期中复习--指数导学案
《指数函数的概念 》导学案

任务一: 阅读课本111页—113页的内容,回答下列问题探究指数函数的定义问题1: 阅读课本,第111页至112页,分析A 、B 两地景区游客人次y 与年份x 的变化规律。
A 地景区的游客人次近似______,______(填“年增长量”或“年增长率”)是一个常数;B 地景区的游客人次是非线性增长,________ (填“年增长量”或“年增长率”)越来越大,但其__________(填“年增长量”或“年增长率”)都约0.11,是一个常数。
问题2:阅读课本,第111页至112页,分析A 、B 两地景区游客人次y 与年份x 的对应关系。
A 地景区的游客人次年增长量相等,故游客人次自2001年后增加量记为y ,则y 与年份x 的对应关系可表示为_________________________,是一个 函数。
B 地景区的游客人次年增长率相等,故游客人次为2001年的倍数记为y ,则y 与年份x 的对应关系可表示为__________________________,是一个函数,其中指数x 是自变量。
问题3:阅读课本,第113页,可知,生物体内碳14含量y 与死亡年数x 的对应关系可表示为__________________________,是一个函数,其中 (填“指数”、“底数”或“幂”)x 是自变量。
如用字母a 代替函数 1.11(0)x y x =≥中的常数1.11与函数y =[(12)15730]x (0x ≥)中的常数(12)15730,以上两个函数的解析式都可以表示为 的形式,其中 (填“指数”、“底数”或“幂”)x 是自变量,底数a 是一个大于0且不等于1的常量。
知识一.指数函数的定义一般地,函数 叫做指数函数,其中 是自变量,定义域是 。
思考:1.指数函数的结构特征:(1)解析式中x a 的系数为 ;(2)底数 a 是,满足 ; (3)自变量 x 是 且 x. 2.为什么指数函数y =a x 的底数规定大于0,且不等于1?提示:(1)如果a <0,如y =(-4)x ,当x =14,12时,函数无意义. (2)如果a =0,y =0x ,当x >0时,,0x =0;当x ≤0时,0x 无意义.(3)如果a =1,y =1x =1,是一个常函数,没有研究的必要.为了避免上述各种情况,所以规定a >0,且a ≠1.任务二:用所学知识解决问题题型一:指数函数的概念例1.下列函数中,哪些是指数函数?(1)y =10x ; (2) y =2x +1 (3)y =-4x ; (4)y =x α(α是常数).(5)y =x 3 (6)y =3·2x (7)y =3-x (8) y =x x (x >0) 练习1.若函数x a y )12(-=是指数函数,则a 的取值范围为______.2.若函数f(x)=(a 2-3a +3)a x 是指数函数,求a 的值。
指数函数的概念导学案

4.2.1 指数函数的概念导学案【学习目标】1.了解指数函数的概念.2.会画出指数函数图象(重点).3.会应用指数函数的性质求复合函数的定义域、值域(重点、难点).【自主学习】一.指数函数的定义一般地,函数 (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .【答案】y =a x二.指数函数的图象和性质指数函数y =a x(a >0,且a ≠1)的图象和性质如下表:a >1 0<a <1图象定义域 R 值域(0,+∞)性质过定点过定点 ,即x =0时,y =1函数值的变化 当x >0时, ;当x <0时, 当x >0时, ;当x <0时, 单调性在R 上是在R 上是【答案】【当堂达标基础练】1. 下列图象中,有可能表示指数函数的是( ) 【答案】C【解析】由指数函数的增长速度及定义,可知C 正确. 2.已知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+= D .1()()3f x f x --=【答案】C3.函数2(2)x y a a =-是指数函数,则( ) A .1a =或3a = B .1a = C .3a = D .0a >且1a ≠【答案】C【分析】由指数函数的定义可得2(2)1a -=,同时0a >,且1a ≠,从而可求出a 的值 【详解】由指数函数定义知2(2)1a -=,同时0a >,且1a ≠,所以解得3a =. 故选:C4.若()233xy a a a =-+是指数函数,则有( )A .1a =或2B .1a =C .2a =D .0a >且1a ≠【答案】C【分析】根据指数函数的概念,由所给解析式,可直接求解.【详解】因为()233xy a a a =-+是指数函数,所以233101a aa a ⎧-+=⎪>⎨⎪≠⎩,解得2a =.故选:C .5.已知函数1(),02()0xx f x x ⎧≤⎪=⎨⎪>⎩,则[(4)]f f =________.故答案为:46.若函数()132xf x a a ⎛⎫=- ⎪⎝⎭(0a >,且1a ≠)是指数函数,则=a ________.一、选择题1.若函数y =(a 2-4a +4)a x是指数函数,则a 的值是( ) A .4 B .1或3 C .3 D .1[答案C【解析】由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.2.函数y =⎝ ⎛⎭⎪⎫12x(x ≥8)的值域是( ) A .RB.⎝ ⎛⎦⎥⎤0,1256C.⎝⎛⎦⎥⎤-∞,1256 D.⎣⎢⎡⎭⎪⎫1256,+∞【答案】B【解析】因为y =⎝ ⎛⎭⎪⎫12x在[8,+∞)上单调递减,所以0<⎝ ⎛⎭⎪⎫12x≤⎝ ⎛⎭⎪⎫128=1256.3.函数y =2x-1的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞) D .(0,+∞)【答案】C【解析】由2x-1≥0得2x≥1,即x ≥0,∴函数的定义域为[0,+∞),选C. 4.当a >0,且a ≠1时,函数f (x )=a x +1-1的图象一定过点( )A .(0,1)B .(0,-1)C .(-1,0)D .(1,0)【答案】C 【解析】∵f (-1)=a-1+1-1=a 0-1=0,∴函数必过点(-1,0).5.函数f (x )=a x与g (x )=-x +a 的图象大致是( )A B C D【答案】A【解析】当a >1时,函数f (x )=a x单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A.二、填空题6.函数f (x )=3x -1的定义域为________. 【答案】[1,+∞)【解析】由x -1≥0得x ≥1,所以函数f (x )=3x -1的定义域为[1,+∞).7.已知函数f (x )=a x+b (a >0,且a ≠1)经过点(-1,5),(0,4),则f (-2)的值为________. 【答案】7【解析】由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝ ⎛⎭⎪⎫12x +3,所以f (-2)=⎝ ⎛⎭⎪⎫12-2+3=4+3=7.8.若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数f (x )的值域是________.【答案】(-1,0)∪(0,1)【解析】由x <0,得0<2x<1;由x >0, ∴-x <0,0<2-x<1, ∴-1<-2-x<0.∴函数f (x )的值域为(-1,0)∪(0,1).] 三、解答题 9.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解] (1)因为函数图象经过点⎝ ⎛⎭⎪⎫2,12, 所以a2-1=12,则a =12.(2)由(1)知函数为f (x )=⎝ ⎛⎭⎪⎫12x -1(x ≥0),由x ≥0,得x -1≥-1.于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2, 所以函数的值域为(0,2].10.已知f (x )=9x-2×3x+4,x ∈[-1,2]. (1)设t =3x,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.[解] (1)设t =3x ,∵x ∈[-1,2],函数t =3x在[-1,2]上是增函数,故有13≤t ≤9,故t 的最大值为9,t 的最小值为13.(2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9,故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.【当堂达标素养练】1.函数y =a-|x |(0<a <1)的图象是( )A B C D【答案】A【解析】y =a -|x |=⎝ ⎛⎭⎪⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.2.若a >1,-1<b <0,则函数y =a x+b 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限 D .第一、二、四象限【答案】A【解析】∵a >1,且-1<b <0,故其图象如图所示.3.已知函数y =⎝ ⎛⎭⎪⎫13x在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________. 【答案】12【解析】∵y =⎝ ⎛⎭⎪⎫13x 在R 上为减函数,∴m =⎝ ⎛⎭⎪⎫13-1=3,n =⎝ ⎛⎭⎪⎫13-2=9,故m +n =12. 4.函数f (x )=3x3x +1的值域是________.【答案】(0,1)【解析】函数y =f (x )=3x3x +1,即有3x =-y y -1,由于3x>0,则-y y -1>0,解得0<y <1,值域为(0,1).5.已知函数f (x )=a x+b (a >0,a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的取值范围;(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围. [解] (1)由f (x )为减函数可知a 的取值范围为(0,1), 又f (0)=1+b <0,所以b 的取值范围为(-∞,-1). (2)由图②可知,y =|f (x )|的图象如图所示.由图象可知使|f (x )|=m 有且仅有一解的m 值为m =0或m ≥3.6.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 【答案】(1)()24x x g x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【详解】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,x x a a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3x f x =,且(2)18f a += ∴⇒∵∴(2)法一:方程为 令,则144t ≤≤ 且方程为在有两个不同的解.设2211()24y t t t =-=--+ ,y b = 两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解.法二: 方程为 ,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦ 上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.。
指数函数导学案

指数函数及其性质(3课时)班级: 姓名 学号学习任务:(1)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点; (2)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.学习重点:指数函数的的念和性质.学习难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质. 学习过程:一、自主学习1、问题1:某种细胞分裂时,由1个分裂成2个, 2个分裂成4个,……依此类推,写出1个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数解析式?问题2:公元前300年左右,中国有位杰出的学者庄子,在他的文章《庄子·天下篇》 中写道:一尺之棰,日取其半,万世不竭。
意思是,一尺长的木棍,每天截掉一半,千年万载也截不完!设第 x 天截得的木棍长度为y 尺。
根据这句话,试求x 与y 之间的函数关系。
解答:问题1函数解析式为_________ 问题2函数解析式为_______ 思考(1)以上两个函数有何共同特征?当x 扩充到R 时,称作什么函数?(2)这类函数与我们学过的函数y=x,21,x y x y ==-一样吗?有什么区别?2、指数函数的概念(1)指数函数的定义:一般地,函数_____________________叫做指数函数,其中x 是自变量,函数的定义域为_____________.(2)指数函数解析式的特征:___________________________________________________(3)为什么规定底数a >0且a ≠1呢?为什么定义域为R ?(4)利用指数函数的定义解决:二、练一练:例1.判断下列函数是不是指数函数,为什么?212333133x x x x x xxy x y x y y y y y y π+-====⋅==+=-=① ② ③ ④ ⑤ ⑥⑦⑧注意:指数函数的解析式y=x a 中,x a 的系数是思考:确定一个指数函数需要什么条件?例2.指数函数f(x)的图像经过点(2,9),求解析式及f(1) , f(-2)合作探究一:01xy a a a =>≠三、指数函数(且)的图象特征的学习12()2x x y y ==1.在同一直角坐标系中用描点法画出函数与的图象;列表: 2x y =1()2x y =描点、连线:2.观察底数a 取其它值时函数图象变化的情况y a 归纳结论:(1)两个指数函数的图象关于轴对称时其解析式的特点:____________(2)指数函数的图象与底数之间的规律:______________巩固练习一:1321.______.2..2.32x xxA yB y xC yD y +-====-下列函数一定是指数函数的是(21),x y a a =-2.函数为指数函数求满足的范围______观察、思考:(1) 这两个函数的图象有什么关系? (2) 这两个函数的图象各有什么特点? 试着从以下几个方面找出这两个图象的共同点和不同点: ① 图象范围② 图象经过的特殊点③图象从左向右的变化趋势x 合作探究二:0且你能根据指数函数的图象的特征归纳出指数函数的性质吗?请完成下面表格:五、指数函数的应用例3:较下列各题中几个值的大小:2.530.10.20.33.11.7,1.70.8,0.8 1.7,0.9--①②③例题3解题方法小结:比较两个指数数幂的大小练一练:1.完成课本第73页练习1。
高中数学《指数与指数幂的运算》导学案

探究1:n次方根的概念
由初中所学知识及示例完成下面填空
示例:①(±2)2=4,则称±2为4的;
②23=8,则称2为8的;
类似地,(±2)4=16,则±2叫做16的;25=32,则2叫做32的
xn=a,其中n>1,且n∈N﹡
归纳总结:n次方根的概念
一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N﹡.
得x< .
3.化简 (a,b>0)的结果是()
A. B.abC. D.a2b
解析原式= ÷ =a(3+ )× b(2+ )× ÷ =a - ×b - = .
4.2- + + - ·8 =________.
解析原式= + + +1-22=2 -3.
5.已知3a=2,3b= ,则32a-b=________.
解析由2x=8y+1,得2x=23y+3,
所以x=3y+3.①
由9y=3x-9,得32y=3x-9,
所以2y=x-9.②
由①②联立方程组,
解得x=21,y=6,所以x+y=27.
12.计算下列各式的值:
(1)(0.027) - +256 +(2 ) -3-1+π0;
(2)7 -3 -6 + ;
(3)(a ·b- )- · ÷ (a>0,b>0).
当n为偶数时,
0的任何次方根都是0,记作 =0.
探究2:根式的概念
探究点2在方根的表示中,你知道式子叫什么吗?
式子叫做根式,这里n叫做根指数,a叫做被开方数.
探究3:根式的运算性质
=2
结论 =a
2、求下列各式的值
(1) =_____ =_________
结论:an开奇次方根,则有 =a
高中数学的相关指数教案

高中数学的相关指数教案
教学目标:
1. 了解指数的概念和性质;
2. 掌握指数运算的规则;
3. 能够灵活运用指数知识解决实际问题。
教学重点和难点:
1. 指数的定义和性质;
2. 指数运算的规则;
3. 实际问题的解决方法。
教学准备:
1. 教材《高中数学》;
2. 教学课件PPT;
3. 教学案例及练习题。
教学步骤:
一、导入(5分钟)
教师通过举例引入指数的概念,并提出问题引导学生思考,引起学生兴趣。
二、讲授(25分钟)
1. 指数的定义和性质;
2. 指数运算的规则(同底数幂相乘、幂的幂、幂的乘方、零指数规定);
3. 实例讲解指数运算的步骤。
三、练习(15分钟)
教师设计一些练习题供学生实践操作,巩固所学知识。
四、拓展(10分钟)
学生从日常生活中找到一些实际问题,并运用指数知识进行解决,加深对指数概念的理解。
五、总结(5分钟)
学生总结本堂课的重点内容和难点,教师进行适当梳理和补充。
六、作业布置
布置相应的作业,巩固学生对指数的理解和运用能力。
七、板书
本堂课所学内容的概要和重难点。
教学反思:
本节课采用了导入-讲授-练习-拓展-总结-作业布置的教学方法,使学生在理解指数概念的同时,掌握了指数运算的规则和方法,并能够运用所学知识解决实际问题。
通过本节课的教学,学生对指数的认识和运用能力得到了提升。
高中数学指数教案详案

高中数学指数教案详案一、教学目标:1. 知识目标:掌握指数的概念和运算法则,能够灵活运用指数进行计算和化简。
2. 能力目标:培养学生整合和运用数学知识解决问题的能力,提高解决实际问题的能力。
3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维和创新意识。
二、教学重点和难点:1. 重点:理解指数的概念,掌握指数运算法则。
2. 难点:对指数运算法则的灵活运用。
三、教学过程:1. 导入引言教师引导学生回顾一下上节课学习的内容,激发学生对指数的兴趣,引出本节课的学习内容。
2. 知识讲解(1)指数的概念指数是表示幂的一种方法,表示为a^n,其中a称为底数,n称为指数。
(2)指数运算法则- 相同底数幂的乘法:a^m * a^n = a^(m+n)- 相同底数幂的除法:a^m / a^n = a^(m-n)- 底数乘方的乘法:(a*b)^n = a^n * b^n- 底数乘方的除法:(a/b)^n = a^n / b^n3. 案例演练教师通过几个例题的演练,让学生熟练掌握指数运算的方法和技巧。
4. 练习巩固让学生自主完成一些练习题,巩固所学内容。
5. 拓展延伸引导学生探讨一些实际问题,通过运用指数知识来解决问题,培养学生的数学思维和创新能力。
6. 课堂小结教师对本节课所学内容进行总结,并强调重点和难点,让学生对所学内容有一个清晰的认识。
四、作业布置布置适量的作业,让学生在课外巩固所学知识。
五、教学反思通过学生的表现和反馈,深刻总结课堂教学的得失,做到因时因势调整教学策略,不断提高教学效果。
以上是本节课的教案范本,希最能够对您有所帮助。
《指数函数》复习课教案

《指数函数》复习课教案指数函数复课教案一、教学目标1. 了解指数函数的定义和性质。
2. 掌握指数函数的图像特点和变化规律。
3. 学会求解指数函数的基本问题,如解方程、求导等。
二、教学内容1. 指数函数的定义和性质介绍。
2. 指数函数的图像绘制和分析。
3. 指数函数的基本问题解决方法。
4. 指数函数与其他函数的关系。
三、教学过程1. 指数函数的定义和性质介绍- 介绍指数函数的定义和表示方法。
- 讲解指数函数的增长与衰减性质。
- 引导学生理解指数函数的图像特点。
2. 指数函数的图像绘制和分析- 指导学生通过给定函数表达式,绘制指数函数的图像。
- 分析指数函数图像的特点,如增长趋势、渐近线等。
- 提醒学生观察指数函数图像的反比关系。
3. 指数函数的基本问题解决方法- 解释如何求解指数方程。
- 带领学生通过例题练,掌握求解指数方程的步骤和技巧。
- 讲解指数函数求导的基本方法。
4. 指数函数与其他函数的关系- 比较指数函数与线性函数、二次函数等其他函数的特点和差异。
- 引导学生分析指数函数与其他函数之间的关系。
- 鼓励学生探索指数函数在实际问题中的应用。
四、教学资源1. PowerPoint幻灯片:包含指数函数的定义、性质介绍、图像绘制和分析的内容。
2. 白板、彩色笔:用于举例和讲解。
3. 课堂练题:用于学生的课堂练和讨论。
五、教学评估1. 课堂练:通过课堂练检验学生对指数函数的理解和应用能力。
2. 课堂讨论:鼓励学生提问、交流,并评估他们的思维能力和分析能力。
3. 作业评估:布置作业并对学生的作业进行批改和评分。
六、教学延伸1. 鼓励学生进一步研究和探索指数函数的应用领域。
2. 推荐相关的参考书和互联网资源,供学生深入研究和拓展知识。
七、教学反思- 教师反思教学过程中的不足和可以改进的地方。
- 学生反馈和评价收集,以便优化教学方案。
以上为《指数函数》复习课教案,希望能够帮助学生更好地理解和掌握指数函数的相关知识和应用能力。
指数函数导学案(自用经典必下)

指数函数导学案班级: 姓名 学号学习任务:(1)了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(3)理解指数函数的的概念和意义,能画出指数函数的图像,探索并理解指数函数的单调性和特殊点; (2)在学习的过程中体会研究指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等。
学习过程:知识回顾:指数函数的概念:一般地,函数_____________________叫做指数函数,其中x 是自变量,函数的定义域为R .练一练:判断下列函数是不是指数函数,为什么?(1)x y 4= (2)4x y = (3)xy 4-= (4)14+=x y合作探究一:指数函数的图像1、 在同一直角坐标系中用描点法画出函数xy 2=与xy ⎪⎭⎫⎝⎛=21的图像列表:2xy =1()2x y =描点、连线:合作探究二:指数函数x a y =的性质3、你能根据指数函数的图像的特征归纳出指数函数的性质吗?请完成下面表格:9 1 2 3 4 5 6 7 0 8 -1 -2 -3 -4 1 2 3 4 xy4.指数函数的应用1 已知指数函数()xx f 5= ,求()()()⎪⎭⎫ ⎝⎛-21,2,2,0f f f f 的值。
2 比较下列各组数的大小(1)1.72.5 ,1.73 (2)1.70.2 ,0.94(3) 5287,78⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-小结 比较指数幂大小的方法:单调性法:利用函数的单调性,数的特征是底同指不同(包括可以化为同底的)。
中间值法:找一个中间值如“1”来过渡,数的特征是底不同指不同。
练一练 2:比较下列个组数的大小5.03.02.1,2.1258.0,8.0()222,21--⎪⎭⎫ ⎝⎛5432,32⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-\\3若函数是指数函数,则a 的值为多少?4已知y =f (x )是指数函数,且f (2)=4,求函数y =f (x )的解析式5已知函数)(212)(R x a x f x∈+-=是奇函数,求实数a 的值.6若指数函数xa y )12(-=是减函数,则a 的范围是多少?7已知函数)(x f 的定义域是(0,1),那么)2(xf 的定义域是多少?252.1,8.04.035.2,7.2-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012高一数学必修一导学案 编制人:左启刚 刘希龙 秦连升 马明强 审核人: 领导签字: 编号:06 班级: 小组: 姓名: 组内评价: 教师评价:
自主检测四
使用时间:2011-11-4
一、选择题:(每题6分,共48分。
请将正确选项写到题号前面)
1. 已知某食品5kg 价格为40元,该食品的质量x 与价格y 的关系是( ) A. 215y x =+ B. 35y x =+ C. 325y x =+ D. 8y x =
2.设函数)1,0()(≠>=a a a x f x ,对任意实数m 、n ,下列式子中正确的个数是( ) ① )n ()m ()n m (f f f ⋅=⋅ ②)n ()m ()n m (f f f +=⋅ ③)n ()m ()n m (f f f ⋅=+ ④)n ()m ()n m (f f f +=+ ⑤)n ()m ()n -m (f f f ÷=
A.1
B.2
C.3
D.4 3.下列各数的大小关系成立的为( ) A . 1
.0-8
.0< 2.025.1<28.0 B.28.0<1
.0-8
.0 <2
.025
.1 C . 2
.025.1< 1
.0-8
.0<28.0 D. 1
.0-8
.0<2
8.0 <2
.025
.1
4. 函数)1,0(15≠>+=+a a a y x 中,不论a 取何值,函数图象恒过定点( )
A .(0,1) B.(0,2) C .(-5,2) D.(-5,1)
5.昌乐县的一种出租车起步价为5元/km, 5km 内只收起步价;超过5km 的部分每公里收费1.2元不足1km 的按1kn 计算。
则乘车从二中出发到电子科技书店(7.8km )需要多少钱( ) A.5元 B.8.36元 C.8.6元 D.9.6元
6.某列火车从北京西站开往石家庄,全程277km ,火车出发10min 开出13km 后,以120km /h 匀速行驶.则离开北京30min 时火车行驶的路程为( ) A.53km B.73km C.60km D.39km
7.用300米长的篱笆材料,利用已有的一面墙作为一边围成矩形菜地,请问这块菜地面积最大可以是多少( )
A .100002
m B .112502
m C .225002
m D .5625 2
m
8.用清水漂洗衣服,若每次能洗去污垢的
4
3
,写出存留污垢y 与漂洗次数x 的函数关系式,若要使存留污垢不超过原有的1﹪,则至少要漂洗几次?
A 3次 B.4次 C.5次 D.6次
二、填空题:(每题6分,共24分。
把正确结果填写在横线上) 9. 化简)10(23
23
4<<+-a a a a =___________. 10. x y 21-=的定义域为 值域为
11.如图甲、乙两船分别沿着箭头方向,从A ,B 两地同时出发,已知AB=10 mile ,甲乙两船的速度分别为16 mil e /h 和12 mile /h ,则经过 h
12.某种产品每件定价80元,每天可售出30件; 若每件定价120元,每天可售出20件,若出
售件数y 是定价x 的一次函数,这个函数为 .
9. 10. 11. 、 12. 三、解答题:(每小题14分,共28分。
步骤规范,要有必要的文字说明) 13.已知2
12
1
-+a
a =3,求下列各式的值:
(1) 1-+a a (2) 2
2-+a a (3)
2
12
1232
3-
-
--a
a a a .
14.窗户的形状如图,它的上部是半圆形,下不是矩形,如果窗框的外沿的周长固定为6m ,半圆的半 径是多长时,窗户的透光面积最大?。