多相催化反应和均相催化反应的特点
催化原理

Fsw第一章1催化剂和催化作用催化剂:是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质催化作用:是指催化剂对化学反应所施加的作用。
具体地说,催化作用是催化剂活性中心对反应物分子的激发与活化,使后者以很高的反应性能进行反应。
2催化剂性能指标:催化活性、选择性、产物收率、稳定性或寿命第二章1.吸附现象:当气体与清洁的固体表面接触时,在固体表面上气体的浓度高于气相.这种现象称为吸附现象。
被吸附的气体称为吸附质。
吸附气体的固体称为吸附剂。
吸附平衡:当吸附过程进行的速率与脱附过程进行的速率相等时,表面上气体的浓度维持不变,这样的状态。
2..3.化学吸附态:是指分子或原子在固体催化剂表面进行化学吸附时的化学状态、电子结构及几何构型。
4.画出Langmuir等温线,Langmuir的假设:1、吸附的表面是均匀的,各吸附中心的能量同构;2、吸附粒子间的相互作用可以忽略;3、吸附粒子与空的吸附中心碰撞才有可能被吸附,一个吸附粒子只占据一个吸附中心,吸附是单分子层的;4、在一定条件下,吸附速率与脱附速率相等,从而达到吸附平衡。
Langmuir吸附等温式:第三章1.比表面积:每克催化剂上具有的表面积称为比表面积2.BET理论的假设:1、吸附的表面是均匀的;2、吸附粒子间的相互作用可以忽略;3、多层吸附,各层间吸附与脱附建立动态平衡。
3.比孔容:每克催化剂颗粒内所有的体积总和称为比孔体积,或比孔容,以Vg表示。
4.孔隙率:催化剂的孔体积与整个颗粒体积的比,以θ表示。
5.中孔:中孔,指半径在(2—50)nm。
6.接触角:在液体和固体接触处,分别作液体表面和固体表面的切线,这两条切线在液体内的夹角称为接触角。
(会画)第四章1.多相催化反应过程分析:(1)反应物分子从气流中向催化剂表面和孔内扩散;(2)反应物分子在催化剂表面上吸附;(3)被吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应;(4)反应产物自催化剂表面脱附;(5)反应产物离开催化剂表面向催化剂周围的介质扩散。
催化原理重点知识点总结

催化重点知识点一、概述催化剂定义描述:在反应体系中,若存在某一种类物质,可使反应速率明显变化(增加或减少),而本身的化学性质和数量在反应前后基本保持不变,这种物质称为催化剂。
催化剂可以是正催化剂,也可以是负催化剂。
催化剂的组成:主体,载体,其他。
主体分为主催化剂、共催化剂、助催化剂。
助催化剂分为结构助催化剂、电子助催化剂、晶格缺陷助催化剂、扩散助催化剂。
主催化剂:起催化作用的根本性物质。
没有它不存在催化作用。
共催化剂:催化剂中含有两种单独存在时都具有催化活性的物质,但各自的催化活性大小不同,活性大的为主催化剂,活性小的为共催化剂。
两者组合可提高催化活性。
助催化剂:是催化剂中提高主催化剂的活性、选择性、改善催化剂的耐热性、抗毒性、机械强度、寿命等性能的组分。
催化反应:有催化剂参与的反应。
催化反应的分类:通常根据体系中催化剂和反应物的“相”分类;也可根据反应中反应分子间电子传递情况分类。
催化反应分为:均相催化反应,多相催化反应,酸碱反应,氧化还原反应。
均相催化反应:催化剂和反应物形成均一的相,可以是气相、液相。
多相催化反应:催化剂和反应物处于不同相,催化剂通常均为固体。
可分为气固、液固。
酸碱反应:在反应中发生电子对转移的称为酸-碱反应。
氧化还原反应:在反应中发生一个电子转移的称为氧化-还原反应。
催化特征:1催化是一种知识,是一种关于加快化学反应发生的“捷径”的知识。
2催化不能改变化学反应热力学平衡, 但促使热力学可自发发生的反应尽快发生,尽快达到化学平衡。
3催化是选择性的,往往要在一系列平行反应中特别地让其中一种反应尽快发生,尽速达到平衡。
如果可能,它还要同时抑制其它反应的进行。
四、如果热力学允许,催化对可逆反应的两个方向都是有效的。
催化的本质:在催化剂作用下,以较低活化能实现的自发化学反应被称为催化反应。
催化剂是一种中介物质,它提供了改变活化能的路径从而加快了反应速率(或降低了反应温度),但其自身最终并没有被消耗。
催化原理习题

河南理工大学催化原理复习重点第2章催化剂与催化作用1.什么是催化剂?催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。
什么是催化作用?催化作用是指催化剂对化学反应所产生的效应。
催化作用的特征有哪些?1、催化剂只能加速热力学上可以进行的反应2、催化剂只能加速化学反应趋于平衡,而不能改变平衡的位置(平衡常数)3、催化剂对反应具有选择性4、催化剂的使用寿命是有限的2.工业生产中可逆反应为什么往往选择不同的催化剂?第一,对某一催化反应进行正反应和进行逆反应的操作条件(温度、压力、进料组成)往往会有很大差别,这对催化剂可能会产生一些影响。
二,对正反应或逆反应在进行中所引起的副反应也是值得注意的,因为这些副反应会引起催化剂性能变化。
3.催化剂是如何加快化学反应速度的?催化剂通过改变化学反映历程,从而实现低活化能的化学反应途径进而加快了反应速度。
4.催化剂的活性、选择性的含义是什么?活性是指催化剂对反应进程影响的程度,具体是指反应速率增加的程度,催化剂的活性是判断其性能好坏的重要标志。
当反应物在一定的反应条件下可以按照热力学上几个可能的方向进行反应时,使用特定的催化剂就可以对其中一个方向产生强烈的加速作用。
这种专门对某一化学反应起加速作用的能力称为催化剂的选择性。
5.催化剂为什么具有寿命?影响催化剂的寿命的因素有哪些?催化剂在长期受热和化学作用下,会经受一些不可逆的物理的和化学的变化,如晶相变化,晶粒分散程度的变化,易挥发组分的流失,易熔物的熔融等导致活性下降至失活。
(1)催化剂热稳定性的影响(催化剂在一定温度下,特别是高温下发生熔融和烧结,固相间的化学反应、相变、相分离等导致催化剂活性下降甚至失活。
)(2)催化剂化学稳定性的影响(在实际反应条件下,催化剂活性组分可能发生流失、或活性组分的结构发生变化从而导致活性下降和失活。
)(3)催化剂中毒或被污染(催化剂发生结焦积炭污染或中毒。
均相催化

• (3)加氢活性较高。由于中心金属电子密度 增高,负氢离子电负性也增强,加氢活性 增高,使产物只有醇而没有醛,并有5%烯 烃也同时被加氢还原成烷烃。 • (4)副产物少。由于反应中醛浓度很低,故 醛醛缩合及醇醛缩合等连串副反应减少。 • (5)对不同原料烯烃氢甲酰化反应的适应性 差,因为按不同烯烃相应调变配位基以调 节催化剂的活性是不容易的。
• 2、配位键合与络合活化 • A、L—>M(给予型配位键) L:为L碱; M为L酸 • B、L—M(电子配对型σ键) M:d或p空 轨道,L:具有孤对电子的中性分子(NH3, H2O等) L: 等;M被氧化,半填充的d、p轨 道电子。 • C、σ-π键 • CO、C2H4的配位活化分别如下二页图所示:
与co相比是一个较强的施主配位基和较弱的受主配位基能增加中心金属的电子密度从而增强了中心金属的反馈能力使金属羰基间的键变牢固即增加了hcocol代表上述配位基络合物的稳定性
均相催化
酸、碱催化剂及其催化作用
• 1.1.1 概述 • 均相催化反应:气相或液相。气相进料, 液相反应通常也归为均相反应。 • 催化剂:多为组成与结构确定的小分子化 合物:气体、酸、碱、可溶性金属盐类及 金属配合物。例如,盐酸,硫酸,氢氧化 钠,醋酸锰,环烷酸钴,氯化钯,氯化铜 等。 • 研究意义:反应的动力学和机理较容易搞 清楚和阐明。
CO的配位活化
C2H4的配位活化
• 1.2.4 络合催化中的关键反应步骤
• 关键基元步骤,对分析络合催化循环、调变控制 反应进程很有意义。 • 1、配位不饱和与氧化加成: • 配位不饱和:络合物的配位数低于饱和值。有络 合空位。 • 饱和配位:六:Ca、Cd、Co、Fe; 五:Ni; 四: Cu等。 • 配位不饱和的几种情况: • 1)原来不饱和;2)有基质分子易取代的介质分 子占位;3)潜在不饱和,可能发生配位体的解离。
催化化学第三、四章

令酶的原始浓度为[E]0,反应达稳态后,一 部分变为中间化合物[ES],余下的浓度为[E]
[E] [E]0 [ES]
[E][S] ([E]0 [ES])[S] [ES] KM KM
[E]0 [S] [ES] K M [S]
k2 [E]0 [S] d[P] r k2 [ES] dt K M [S]
(二)速率方程与动力学参数
微分形式的速率方程又有幂式和双曲线式两种,幂式速率方程 形式如
r kPA PB
其中k为速率常数,α,β…为反应级数。双曲线式速率方程有 以下或类似的形式
ki Pi r 1 1P 2 P2 ... 1
其中, i 1 2 ... 为常数,k为反应速率常数
2.高效率 倍。
它比人造催化剂的效率高出108至1012
一般在常温、常压下进行。
3.反应条件温和
4.兼有均相催化和多相催化的特点 5.反应历程复杂 受pH、温度、离子强度影响较 大。酶本身结构复杂,活性可以进行调节
气固多相催化反应动力学基础
一、 基本概念
(一)反应速率
(二)速率方程或动力学参数 (三)速率控制步骤 (四)表面质量作用定律
(二)速率方程与动力学参数
基元过程一般服从Arrhenius定律
k A exp- E / RT
其中,A为指前因子,E为活化能。在总包反应情况 下,总反应速率常数有时在形式上遵从Arrhenius 定律,此时所对应的E称为表观活化能,表观活化能 是否有具体的物理意义视情况而定。 动力学参数包括速率常数,反应级数,指前因子和活 化能等。
k1 S E k1
ES E P
工业催化原理—作业汇总(含答案)

第一章催化剂与催化作用基本知识1、简述催化剂的三个基本特征。
答:①催化剂存在与否不影响△Gθ的数值,只能加速一个热力学上允许的化学反应达到化学平衡状态而不能改变化学平衡;②催化剂加速化学反应是通过改变化学反应历程,降低反应活化能得以实现的;③催化剂对加速反应具有选择性。
2、1-丁烯氧化脱氢制丁二烯所用催化剂为MoO3/BiO3混合氧化物,反应由下列各步组成(1)CH3-CH2-CH=CH2+2Mo6++O2—→CH2=CH—CH=CH2+2Mo5++H20(2)2Bi3++2Mo5+→2Bi2++2Mo6+(3)2Bi2++1/202→2Bi3++02—总反应为CH3-CH2-CH=CH2+1/202→CH2=CH-CH=CH2+H20试画出催化循环图。
CH3-CH2—CH=CH2Bi3、合成氨催化剂中含有Fe3O4、Al2O3和K20,解释催化剂各组成部分的作用。
答:Fe3O4:主催化剂,催化剂的主要组成,起催化作用的根本性物质Al2O3:构型助催化剂,减缓微晶增长速度,使催化剂寿命长达数年K20:调变型助催化剂,使铁催化剂逸出功降低,使其活性提高第二章催化剂的表面吸附和孔内扩散1、若混合气体A和B2在表面上发生竞争吸附,其中A为单活性吸附,B2为解离吸附:A+B2+3*→A*+2B *,A和B2的气相分压分别为p A和p B。
吸附平衡常数为k A和k B。
求吸附达到平衡后A的覆盖率θA和B的覆盖率θB.解:对于气体A:吸附速率v aA=k aA P A(1—θA—θB);脱附速率v dA=k dAθA平衡时:v aA=v dA ,即θA=(k aA/k dA)P A(1—θA—θB)=k A·k B(1—θA—θB)对于气体B:吸附速率v aB=k aB P B(1—θA-θB)2;脱附速率v dB=k dBθB2平衡时:v aB=v dB ,即θ2= k B P B(1—θA—θB)2。
应用催化简答题

第一章催化剂:不能改变化学平衡;可通过改变反应历程而加快特定反应的速率;具有选择性均相催化:反应物和催化剂处于同一相态中的反应。
多相催化:反应物和催化剂处于不同相态中的反应。
主催化剂:又称活性组分,是多组元催化剂中的主体,必须具备的组分。
助催化剂:加到催化剂中的少量物质,本身没有活性或活性很小,但能显著改善催化剂性能,包括催化剂活性、选择性及稳定性等。
有结构型、调变型、扩散型、毒化型助催化剂。
载体:催化剂中主催化剂和助催化剂的分散剂、粘合剂和支撑体。
有分散作用、稳定化作用、支撑作用、传热和稀释作用、助催化作用等。
分散度:指催化剂表面上暴露出的活性组分原子数占该组分在催化剂中原子总数的比值。
催化剂活性表示方法:速率;TOF;速率常数;转化率速率:单位质量(或体积或表面积)催化剂上反应物的转化量(或产物的生成量)TOF:转化频率,单位时间内每个催化活性中心上发生反应的次数。
速率常数:反应速度和反应物浓度的函数关系r=k×f(c),比较反应速率常数k以比较催化剂活性。
转化率:C A%=(反应物A转化掉的量/流经催化床层进料中反应物A的总量)×100%选择性:S%=(目的产物的产率/转化率)×100%(目的产物的产率指反应物消耗于生成目的产物的量与反应物进料总量的百分比)。
产率=选择性×转化率多相催化反应步骤:外扩散、内扩散;吸附、表面反应、脱附;内扩散、外扩散内外扩散消除方法:外扩散的阻力来自气、固(或液、固)边界的静止层,流体的线速(空速)将直接影响静止层厚度。
内扩散阻力来自催化剂颗粒孔隙内径和长度,所以催化剂颗粒大小及颗粒孔径大小将直接影响分子内扩散过程。
催化循环:在多相催化反应中,催化循环表现为:一个反应物分子化学吸附在催化剂表面活性中心上,形成活性中间物种,并发生化学反应或重排生成化学吸附态的产物,再经脱附得到产物,催化剂复原并进行再一次反应。
速率控制步骤:催化反应的总速度取决于阻力最大(或固有反应速度最小)的步骤。
催化剂

第一章1.按工艺与工程特点将催化剂分为哪几类;比较各类催化剂的性能特点多相固体催化剂 均相配合物催化剂 生物催化剂多相固体催化剂:应用广;易与反应系统分离;催化过程易于控制,产品质量高;催化机理复杂。
均相配合物催化剂: 催化机理易于研究和表征;活性大于多相催化剂;与反应混合物分离困难;昂贵,中心离子多为贵金属;热稳定性较差,以致限制反应温度的提高,转化率低而催化剂耗损大;对金属反应器腐蚀严重。
生物催化剂:高效性(用量少,活性高)、高选择性(底物专一性,即每一种酶只能催化已知或一族特定底物的反应;反应专一性,即只能催化某种特定的反应)、反应条件温和(常温、常压和接近中性的PH 下进行)、自动调节活性(酶的活力受到多方面因素的控制,通过自动调节酶的活性和酶量,以满足生命过程的各种需要)。
2.固体催化剂的主要成分及其作用多稳定剂与载体相似,抑制剂与助催化剂的作用相稳定剂、提高表面积、耐热性、机械强度,含量大于助催化提高主催化剂的活性、选择性、耐热性、抗催化作用主催化剂相催化剂反,见表1-18抑制剂剂,是活性组分的分散剂、粘合剂和支载物,见表1-17载体毒性、机械强度和寿命等。
又分结构、电子和晶格缺陷助催化剂,见表1-15和1-16助催化剂作用3.新型催化剂的发展方向酶的模拟与人工合成 均相催化剂的负载化第二章1.沉淀法类型及其操作要点单组分沉淀法:沉淀剂与一种待沉淀溶液作用制备一组分沉淀物。
如氧化铝载体的制备反应如下:Al3+ + OH-→ Al2O3•nH2O ↓ AlO2- + H3O+ → Al2O3•nH2O ↓共沉淀法:两个以上的组分同时沉淀。
如低压合成甲醇用的三组分催化剂CuO-ZnO-Al2O3的制备:将这三种待沉淀离子的硝酸盐混合液与Na2CO3并流加入沉淀槽,在强烈搅拌下,在恒定的温度和近中性的条件下,形成三组分沉淀。
再经过后续处理得三组分催化剂。
均匀沉淀法:先将待沉淀的溶液与沉淀剂母体充分混合为十分均匀的体系,再改变条件,如调节温度和时间,逐渐提高 PH ,体系中逐渐生成沉淀剂,沉淀缓慢进行,制得颗粒均匀、比较纯净的沉淀物。