中的两个相似三角形也不太容易观察出来,所以对学生而言此题的解法有一定难度.。
平行四边形复习课 优课教学课件

A x D 2x
E
3X
3x
B
C
B
C
如图,Rt△OAB的两条直角边在坐标轴上,已知
点A(0,2),点B(3,0),则以点O,A,B为其
中三个顶点的平行四边形的第四个顶点C的坐标
为 。 _________________
y
(-3,2)
3
2A
(3,2 )
O
B
7
-4 -3 -2 -1
12 34 x
-1
1
-2
证法2: 连接BD,交AC于点O ,连接DE,BF
∵四边形ABCD是平行四边形
BC=AD
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
课堂小结
5矩形、菱形、正方形都具有的性质是( B)
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
6.已知矩形的一条对角线与一边的夹角是40°,
则两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
7、 已知菱形ABCD的周长为20cm。∠A: ∠ABC=1:2 ,则对角线BD的长等于 _____5_____cm。
四边形知识结构(定义)图
两组对边平行
角90° 个 一
矩形
一 组 邻 边 相 等
四边 形
平行四边
一角为直角且一组邻边相等
形
正方形
一 组 邻 边 相 等
菱形
平行四边形性质知识点

平行四边形性质知识点平行四边形是一种特殊的四边形,具有一些独特的性质和特点。
本文将详细介绍平行四边形的性质知识点。
1. 平行四边形的定义平行四边形是具有两对对边平行的四边形。
对于一个平行四边形ABCD来说,AB || CD,AD || BC。
2. 平行四边形的性质(1)对边相等:平行四边形的对边相等,即AB = CD,AD = BC。
(2)同位角相等:平行四边形的同位角相等,即∠A = ∠C,∠B= ∠D。
(3)对角线互相平分:平行四边形的对角线互相平分,即AC和BD互为平分线。
(4)内角之和:平行四边形的内角之和等于180度,即∠A + ∠B + ∠C + ∠D = 180°。
(5)对角线比例:在平行四边形中,对角线所分割的小平行四边形面积之比等于对角线所分割的平行四边形面积之比。
3. 平行四边形的判定方法判定一个四边形是否为平行四边形有多种方法:(1)对边判定法:若四边形的对边分别平行,则四边形为平行四边形。
(2)夹角判定法:若四边形内两对邻角的对应角相等,则四边形为平行四边形。
4. 平行四边形的常见特殊情况(1)矩形:具有四个直角的平行四边形称为矩形。
矩形的对边相等且同位角相等,对角线相等且相互平分。
(2)正方形:具有四条边相等且四个直角的矩形称为正方形。
正方形是一种特殊的矩形,具有独特的性质,如对角线相等、内角为90度等。
(3)菱形:具有四条边相等的平行四边形称为菱形。
菱形的对角线互相垂直且相互平分。
(4)等腰梯形:具有两组对边相等的平行四边形称为等腰梯形。
5. 平行四边形的应用平行四边形在几何学中有广泛的应用,特别是在计算面积和周长等方面。
通过掌握平行四边形的性质,我们可以解决各种与平行四边形相关的几何问题,如证明两条线段平行、判断图形是否为平行四边形等。
总结:平行四边形是具有两对对边平行的四边形。
它具有对边相等、同位角相等、对角线互相平分等性质。
在判定和应用中,可以根据对边判定法和夹角判定法来确定是否为平行四边形,并利用平行四边形的性质来解决几何问题。
平行四边形的知识点整理

平行四边形的知识点整理平行四边形是我们初中数学学习的一个重要内容。
学习平行四边形需要掌握多种知识点,包括平行、四边形的性质、平行四边形的特征等。
本文将对平行四边形的知识点进行整理,帮助读者更加深入地理解和掌握平行四边形的相关知识。
一、平行概念平行是指两条直线在同一平面内且不存在交点,这两条直线称为平行线。
平行的概念是学习平行四边形的基础,只有掌握了平行的概念,才能进一步学习平行四边形的相关知识。
二、四边形的性质四边形是由四条线段组成的图形。
四边形有多种类型,包括矩形、平行四边形、菱形、正方形等。
下面介绍几种四边形的性质。
1.平行四边形的性质平行四边形是指有两组对边分别平行的四边形。
平行四边形的性质包括:①对边相等:平行四边形的两组对边分别平行且相等。
②同位角相等:平行四边形相对的内角和为180°,对应角相等,邻角互补。
③对角线互相平分:平行四边形的对角线互相平分。
2.矩形的性质矩形是一种特殊的平行四边形,其性质包括:①对边相等:矩形的两组对边分别相等。
②内角为直角:矩形的四个内角都是直角。
③对角线相等:矩形的对角线相等。
④轴对称:矩形的每一条对角线都是矩形轴对称的。
3.菱形的性质菱形是一种四边形,其性质包括:①对边相等:菱形的两组对边分别相等。
②对角线互相垂直:菱形的对角线互相垂直。
③轴对称:菱形的每一条对角线都是菱形轴对称的。
4.正方形的性质正方形是一种矩形,其性质包括:①对边相等:正方形的两组对边分别相等。
②内角为直角:正方形的四个内角都是直角。
③对角线相等:正方形的对角线相等。
④轴对称:正方形的每一条对角线都是正方形轴对称的。
三、平行四边形的特征平行四边形有一些特殊的性质和特征,下面介绍几个典型的特征。
1.根据对边和角的关系判断是否平行四边形判断一个四边形是否是平行四边形,可以根据其对边和角的关系来确定。
如果四边形的两组对边分别平行且相等,那么这个四边形就是平行四边形。
如果对边相等但不平行,那么这个四边形是菱形。
四边形解析四边形的性质和分类

四边形解析四边形的性质和分类四边形是一个有四个边和四个角的图形。
它在几何学中有着重要的地位,并且有着多种性质和分类。
本文将对四边形的性质和分类进行详细解析,以便读者更好地理解和应用该概念。
一、四边形的性质四边形有以下几个基本性质:1. 四边形的边:四边形有四条边,分别连接了四个顶点。
这些边可以分为两对相邻边和两对对角线。
2. 四边形的角度:四边形有四个角,分别位于每个顶点。
这些角可以分为内角和外角。
内角之和为360度,外角之和为360度。
3. 四边形的对角线:四边形有两条对角线,分别连接了四个非相邻顶点。
对角线之间有着特定的关系,比如对角线相互垂直或相互平分等。
4. 四边形的边长和面积:四边形的边长可以通过测量每条边的长度来确定。
而四边形的面积可以通过不同的方法计算,例如使用海伦公式或分割成三角形再计算。
二、四边形的分类根据四边形的性质,我们可以将其分为多个类别。
下面介绍一些常见的四边形分类:1. 矩形:矩形是一种特殊的四边形,其具有以下性质:- 所有内角都是直角(90度);- 对边相等且平行;- 对角线相等。
2. 正方形:正方形也是一种特殊的矩形,其具有以下性质:- 所有内角都是直角;- 所有边相等;- 所有对角线相等。
3. 平行四边形:平行四边形具有以下性质:- 两对边分别平行;- 两对边长度相等;- 对角线互相平分。
4. 梯形:梯形具有以下性质:- 有一对边平行(底边);- 没有边长相等;- 没有角度大小相等。
5. 菱形:菱形是一种特殊的平行四边形,其具有以下性质:- 所有边相等;- 对角线相互垂直;- 对角线互相平分。
6. 不规则四边形:不规则四边形是指没有特殊性质和对称性的四边形,其边和角都没有特定的关系。
通过以上分类,我们可以更清楚地了解四边形的特点和性质。
在几何学中,四边形的性质和分类是其他复杂图形的基础,因此对其进行深入理解是非常重要的。
总结:四边形是一个有四个边和四个角的图形,在几何学中有着重要的地位。
平行四边形的定义及特殊四边形的性质及判定

平行四边形的定义及特殊四边形的性质及判定平行四边形是我们在数学学习中经常接触到的一种几何图形。
它具有独特的定义和性质,同时还有一些特殊的平行四边形,如矩形、菱形和正方形,它们各自有着特殊的性质和判定方法。
首先,我们来了解平行四边形的定义。
平行四边形是指两组对边分别平行的四边形。
这是平行四边形最基本的特征,也是判断一个四边形是否为平行四边形的首要条件。
平行四边形有许多重要的性质。
例如,平行四边形的两组对边分别相等。
这意味着,如果我们知道一个平行四边形的一条边的长度,那么与之相对的边的长度也就确定了。
平行四边形的两组对角分别相等。
这就使得在解决与角度相关的问题时,我们可以利用这个性质进行计算和推理。
平行四边形的对角线互相平分。
这一性质在很多几何问题中都能发挥关键作用,为我们提供解题的思路和方法。
平行四边形的邻角互补,即相邻的两个角相加等于 180 度。
接下来,我们看看几种特殊的平行四边形。
矩形是一种特殊的平行四边形,它除了具有平行四边形的所有性质外,还有自己独特的性质。
矩形的四个角都是直角。
这是矩形区别于一般平行四边形的重要特征。
矩形的对角线相等。
在实际应用中,比如在建筑设计中,常常利用矩形对角线相等的性质来保证结构的稳定性和对称性。
判定一个平行四边形是否为矩形,有以下几种方法。
首先,如果一个平行四边形有一个角是直角,那么它就是矩形。
其次,如果一个平行四边形的对角线相等,那么它也是矩形。
菱形也是特殊的平行四边形。
菱形的四条边都相等。
这使得菱形在外观上具有很高的对称性。
菱形的对角线互相垂直且平分每组对角。
判定一个平行四边形是否为菱形,方法有:如果一组邻边相等的平行四边形是菱形;如果对角线互相垂直的平行四边形是菱形;如果四条边都相等的四边形是菱形。
正方形是最为特殊的平行四边形,它同时具备矩形和菱形的所有性质。
正方形的四条边相等,四个角都是直角,对角线互相垂直、平分且相等。
判定一个平行四边形是否为正方形,可以先判断它是否为矩形,再看是否为菱形;或者直接看它是否同时满足四条边相等、有一个角为直角以及对角线相等且互相垂直平分。
多边形平行四边形矩形菱形正方形的知识点总结

多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。
2021届中考数学热点题型专练12 四边形【含答案】

2021届中考数学热点题型专练热点12 四边形【命题趋势】四边形是每年中考数学中必考的内容之一,其考查重点是几种特殊的四边形(平行四边形、矩形、菱形、正方形)。
具体考查这几种特殊四边形的性质与判定方法,考查题型一般为解答题的20——26题,难度中等,也可能会结合三角形,圆,甚至会与三角函数、一次函数、反比例函数,二次函数结合形成综合性的大题,甚至在压轴大题中出现,例如结合二次函数形成平行四边形的存在性等。
所以我们必须对特殊四边形的性质与判定方法相当熟悉,然后再掌握一定的解决问题的常用策略,才能决胜。
【满分技巧】一、整体了解知识基本网络,熟记四种特殊四边形的概念及性质判定,二、将四边形问题转化为三角形问题其实四边形问题的解决最终都会转化到三角形的问题,所以思考问题时一定不能只想着四边形,只要考查四边形的综合题一定会利用到三角形的相关知识,一定要想着将四边形的问题转化成三角形的问题,然后利用三角形的相关知识解决。
三、做一定量的基础练习,培养分析问题和分析图形的能力【限时检测】(建议用时:30分钟)一、选择题1.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【答案】C【解析】黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C2.如图,在ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对【答案】C【解析】四边形ABCD是平行四边形,∴AB=CD,AD=BC,OD=OB,OA=OC∴OD=OB,OA=OC,∴AOD=∴BOC∴∴AOD∴∴COB同理可得∴AOB∴∴COD∴BC=AD,CD=AB,BD=BD∴∴ABD∴∴CDB同理可得∴ACD∴∴CAB因此本题共有4对全等三角形故选:C.3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】设所求多边形边数为n,则(n﹣2)•180°=1080°,解得n=8.故选:D.4.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∴EOF=90°,OC、EF交于点G.给出下列结论:∴∴COE∴∴DOF;∴∴OGE∴∴FGC;∴四边形CEOF的面积为正方形ABCD面积的;∴DF2+BE2=OG•OC.其中正确的是()A .∴∴∴∴B .∴∴∴C .∴∴∴D .∴∴【答案】B【解析】∴∴四边形ABCD 是正方形, ∴OC =OD ,AC ∴BD ,∴ODF =∴OCE =45°, ∴∴MON =90°, ∴∴COM =∴DOF , ∴∴COE ∴∴DOF (ASA ), 故∴正确;∴∴∴EOF =∴ECF =90°, ∴点O 、E 、C 、F 四点共圆, ∴∴EOG =∴CFG ,∴OEG =∴FCG , ∴OGE ∴∴FGC , 故∴正确;∴∴∴COE ∴∴DOF , ∴S ∴COE =S ∴DOF ,∴S 四边形CEOF =S∴OCD=14S 正方形ABCD ,故∴正确;∴)∴∴COE ∴∴DOF , ∴OE =OF ,又∴∴EOF =90°, ∴∴EOF 是等腰直角三角形, ∴∴OEG =∴OCE =45°,∴∴OEG ∴∴OCE , ∴OE :OC =OG :OE , ∴OG •OC =OE 2, ∴OC =12 AC ,OE =EF ,∴OG •AC =EF 2, ∴CE =DF ,BC =CD , ∴BE =CF ,又∴Rt∴CEF 中,CF 2+CE 2=EF 2, ∴BE 2+DF 2=EF 2, ∴OG •AC =BE 2+DF 2, 故∴错误, 故选:B .5.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM =DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .OM =ACB .MB =MOC .BD ∴ACD .∴AMB =∴CND【答案】A【解析】∴四边形ABCD 是平行四边形,∴对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∴OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.6.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.B.4C.4D.20【答案】C【解析】∴A,B两点的坐标分别是(2,0),(0,1),∴AB=,∴四边形ABCD是菱形,∴菱形的周长为4,故选:C.7. .一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【答案】D【解析】十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.8. .下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【答案】A【解析】A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.9. .如图,E是∴ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∴ABD=∴DCE B.DF=CF C.∴AEB=∴BCD D.∴AEC=∴CBD【答案】C【解析】∴四边形ABCD是平行四边形,∴AD∴BC,AB∴CD,∴DE∴BC,∴ABD=∴CDB,∴∴ABD=∴DCE,∴∴DCE=∴CDB,∴BD∴CE,∴BCED为平行四边形,故A正确;∴DE∴BC,∴∴DEF=∴CBF,在∴DEF与∴CBF中,,∴∴DEF∴∴CBF(AAS),∴EF=BF,∴DF=CF,∴四边形BCED为平行四边形,故B正确;∴AE∴BC,∴∴AEB=∴CBF,∴∴AEB=∴BCD,∴∴CBF=∴BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故C错误;∴AE∴BC,∴∴DEC+∴BCE=∴EDB+∴DBC=180°,∴∴AEC=∴CBD,∴∴BDE=∴BCE,∴四边形BCED为平行四边形,故D正确,故选:C.10..菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等【答案】D【解析】A、是轴对称图形,故正确;B、是中心对称图形,故正确;C、对角线互相垂直,故正确;D、对角线不一定相等,故不正确;故选:D.11..如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A .2.5B .3C .4D .5【答案】A【解析】∴四边形ABCD 为菱形, ∴CD =BC ==5,且O 为BD 的中点,∴E 为CD 的中点, ∴OE 为∴BCD 的中位线, ∴OE =CB =2.5,故选:A .12. .如图,在正方形ABCD 中,E 是BC 边上的一点,4BE =,8EC =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G ,连接AC ,现在有如下4个结论: ∴45EAC ∠=︒;∴FG FC =;∴//FC AG ;∴14GFC S ∆=. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】如图,连接DF .四边形ABC 都是正方形,AB AD BC CD ∴===,90ABE BAD ADG ECG ∠=∠=∠=∠=︒,由翻折可知:AB AF =,90ABE AFE AFG ∠=∠=∠=︒,2BE EF ==,BAE EAF ∠=∠, 90AFG ADG ∠=∠=︒,AG AG =,AD AF =, Rt AGD Rt ∴∆≅∴()AGF HL ∆,DG FG ∴=,GAF GAD ∠=∠,设GD GF x ==,1()452EAG EAF GAF BAF DAF ∴∠=∠+∠=∠+∠=︒,故∴正确,在Rt ECG ∆中,222EG EC CG =+,222(2)8(12)x x ∴+=+-, 6x ∴=,12CD BC BE EC ==+=, 6DG CG ∴==, FG GC ∴=,易知GFC ∆不是等边三角形,显然FG FC ≠,故∴错误, GF GD GC ==, 90DFC ∴∠=︒, CF DF ∴⊥,AD AF =,GD GF =,AG DF ∴⊥,//CF AG ∴,故∴正确,168242ECG S ∆=⨯⨯=,:6:43:2FG FE ==,:3:5FG EG ∴=,3722455GFC S ∆∴=⨯=,故∴错误,故选:B . 二、填空题13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 .【答案】16【解析】M 、N 分别为BC 、OC 的中点, 28BO MN ∴==.四边形ABCD 是矩形, 216AC BD BO ∴===.故答案为16.14. .如图,该硬币边缘镌刻的正九边形每个内角的度数是 .【答案】140° 【解析】该正九边形内角和=180°×(9﹣2)=1260°, 则每个内角的度数==140°.故答案为:140°.15.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE =5,则GE 的长为 .【答案】4913【解析】∴四边形ABCD 为正方形, ∴AB =AD =12,∴BAD =∴D =90°,由折叠及轴对称的性质可知,∴ABF ∴∴GBF ,BF 垂直平分AG , ∴BF ∴AE ,AH =GH , ∴∴F AH +∴AFH =90°, 又∴∴F AH +∴BAH =90°, ∴∴AFH =∴BAH ,∴∴ABF∴∴DAE(AAS),∴AF=DE=5,在Rt∴ADF中,BF===13,S∴ABF=AB•AF=BF•AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∴AE=BF=13,∴GE=AE﹣AG=13﹣=,故答案为:.16.在平行四边形ABCD中,∴A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.【答案】16 3【解析】过D作DE∴AB于E,在Rt∴ADE中,∴∴A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt∴BDE中,∴BD=4,∴BE===2,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16 3 ,故答案为:16 3 .17.三个形状大小相同的菱形按如图所示方式摆放,已知∴AOB=∴AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则∴ABE的周长为cm.【答案】12+8 2【解析】如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∴三个菱形全等,∴CO=HO,∴AOH=∴BOC,又∴∴AOB=∴AOH+∴BOH=90°,∴∴COH=∴BOC+∴BOH=90°,即∴COH是等腰直角三角形,∴∴HCO=∴CHO=45°=∴HOG=∴COK,∴∴CKO=90°,即CK∴IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∴Rt∴CIK中,(x﹣x)2+x2=22,解得x2=2+,又∴S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴∴ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.三、解答题18.如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B 作BF CE⊥于点G,交AD于点F.(1)求证:ABF BCE∆≅∆;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC DG=;(3)如图3,在(2)的条件下,过点C作CM DG⊥于点H,分别交AD,BF于点M,N,求MNNH的值.【解析】(1)证明:BF CE ⊥, 90CGB ∴∠=︒, 90GCB CBG ∴∠+∠=,四边形ABCD 是正方形, 90CBE A ∴∠=︒=∠,BC AB =, 90FBA CBG ∴∠+∠=, GCB FBA ∴∠=∠,()ABF BCE ASA ∴∆≅∆;(2)证明:如图2,过点D 作DH CE ⊥于H , 设2AB CD BC a ===, 点E 是AB 的中点, 12EA EB AB a ∴===, 5CE a ∴,在Rt CEB ∆中,根据面积相等,得BG CE CB EB =,25BG ∴=, 2245CG CB BG ∴=-,90DCE BCE ∠+∠=︒,90CBF BCE ∠+∠=︒, DCE CBF ∴∠=∠,CD BC =,90CQD CGB ∠=∠=︒,()CQD BGC AAS ∴∆≅∆,25CQ BG ∴==, 25GQ CG CQ CQ ∴=-=, DQ DQ =,90CQD GQD ∠=∠=︒, ()DGQ CDQ SAS ∴∆≅∆, CD GD ∴=;(3)解:如图3,过点D 作DH CE ⊥于H , 1122CDG S DQ CH DG ∆==, 85CG DQ CH a DG ∴==, 在Rt CHD ∆中,2CD a =, 2265DH CD CH a ∴=-=,90MDH HDC ∠+∠=︒,90HCD HDC ∠+∠=︒, MDH HCD ∴∠=∠, CHD DHM ∴∆∆∽, ∴34DH DH CH HM ==, 910HM a ∴=,在Rt CHG ∆中,45CG =,85CH a =, 2245GH CG CH a ∴-=,90MGH CGH ∠+∠=︒,90HCG CGH ∠+∠=︒,QGH HCG ∴∠=∠, QGH GCH ∴∆∆∽, ∴HN HGHG CH=, 225HG HN a CG ∴==,12MN HM HN a ∴=-=,∴152245aMN NH a ==19.如图,在四边形ABCD 中,AD ∴BC ,延长BC 到E ,使CE =BC ,连接AE 交CD 于点F ,点F 是CD 的中点.求证:(1)∴ADF∴∴ECF.(2)四边形ABCD是平行四边形.【解析】(1)∴AD∴BC,∴∴DAF=∴E,∴点F是CD的中点,∴DF=CF,在∴ADF与∴ECF中,,∴∴ADF∴∴ECF(AAS);(2)∴∴ADF∴∴ECF,∴AD=EC,∴CE=BC,∴AD=BC,∴AD∴BC,∴四边形ABCD是平行四边形.20.如图,在正方形ABCD中,分别过顶点B,D作//BE DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:22AB =4EB =,tan 23GEH ∠=EHFG 的周长.【解析】(1)四边形ABCD 是正方形, AB CD ∴=,//AB CD ,DCA BAC ∴∠=∠, //DF BE ,CFD BEA ∴∠=∠,BAC BEA ABE ∠=∠+∠,DCA CFD CDF ∠=∠+∠, ABE CDF ∴∠=∠,在ABE ∆和CDF ∆中,ABE CDF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=,BH DG =,BE BH DF DG ∴+=+,即EH GF =,//EH GF ,∴四边形EHFG 是平行四边形;(2)如图,连接BD ,交EF 于O ,四边形ABCD 是正方形,BD AC ∴⊥,90AOB ∴∠=︒, 22AB =2OA OB ∴==,Rt BOE ∆中,4EB =,30OEB ∴∠=︒,∴EO=2 3 ,OD OB =,EOB DOF ∠=∠, //DF EB ,DFC BEA ∴∠=∠,()DOF BOE AAS ∴∆≅∆,23OF OE ∴==43EF ∴= 23FM ∴=,6EM =,过F 作FM EH ⊥于M ,交EH 的延长线于M , ∴EG//FH ,FHM GEH ∴∠=∠,tan tan 23FM GEH FHM HM∠=∠== ∴2323= ∴HM=1,∴EH=EM -HM=6-1=52222(23)113FH FM HM ++ ∴四边形EHFG 的周长222521310213EH FH =+=⨯+=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【本讲教育信息】一. 教学内容:几种特殊的平行四边形:矩形、菱形、正方形[目标]1. 理解矩形、菱形的定义与性质。
2. 掌握矩形、菱形的判定方法。
二. 重点、难点:1. 矩形、菱形性质的综合应用。
特别是菱形性质和直角三角形的知识的综合应用。
2. 矩形、菱形的判定方法的综合应用。
三. 知识要点:1. 矩形(1)矩形的概念有一个角是直角的平行四边形叫矩形。
(2)矩形的特殊性质①矩形的对角线相等②矩形四个角都是直角(3)矩形性质的应用①矩形的一条对角线将矩形分成2个全等的直角三角形;②矩形的2条对角线将矩形分成4个等腰三角形;③有关矩形的问题往往可以化为直角三角形或等腰三角形的问题来解决;④矩形的面积计算公式:(4)矩形的判定条件①有三个角是直角的四边形是矩形②对角线相等的平行四边形是矩形注意:1)在判定四边形是矩形的条件中,平行四边形的概念是最基本的条件,其他的判定条件都是以它为基础的。
2)四边形只要有3个角是直角,那么根据多边形内角和性质,第四个角也一定是直角。
(在判定四边形是矩形的条件中,给出“有3个角是直角”的条件,是因为数学结论的表述中一般不给出多余条件。
)3)将两个判定条件比较,后者的条件中,除了“有3个角是直角”的条件外,只要求是“四边形”,而前者的条件却包括“平行四边形”和“两条对角线相等”两个方面。
4)矩形的判定与性质的区别2. 菱形(1)菱形的概念有一组邻边相等的平行四边形叫菱形。
(2)菱形的特殊性质①菱形的四条边都相等②菱形的对角线相互垂直,且每一条对角线平分一组对角(3)菱形性质的应用由于菱形的对角线互相垂直平分,菱形的2条对角线就将菱形分成了四个全等的直角三角形,结合图形向学生介绍菱形的一个面积计算公式。
的一半思考归纳:计算菱形的面积有哪些方法?(4)菱形的判定条件①四边都相等的四边形是菱形;②对角线互相垂直的平行四边形是菱形(5)四边形、平行四边形、菱形之间的关系如图:【典型例题】例1. 等边三角形、矩形、菱形和圆中,既是轴对称图形又是中心对称图形的是()A. 等边三角形和圆B. 等边三角形、矩形、菱形C. 菱形、矩形和圆D. 等边三角形、菱形、矩形和圆分析:因为等边三角形是轴对称图形而不是中心对称图形,明确了这一点,就很容易排除A、B、D,只选C了解:菱形、矩形、圆这三种图形,都是轴对称图形,且又都是中心对称图形,故选C。
例2. 如图,过□ABCD的对角线的交点O作两条互相垂直的直线EF、GH、分别与□ABCD 的四条边交于E、F和G、H,求证EGFH为菱形。
分析:关键在于证明四边形EGFH为平行四边形,由中心对称图形性质易得OH=OG,OE=OF。
证明:O是□ABCD的对称中心,GH经过O点与BC交于G,与AD交于H∴G、H是以O点为对称中心的对称点∴OG=OH同理:OE=OF,∴四边形EGFH为平行四边形又∵EF⊥GH∴四边形EGFH为菱形例3. 如图,在△ABC中,∠C=90°,CD为AB边上的高,∠CAB的平分线交CD于E,交CB于F,过点F作FG⊥AB于G,连GE。
试说明四边形CEGF为菱形。
解:如图,∵AF平分∠CAB,CF⊥AC,FG⊥AB,∴CF=GF,∠CFA=∠GFA,又∵DE∥FG∴∠AFG=∠CEF∴∠CEF=∠CFE,则CE=CF,∴CE=FG,∴四边形ECFG为平行四边形,又CF=FG,∴四边形CEGF为菱形例4. 如图,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°。
说明∠CEF=∠BAE。
解:连结AC,四边形ABCD是菱形(已知),∴AB=BC=CD=AD,∠D=∠B=60°(菱形的四边相等、对角相等)∴△ABC与△CDA为等边三角形,则AB=AC,∠ACF=∠BAC=∠B=60°又∠EAF=60°,∠BAE=∠CAF,∴△ABE≌△ACF∴AE=AF。
而∠EAF=60°∴则△EAF为等边三角形;∴∠AEF=60°,又∠AEC=∠AEF+∠CEF=∠B+∠BAE,∴∠CEF=∠BAE例5. 菱形以特殊的对称美而受人们的喜爱,在生产生活中有其广泛的应用。
张伟同学家里有一面长4.2m,宽2.8m的墙壁准备装修,现有如图(甲)所示的型号瓷砖,其形状是一块长30cm,宽20cm的长方形,点E,F,G,H分别是边BC、CD、DA,AB的中点,阴影部分为淡蓝色花纹,中间部分为白色。
试问:(1)这面墙壁最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁最多会出现多少个面积相等的菱形,其中有花纹的菱形有多少个?分析:通过拼图,运用由特殊到一般以及分类讨论的数学思想,解决图形的组合问题。
例如,(1)墙面上有多少个淡蓝色菱形?先根据每相邻4块、6块、9块瓷砖可分别构成1、2、4个淡蓝色菱形,再确定当每行有14块、每列14块瓷砖时,可构成淡蓝色菱形的个数为13×13=169(个);(2)白色的菱形的个数与瓷砖的块数相同,有196块解:(1)因为墙壁总面积为4.2×2.8=11.76m2;每块瓷砖的面积为0.3×0.2=0.06m2,则最少需要这种瓷砖11.76÷0.06=196(块)(2)如下图(1),4块瓷砖构成一个淡蓝色菱形,即(2-1)×(2-1)=1;如图(2),6块瓷砖构成2个淡蓝色菱形,(3-1)×(2-1)=2;如图(3),9块瓷砖构成4个淡蓝色菱形,(3-1)×(3-1)=4。
所以在长4.2m,宽2.8m的墙壁上铺长30cm,宽20cm的长方形的瓷砖每行需14块,每列需14块,可构成淡蓝色菱形的个数为(14-1)×(14-1)个,共有13×13=169(个),同时,白色的菱形的个数与瓷砖的块数相同,有196块,故面积相等的菱形共有169+196=365(个)答:(1)这面墙壁最少要贴这种瓷砖196块;(2)全部贴满后,这面墙壁最多会出现365个面积相等的菱形,其中有花纹的菱形有169个。
例6. 如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,∠CAE= 15°,求∠BOE的度数分析:先推出△ABE为等腰直角三角形,再说明AB=OB=BE,则∠BOE=75°解:在矩形ABCD中,∠DAB=∠ABE=90°∵AE平分∠BAD∴∠EAB=∠DAB=45°,而∠AEB=180°-∠ABE-∠EAB=45°∴△ABE为等腰直角三角形∴AB =BE在直角三角形ABC中,OB=AC=AO∵AO=BO,∠OAB=∠EAB +∠CAE =45°+15°=60°∴AB=OB=BE而∠OBE=∠ABE-∠ABO=30°∴在等腰三角形BOE中,∠BOE=75°例7. (1)菱形的一边和等腰直角三角形的一直角边等长,若菱形一边上的高等于这边的一半,则菱形与三角形的面积之比为()A. 1︰2B. 1︰1.5C. 1︰1D. 3︰4(2)如图,在矩形ABCD中,点E、F分别在边AB、CD上,BF∥DE若AD=12cm,AB=7cm,且AE︰EB=5︰2。
则阴影部分EBFD的面积为cm2(1)分析:此菱形的面积等于边长平方的一半,与等腰直角三角形面积相等解:选C(2)分析:先说明四边形BEDF是平行四边形,从而EB=2解:阴影部分面积为BE×AD=2×12=24例8. 如图,矩形ABCD的对角线AC,BD交于点O,过顶点C作BD的垂线与∠BAD 的平分线相交于点E。
试说明AC=CE。
解:过A作AF⊥BD于点F,∵GE⊥BD∴AF∥CE(两条直线都和第三条直线垂直,则这两条直线平行),∴∠FAE=∠AEC(两直线平行,内错角相等),在Rt△ABD中,∠BAF+∠ABD=90°,∠ABD+∠ADB=90°,∴∠BAF=∠ADB又∵四边形ABCD是矩形,∴OA=OD,∴∠BDA=∠CAD,∴∠BAF=∠DAC而AE平分∠BAD,∴则∠BAE=∠DAE,∴∠BAE-∠BAF=∠DAE-∠DAC即∠FAE=∠CAE,∴∠CAE=∠CEA,故CA=CE例9. 如图,在矩形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。
如果P、Q同时出发,用t (秒)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP为等腰三角形?(2)求四边形QAPC的面积;并提出一个与计算结果有关的结论。
解:(1)∵AP=2 t ,DQ= t,则QA=6-t只有当QA=AP时△QAP为等腰三角形,从而6-t=2t解得:t=2(秒),∴当t=2秒时,△QAP为等腰三角形;(2)在△QAP中,QA=6-t ,QA边上的高DC=12,则S△QAC=QA·DC=(6-t)·12=36-6t,在△APC中,AP=t,BC=6,则S△APC=AP · BC=· 2t · 6=6t,∴S△QAC+S△APC=(36-6t)+6t=36(厘米2)由计算结果发现:当P、Q两点在移动的过程中,四边形QAPC的面积始终保持不变。
【模拟试题】(答题时间:40分钟)1. 将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A. 矩形B. 三角形C. 梯形D. 菱形2. 如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2(填“>”或“<”或“=”)3. 已知平行四边形ABCD的对角线AC、BD相交于点O,分别添加下列条件:(1)∠ABC=90°;(2)AC⊥BC;(3)AB=BC;(4)AC平分∠BAD;(5)AO=DO,使得四边形ABCD是矩形的条件的序号有4. 在菱形ABCD中,对角线AC=6,BD=8,则菱形的面积为______5. 四边形ABCD为菱形,且∠A=60°,BD=8cm,则此菱形的周长为cm6. 若菱形的周长为16,两邻角度数之比为1:2,则该菱形较短的对角线长为7. 如图,小华剪了两条宽度相同的纸条,交叉叠放在一起,则它们重叠部分的形状为___________。
8. 矩形ABCD的两条对角线AC、BD相交于点O,AE垂直BD于E,若∠DAE=3∠BAE,则∠EAC=9. 如图,矩形的周长为2 ,一边中点与对边两顶点连线所夹角为直角,则矩形各边的长分别为________10. 下列说法错误的是()A. 任何一个具有对称中心的四边形是平行四边形;B. 平行四边形即是轴对称图形又是中心对称图形;C. 线段、平行四边形、矩形、菱形、正方形都是中心对称图形;D. 正三角形、矩形、菱形都是轴对称图形,且对称轴都不只一条11. 矩形具有的平行四边形不具有的性质是()A. 对角相等B. 对角线互相平分C. 对边平行且相等D. 对角线相等12. 矩形两条对角线的交点到小边距离比到大边的距离多4,若矩形的周长为56,则矩形的两邻边的长为()A. 19和9B. 10和8C. 16和12D. 18和1013. 如图,设等边△AEF与菱形ABCD有一公共顶点A,且边长相等,三角形另两角的顶点E和F分别在菱形的边BC和CD上。