鲁教版(五四制)六年级下册数学检测试题:第六章 整式的乘除综合测评

合集下载

鲁教版(五四学制)六年级下册数学第六章《整式的乘除》测试卷

鲁教版(五四学制)六年级下册数学第六章《整式的乘除》测试卷

鲁教版(五四学制)六年级下册数学第六章《整式的乘除》测试卷一、填空题(每题2分,共20分)1.(-a5)·(-a2)3·(-a3)2=________.2.(-3xy2)2÷(-2x2y)=________.3.计算:(-8)2006×(-0.125)2007=________.4.若x n=5,y n=3,则(xy)2n=________.5.若A=3x-2,B=1-2x,C=-5x,则A·B+A·C=________.6.a2-9与a2-3a的公因式是________.7.(x+1)(x-1)(x2+1)=_________.8.4x2_________+36y2=(_______)2.9.若(x-2)2+(y+3)2=0,则(x+y)2=________.10.若4x2+kxy+y2是完全平方式,则k=________.二、选择题(每题3分,共24分)11.下列计算中,正确的是().A.2a+3b=5ab B.a·a3=a3 C.a6÷a2=a3 D.(-ab)2=a2b212.计算x3y2·(-xy3)2的结果是().A.x5y10 B.x5y8 C.-x5y8 D.x6y1213.若5x=3,5y=4,则25x+y的结果为().A.144 B.24 C.25 D.4914.999×1 001可利用的公式是().A.单项式乘以单项式 B.平方差C.完全平方 D.单项式乘以多项式15.x(x-y)2-y(y-x)2可化为().A.(x-y)2 B.(x-y)3 C.(y-x)2 D.(y-x)216.下面的计算结果为3x2+13x-10的是().A.(3x+2)(x+5) B.(3x-2)(x-5)C.(3x-2)(x+5) D.(x-2)(3x+5)17.已知(x-3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为().A.m=3,n=9 B.m=3,n=6 C.m=-3,n=-9 D.m=-3,n=918.不论m,n为何有理数,m2+n2-2m-4n+8的值总是().A .负数B .0C .正数D .非负数三、计算(每题4分,共20分)19.[(xy 2)2] 3+[(-xy 2)2] 3; 20.(x -y+9)(x+y -9)21.(-a 2b )(b 2-a+); 22..23.(3x -2y )2-(3x+2y )2四、化简并求值(每题6分,共12分)24.6a 2-(2a -1)(3a -2)+(a+2)(a -2),其中a=.25.已知,求7y (x -3y )2-2(3y -x )3的值.五、(每题7分,共14分)26.如图,大正方形的面积为16,小正方形的面积为4,求阴影部分的面积.27.若(x+y )2=36,(x -y )2=16,求xy 与x 2+y 2的值.12231314991011251247⨯+-1323,3 1.x y x y +=⎧⎨-=⎩六、作图题(10分)28.用如图所示的纸片,取其两片,可以拼合成几种不同形状的长方形?画出示意图,并写出所拼的长方形的面积.。

鲁教版六年级数学下册第六章整式的乘除单元测试题及答案

鲁教版六年级数学下册第六章整式的乘除单元测试题及答案

六年级数学下册第六章《整式的乘除》单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①② B 、③④ C 、①②③ D 、①②③④ ( ) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为随意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。

精品试卷鲁教版(五四)六年级数学下册第六章整式的乘除综合测评试题(含详细解析)

精品试卷鲁教版(五四)六年级数学下册第六章整式的乘除综合测评试题(含详细解析)

六年级数学下册第六章整式的乘除综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列式子可用平方差公式计算的是( )A .(a +b )(﹣a ﹣b )B .(m ﹣n )(n ﹣m )C .(s +2t )(2t +s )D .(y ﹣2x )(2x +y )2、如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x ,()y x y >表示小长方形的长和宽,则下列关系式中不正确的是( )A .22249x xy y ++=B .2224x xy y -+=C .2225x y +=D .2214x y -=3、若(mx +8)(2﹣3x )中不含x 的一次项,则m 的值为( )A .0B .3C .12D .164、若三角形的底边为2n ,高为2n ﹣1,则此三角形的面积为( )A .4n 2+2nB .4n 2﹣1C .2n 2﹣nD .2n 2﹣2n5、将0.000000301用科学记数法表示应为( )A .3.01×10﹣10B .3.01×10﹣7C .301×10﹣7D .301×10﹣96、计算()42a a -÷,正确结果是( )A .316aB .316a -C .42a -D .32-a7、下列选项的括号内填入a 3,等式成立的是( )A .a 6+( )=a 9B .a 3•( )=a 9C .( )3=a 9D .a 27÷( )=a 98、如图所示的三角形数组是我国古代数学家杨辉发现的.称为杨辉三角形.()n a b +的展开式中的各项系数依次对应杨辉三角的第()1n +行中的每一项,如:()3322333a b a a b ab b +=+++.若t 是()2023a b -展开式中2022ab 的系数,则t 的值为( )A .2022B .2022-C .2023D .2023-9、下列运算中正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(2b )3=6b 3D .(﹣a )3÷(﹣a )=a 210、下列运算正确的是( )A .()2510a a =B .1644x x x ÷=C .235235a a a +=D .3332b b b ⋅=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知3x ﹣3•9x =272,则x 的值是 ___.2、如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.3、已知2m a =,2n b =,m ,n 为正整数,则2m n +=______.4、比较大小:0.54___________0.45;若正数,x y 满足35x y =,则35x y -___________5、计算:()322a =_________________. 三、解答题(5小题,每小题10分,共计50分)1、计算题(1)()232ab ab ab -⋅ (2)()()2224x y x xy y --+ 2、计算:2b 2﹣(a +b )(a ﹣2b ).3、化简:(1)()23234242a a a b b +-; (2)()()22x x y y y x --+-.4、计算:2021()2021(2)2--+-.5、阅读理解:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,∴(a+b)2=(﹣4)2.即a2+2ab+b2=16.∵ab=3,∴a2+b2=10.参考上述过程解答:(1)已知a﹣b=﹣3,ab=﹣2.求式子(a﹣b)(a2+b2)的值;(2)若m﹣n﹣p=﹣10,(m﹣p)n=﹣12,求式子(m﹣p)2+n2的值.-参考答案-一、单选题1、D【解析】【分析】根据平方差公式的特点逐项排查即可.【详解】解:A.括号中的两项符号都相反,不符合公式特点,故此选项错误;B.括号中的两项符号都相反,不符合公式特点,故此选项错误;C.括号中的两项符号都相同,不符合公式特点,故此选项错误;D.y的符号相同,2x的符号相反,符合公式特点,故此选项正确.故选:D .【点睛】本题主要考查了平方差公式,掌握平方差公式的特点“一项的符号相同,另一项的符号相反”成为解答本题的关键.2、C【解析】【分析】根据完全平方公式及图形的特点找到长度关系即可依次判断.【详解】解:A 、因为正方形图案的边长7,同时还可用()x y +来表示,故()22222749x y x xy y +=++==,正确;B 、由图象可知2()4x y -=,即2224x xy y -+=,正确;C 、由()22222749x y x xy y +=++==和222()24x y x xy y -=-+=,可得4522xy =,()2224524926.5252x y x y xy +=+-=-=≠,错误; D 、由7x y +=,2x y -=,可得 4.5x =, 2.5y =,所以22224.5 2.520.25 6.2514x y -=-=-=,正确.故选:C .【点睛】本题主要考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.3、C【解析】【分析】先计算多项式乘以多项式得到结果为2322416mx m x ,结合不含x 的一次项列方程,从而可得答案.【详解】解:(mx +8)(2﹣3x )2231624mx mx x =-+-2322416mx m x(mx +8)(2﹣3x )中不含x 的一次项,2240,m解得:12.m =故选C【点睛】本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.4、C【解析】【分析】根据三角形面积公式列式,然后利用单项式乘多项式的运算法则进行计算.【详解】 解:三角形面积为12×2n (2n −1)=2n 2-n ,故选:C .【点睛】本题考查单项式乘多项式的运算,理解三角形面积=1×底×高,掌握单项式乘多项式的运算法则是2解题关键.5、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:0.000000301=3.01×10﹣7.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.6、D【解析】【分析】根据单项式除以单项式的运算法则进行计算后即可确定正确的选项.【详解】解:原式=()43a a a-÷=-,22故选:D.【点睛】本题考查了整式的除法,了解整式除法的运算法则是解答本题的关键,难度较小.7、C【解析】【分析】根据同底数幂的乘除,幂的乘方运算法则求解即可.【详解】解:A 中639a a a +≠,不符合要求;B 中339a a a ⋅≠,不符合要求;C 中()339a a =,符合要求; D 中2739a a a ÷≠,不符合要求;故选C .【点睛】本题考查了同底数幂的乘除与幂的乘方.解题的关键在于正确的计算.8、C【解析】【分析】根据()n a b +的展开式规律,写出()2023a b -的展开式,根据展开式即可写出2022ab 的系数t . 【详解】∵()2023202320222022202320232023a b a a b ab b -=-⋅++-∴展开式中倒数第二项为20222023ab ⋅∴()2023a b -展开式中含2022ab 项的系数是2023故选:C【点睛】本题是材料阅读题,考查了多项式的乘法,读懂材料然后写出()2023a b -的展开式是关键.9、D【解析】【分析】利用同底数幂的乘法法则,幂的乘方与积的乘方的法则,同底数幂的除法法则对各项进行运算即可.【详解】解:A 、a 2•a 3=a 5,故A 不符合题意;B 、(a 2)3=a 6,故B 不符合题意;C 、(2b )3=8b 3,故C 不符合题意;D 、(﹣a )3÷(﹣a )=a 2,故D 符合题意;故选:D .【点睛】此题主要考查同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法运算等幂的运算法则,熟练掌握运算法则是解答本题的关键.10、A【解析】【分析】根据幂的乘方,同底幂相除,合并同类项,同底数幂相乘逐项判断即可求解.【详解】解:A 、()2510a a =,故本选项正确,符合题意; B 、16412x x x ÷=,故本选项错误,不符合题意;C、23a不是同类项,不能合并,故本选项错误,不符合题意;2a和3D、336⋅=,故本选项错误,不符合题意;b b b故选:A【点睛】本题主要考查了幂的乘方,同底幂相除,合并同类项,同底数幂相乘,熟练掌握相关运算法则是解题的关键.二、填空题1、3【解析】【分析】根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加,计算后再根据指数相等列式求解即可.【详解】解:∵3x-3•9x=3x-3•32x=3x-3+2x=36,∴x-3+2x=6,解得x=3.故答案为:3.【点睛】此题考查同底数幂的乘法以及幂的乘方与积的乘方,关键是等式两边均化为底数均为3的幂进行计算.2、4m+12##12+4m【解析】【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m +3)2-m 2=(m +3+m )(m +3-m )=3(2m +3).由长方形的宽为3,可得长方形的长是(2m +3),长方形的周长是2[(2m +3)+3]=4m +12.故答案为:4m +12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.3、ab【解析】【分析】根据同底数幂相乘的逆运算解答.【详解】解:∵2m a =,2n b =,∴2m n +=22m n ab ⨯=,故答案为:ab .【点睛】此题考查了同底数幂相乘的逆运算,熟记公式是解题的关键.4、 > <【解析】【分析】 利用分数指数幂把原数变形为0.50.455432,525,再比较大小,利用幂的运算结合333505535125313,33243xy y x y y y y 从而可得第二空的答案.【详解】 解:2150.550.455524442232,5525,525,0.50.445, 35x y ,,x y 为正数,3335,x y333505535125313,33243xy y x y y y y350,x y故答案为:>,<【点睛】本题考查的是分数指数幂的含义,幂的运算,代数式的值的比较,熟练的运用幂的运算法则是解本题的关键.5、8a 6【解析】【分析】根据幂的乘方与积的乘方计算即可.【详解】解:(2a 2)3=23•a 2×3=8a 6.故答案为:8a 6.【点睛】此题主要考查学生对幂的乘方与积的乘方的理解及计算能力.三、解答题1、 (1)232232a b a b -(2)3223368x x y xy y【解析】【分析】(1)把多项式的每一项与单项式相乘,再合并即可求解;(2)先用第一个多项式的每一项分别乘以另一个多项式的每一项,再合并即可求解.(1)()223223232ab ab ab a b a b -⋅=- (2)()()2224x y x xy y --+3222234228x x y xy x y xy y =-+-+-3223368x x y xy y .【点睛】本题主要考查了整式的乘法运算,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键.2、4b 2 +ab ﹣a 2【分析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果.【详解】解:原式=2b 2﹣(a 2-ab -2b 2)=2b 2﹣a 2+ab +2b 2=4b 2 +ab ﹣a 2 .【点睛】此题考查了整式的混合运算,掌握多项式乘多项式运算法则是解答此题的关键.3、 (1)63243824a b a a b +-;(2)222x y -+.【解析】【分析】(1)先去括号,然后合并同类项即可;(2)原式去括号合并即可得到结果.(1)原式=63243824a b a a b +-;(2)原式=22222222x xy y xy x y -++-=-+.【点睛】本题考查了整式的化简,熟练掌握去括号法则与合并同类项法则是解本题的关键. 4、7【解析】先计算负整数指数幂、零指数幂、乘方,再计算加减法即可得.【详解】解:原式414=-+=.7【点睛】本题考查了负整数指数幂、零指数幂等知识,熟练掌握各运算法则是解题关键.-5、 (1)39(2)76。

鲁教版六年级数学下册《第6章整式的乘除》达标测试题【含答案】

鲁教版六年级数学下册《第6章整式的乘除》达标测试题【含答案】

鲁教版六年级数学下册《第6章整式的乘除》达标测试题一.选择题(共8小题,满分40分)1.如果多项式x2+(m﹣2)x+16是一个二项式的完全平方式,那么m的值为( )A.6B.+10C.10或﹣6D.6或﹣22.如果(2x+m)与(x+3)的乘积中不含x的一次项,那么m的值为( )A.﹣6B.﹣3C.0D.13.若x+y=﹣3,xy=1,则代数式(1+x)(1+y)的值等于( )A.﹣1B.0C.1D.24.医用外科口罩的熔喷布厚度约为0.000136米,将0.000136用科学记数法表示应为( )A.0.136×10﹣3B.1.36×10﹣3C.1.36×10﹣4D.13.6×10﹣55.若a=20210,b=2020×2022﹣20212,c=()2020×()2021,则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.c<b<a D.b<c<a6.已知a+b=7,a2+b2=25,则(a﹣b)2的值为( )A.49B.25C.3D.17.已知2n=a,3n=b,12n=c,那么a,b,c之间满足的等量关系是( )A.c=ab B.c=ab2C.c=a2b D.c=a3b8.已知(2021+a)(2019+a)=b,则(2021+a)2+(2019+a)2的值为( )A.b B.4+2b C.0D.2b二.填空题(共8小题,满分40分)9.计算:(﹣6m2n3)2÷9m3n3= .10.已知2m=3,2n=5,则23m﹣2n的值是 .11.计算:(﹣a)3•(﹣a)2•(﹣a)3= .12.已知(x+3)2﹣x=1,则x的值可能是 .13.已知长方形面积为6y4﹣3x2y3+x2y2,它的一边长为3y2,则这个长方形另外一边长为 .14.计算:(1﹣)×(1﹣)×…×(1﹣)= .15.已知2×8m×16m=222,则(﹣m2)4÷(m3•m2)的值为 .16.如图,两个正方形边长分别为a、b,如果a+b=18,ab=12,则阴影部分的面积为 .三.解答题(共6小题,满分40分)17.计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.18.利用乘法公式计算:(1)(3+2a)(3﹣2a).(2)(﹣2m﹣1)2.(3)(x+2y﹣3)(x+2y+3).19.(1)计算:;(2)计算:(2a+5)(2a﹣5)﹣4a(a﹣2);(3)用乘法公式计算:20202﹣2019×2021;(4)已知10m=2,10n=3,求103m+2n的值.20.先化简,再求值[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a,其中,a=﹣1,.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.22.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1: ;方法2: .(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.答案一.选择题(共8小题,满分40分)1.解:∵x2+(m﹣2)x+16是一个二项式的完全平方式,∴m﹣2=±8,∴m=10或﹣6.故选:C.2.解:(2x+m)(x+3)=2x2+6x+mx+3m=2x2+(6+m)x+3m,∵(2x+m)与(x+3)的乘积中不含x的一次项,∴6+m=0,解得:m=﹣6,故选:A.3.解:∵x+y=﹣3,xy=1,∴(1+x)(1+y)=1+y+x+xy=1﹣3+1=﹣1,故选:A.4.解:0.000136=1.36×10﹣4.故选:C.5.解:a=20210=1;b=2020×2022﹣20212=(2021﹣1)×(2021+1)﹣20212=20212﹣1﹣20212=﹣1;c=(﹣)2020×()2021=;∴b<a<c.故选:B.6.解:∵2ab=(a+b)2﹣(a2+b2)=72﹣25=49﹣25=24,∴(a﹣b)2=a2﹣2ab+b2=25﹣24=1,故选:D.7.解:∵2n=a,3n=b,∴12n=c,(4×3)n=c,4n×3n=c,(2n)2×3n=c,则a2b=c,故选:C.8.解:设2021+a=x,2019+a=y,则x﹣y=2,xy=b,原式=x2+y2=(x﹣y)2+2xy=22+2b=4+2b,故选:B.二.填空题(共8小题,满分40分)9.解:原式=36m4n6÷9m3n3=(36÷9)m4﹣3n6﹣3=4mn3,故4mn3.10.解:∵2m=3,2n=5,∴23m﹣2n=23m÷22n=33÷52=27÷25=,故.11.解:原式=﹣a3•a2•(﹣a3)=a8,故a8.12.解:当x+3=1时,解得:x=﹣2,故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时,解得:x=﹣4,故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时,解得:x=2,故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故﹣2或﹣4或2.13.解:长方形另一边长为:(6y4﹣3x2y3+x2y2)÷3y2=2y2﹣x2y+x2,故2y2﹣x2y+x2.14.解:原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××××…××=×=,故.15.解:∵2×8m×16m=222,∴2×(23)m×(24)m=222,∴2×23m×24m=222,∴21+3m+4m=222,∴1+3m+4m=22,解得:m=3,∴(﹣m2)4÷(m3•m2)=m8÷m5=m3=33=27,故27.16.解:阴影部分的面积为:S正方形ABCD+S正方形CEFG﹣S△ABD﹣S△BFG=====.∵a+b=18,ab=12,∴阴影部分的面积为:=144.∴阴影部分的面积为144.故144.三.解答题(共6小题,满分40分)17.解:原式=6x²+4xy﹣9xy﹣6y²﹣(4x²﹣12xy+9y²).=6x²﹣5xy﹣6y²﹣4x²+12xy﹣9y².=2x²+7xy﹣15y².18.解:(1)(3+2a)(3﹣2a)=9﹣4a2;(2)(﹣2m﹣1)2=4m2+4m+1;(3)(x+2y﹣3)(x+2y+3)=[(x+2y)﹣3][(x+2y)+3]=(x+2y)2﹣9=x2+4xy+4y2﹣9.19.解:(1)原式=1﹣16+(﹣4×)2020=1﹣16+1=﹣14;(2)原式=4a2﹣25﹣4a2+8a=8a﹣25;(3)原式=20202﹣(2020﹣1)(2020+1)=20202﹣20202+1=1;(4)∵10m=2,10n=3,∴103m+2n=103m•102n=(10m)3•(10n)2=23×32=8×9=72.20.解:[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a =(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=﹣1,=时,原式=﹣(﹣1)﹣=1﹣=.21.解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y),得:x﹣2y=3,联立,①+②,得2x=7,解得:x=;②=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)==×=.22.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。

鲁教版(五四制)六年级数学下册《第6章整式的乘除》期末综合训练(附答案)

鲁教版(五四制)六年级数学下册《第6章整式的乘除》期末综合训练(附答案)

2021年鲁教版六年级数学下册《第6章整式的乘除》期末综合复习优生辅导训练(附答案)1.计算的结果是()A.B.C.D.2.下列各式运算正确的是()A.3y3•5y4=15y12B.(ab5)2=ab10C.(a3)2=(a2)3D.(﹣x)4•(﹣x)6=﹣x103.下列有四个结论,其中正确的是()①若(x﹣1)x+1=1,则x只能是2;②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=2,则a﹣b=2④若4x=a,8y=b,则22x﹣3y可表示为A.①②③④B.②③④C.①③④D.②④4.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.125.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣676.化简(x+y+z)2﹣(﹣x+y+z)2+(x﹣y+z)2﹣(x+y﹣z)2的结果是()A.4yz B.8xy C.4xy﹣4yz D.8xz7.下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a)B.(﹣n2﹣m2)(m2+n2)C.D.(2x﹣3y)(2x+3y)8.如图是用4个相同的小长方形与1个小正方形密铺而成的大正方形图案,已知其中大正方形的面积为64,小正方形的面积为9.若用x,y分别表示小长方形的长与宽(其中x >y),则下列关系式中错误的是()A.4xy+9=64B.x+y=8C.x﹣y=3D.x2﹣y2=99.如图,有三种卡片,分别是边长为a的正方形卡片1张,边长为b的正方形卡片4张和长宽为a、b的长方形卡片4张,现使用这9张卡片拼成一个大的正方形,则这个大的正方形边长为()A.a+3b B.2a+bC.a+2b D.4ab10.已知,则x的值为()A.±1B.﹣1或2C.1和2D.0和﹣111.若102•10n﹣1=106,则n的值为.12.若a m=8,a n=2,则a m﹣2n的值是.13.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖块.14.已知(a+b)2=1,(a﹣b)2=49,则ab=.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.16.若4y2﹣my+25是一个完全平方式,则m=.17.如图,从边长为(a+4)(a>0)的正方形纸片中剪去一个边长为(a+1)的正方形,剩余部分沿虚线又剪拼成一个长方形ABCD(不重叠无缝隙),则长方形ABCD的周长是.18.已知:(x+2)x+5=1,则x=.19.我们约定:a★b=10a×10b,例如3★4=103×104=107.(1)试求2★5和3★17的值;(2)猜想:a★b与b★a的运算结果是否相等?说明理由.20.已知x2m=2,求(2x3m)2﹣(3x m)2的值.21.(1)若3m=6,9n=2,求32m﹣4n+1的值;(2)若10m=20,10n=,求9m÷32n的值.22.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.23.阅读材料并解答问题,我们已经知道,完全平方式可以用几何图形来表示,实际上还有些代数式恒等式也可以用这种形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图1、图2等图形的面积表示.(1)请你写出图3所表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+2b)=a2+3ab+2b2(3)请仿照上述方法另写一个含有的代数恒等式,并画出与之相对应的几何图形.24.已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.25.如图①所示是个长为2a,宽为2b的长方形,沿图中虚线平均分成四个小长方形,然后按照图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法列代数式表示图②中阴影部分的面积方法一:方法二:(3)观察图②直接写出(a+b)2、(a﹣b)2、ab这三个代数式之间的等量关系式.(4)根据(3)中的等量关系解决下列问题:若a+b=6,ab=7,求a﹣b的值.26.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的等式.例如:计算左图的面积可以得到等式(a+b)(a+2b)=a2+3ab+2b2.请解答下列问题:(1)观察如图,写出所表示的等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7x﹣5,b=﹣4x+2,c =﹣3x+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值参考答案1.解:=••=•=1×=.故选:A.2.解:A.3y3•5y4=15y7,故本选项错误;B.(ab5)2=a5b10,故本选项错误;C.(a3)2=(a2)3,故本选项正确;D.(﹣x)4•(﹣x)6=x10,故本选项错误;故选:C.3.解:①若(x﹣1)x+1=1,则x可以为﹣1,此时(﹣2)0=1,故①错误,从而排除选项A和C;由于选项B和D均含有②④,故只需考查③∵(a﹣b)2=(a+b)2﹣4ab=102﹣4×2=92∴a﹣b=±,故③错误.故选:D.4.解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.5.解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C.6.解:(x+y+z)2﹣(﹣x+y+z)2+(x﹣y+z)2﹣(x+y﹣z)2=(x+y+z﹣x+y+z)(x+y+z+x﹣y﹣z)+(x﹣y+z+x+y﹣z)(x﹣y+z﹣x﹣y+z)=2(y+z)×2x+2x×2(z﹣y)=4xy+4xz+4xz﹣4xy=8xz,故选:D.7.解:A、原式=b2﹣a2,本选项不合题意;B、原式=﹣(m2+n2)2,本选项符合题意;C、原式=q2﹣p2,本选项不合题意;D、原式=4x2﹣9y2,本选项不合题意,故选:B.8.解:A、因为正方形图案面积从整体看是64,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=64,故此选项正确;B、因为正方形图案的边长8,同时还可用(x+y)来表示,故此选项正确;C、中间小正方形的边长为3,同时根据长方形长宽也可表示为x﹣y,故此选项正确;D、根据A、B可知x+y=8,x﹣y=3,则x2﹣y2=(x+y)(x﹣y)=24,故此选项错误;故选:D.9.解:设拼成后大正方形的边长为x,则a2+4ab+4b2=x2,则(a+2b)2=x2,∴x=a+2b,故选:C.10.解:由题意得,(1),解得x=﹣1;(2)x﹣1=1,解得x=2;(3),此方程组无解.所以x=﹣1或2.故选:B.11.解:∵102•10n﹣1=106,∴102+n﹣1=106,∴2+n﹣1=6,解得n=5,故答案为:5.12.解:∵a m=8,a n=2,∴a m﹣2n=a m÷a2n=a m÷(a n)2=8÷22=2,故答案为:2.13.解:4块A的面积为:4×m×m=4m2;2块B的面积为:2×m×n=2mn;1块C的面积为n×n=n2;那么这三种类型的砖的总面积应该是:4m2+2mn+n2=4m2+4mn+n2﹣2mn=(2m+n)2﹣2mn,因此,少2块B型地砖,故答案为:2.14.解:∵(a+b)2=1,(a﹣b)2=49,∴a2+2ab+b2=1,a2﹣2ab+b2=49,两式相减,可得4ab=﹣48,∴ab=﹣12.故答案为:﹣12.15.解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:由①+②得:x2+y2=18,∴,故答案为18.16.解:∵4y2﹣my+25是一个完全平方式,∴(2y)2±2•2y•5+52,即﹣my=±2•2y•5,∴m=±20,故答案为:±20.17.解:根据题意得,长方形的宽为(a+4)﹣(a+1)=3,长方形的长为a+4+a+1,则拼成得长方形的周长为:2(a+4+a+1+3)=2(2a+8)=4a+16.故答案为:4a+16.18.解:根据0指数的意义,得当x+2≠0时,x+5=0,解得x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故填:﹣5或﹣1或﹣3.19.解:(1)2★5=102×105=107,3★17=103×1017=1020;(2)a★b与b★a的运算结果相等,a★b=10a×10b=10a+bb★a=10b×10a=10b+a,∴a★b=b★a.20.解:原式=4x6m﹣9x2m=4(x2m)3﹣9x2m=4×23﹣9×2=14.21.解:(1)∵3m=6,9n=2,∴32m﹣4n+1=32m÷34n×3=32m÷(32)2n×3=32m÷92n×3=(3m)2÷(9n)2×3=36÷4×3=27;(2)∵10m=20,10n=,∴10m÷10n=20÷=100,即10m﹣n=100,∴m﹣n=2,∴9m÷32n=9m÷9n=9m﹣n=81.22.解:(mx2+2mx﹣1)(x m+3nx+2)=mx m+2+3mnx3+2mx2+2mx m+1+6mnx2+4mx﹣x m﹣3nx ﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8.75.23.解:(1)(2a+b)(a+2b)=2a2+5ab+2b2;(2)恒等式是(a+2b)(a+b)=a2+3ab+2b2,如图所示.(答案不唯一)24.解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.25.解:(1)根据图形可观察出:阴影部分的边长为a﹣b;故答案为:a﹣b;(2)①小正方的边长为a﹣b,面积可表示为:(a﹣b)2,大正方形的面积为:(a+b)2,四个矩形的面积和为4ab,所以小正方形面积可表示为:(a+b)2﹣4ab;故答案为:(a﹣b)2,(a+b)2﹣4ab;(3)由题可得:(a﹣b)2=(a+b)2﹣4ab;故答案为:(a﹣b)2=(a+b)2﹣4ab;(4)由(3)可求出(a﹣b)2=(a+b)2﹣4ab=62﹣4×7=8,∴a﹣b=±2.26.解:(1)由图形可得等式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;故答案为:(a+b+c)2,a2+b2+c2+2ab+2bc+2ac;(2)∵a=7x﹣5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37,∴2ab+2bc+2ac=(a+b+c)2﹣(a2+b2+c2)=(7x﹣5﹣4x+2﹣3x+4)2﹣37=12﹣37=1﹣37=﹣36.∴ab+bc+ac=﹣18。

2022年鲁教版(五四)六年级数学下册第六章整式的乘除综合测评试题(含详细解析)

2022年鲁教版(五四)六年级数学下册第六章整式的乘除综合测评试题(含详细解析)

六年级数学下册第六章整式的乘除综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知3m =a ,3n =b ,则33m +2n 的结果是( )A .3a +2bB .a 3b 2C .a 3+b 2D .a 3b ﹣22、下列计算结果正确的是( )A .a +a 2=a 3B .2a 6÷a 2=2a 3C .2a 2•3a 3=6a 6D .(2a 3)2=4a 63、下列运算正确的是( )A .a 2+a 4=a 6B .(a 2)3=a 8C .(3a 2b 3)2=9a 4b 6D .a 8÷a 2=a 4 4、最小刻度为0.2nm (91nm 10m -=)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为( )A .9210m -⨯B .11210m -⨯C .9210m -⨯D .10210m -⨯ 5、计算()22a b --得( )A .2244a ab b ++B .2244a ab b -+C .2224a ab b ---D .2244a ab b ---6、下面计算正确的是( )A .339x x x ⋅=B .4322a a a ÷=C .222236x x x ⋅=D .()2510x x = 7、下列运算正确的是( )A .a 2+a 4=a 6B .22122a a -=C .(﹣a 2)•a 4=a 8D .(a 2b 3c )2=a 4b 6c 28、观察下列各式:(x ﹣1)(x +1)=x 2﹣1;(x ﹣1)(x 2+x +1)=x 3﹣1;(x ﹣1)(x 3+x 2+x +1)=x 4﹣1;(x ﹣1)(x 4+x 3+x 2+x +1)=x 5﹣1;…,根据上述规律计算:2+22+23+…+262+263=( )A .264+1B .264+2C .264﹣1D .264﹣2 9、若()()2224x ax x ++-的结果中不含x 项,则a 的值为( )A .0B .2C .12D .-210、下列运算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .2a •3a =6a 2D .(a ﹣b )2=a 2﹣ab +b 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知11233515x x x ++-⋅=,则x =________.2、312m =,36n =,则3n m +=__________.3、一种花的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为_____.4、医用外科口罩的熔喷布厚度为0.000156米,将0.000156用科学记数法表示为 _____.5、已知实数,,a b c 满足22218,618a b ab c c +==++,则2b a a b+=___________. 三、解答题(5小题,每小题10分,共计50分)1、请阅读下列材料:我们可以通过以下方法求代数式2813x x ++的最小值. ()2222281324441343x x x x x ++=+⋅⋅+-+=+-∵()240x +≥∴当x =-4时,2813x x ++有最小值-3请根据上述方法,解答下列问题:(1)()22222610233310x x x x x a b ++=+⋅⋅+-+=++,则a =______,b =______;(2)求证:无论x 取何值,代数式25x ++的值都是正数:(3)若代数式2227x kx -+的最小值为4,求k 的值.2、计算:(x +2)(x ﹣3)+(x ﹣1)2.3、(1)计算:0120222--(2)化简:()223412a a a a a --⋅-÷ 4、计算:(1)()32332216xy y x y ⋅⋅;(2)()()1352a a a a a ⎡⎤+--÷⎣⎦5、计算:﹣12020+(2021﹣π)0+(﹣3)﹣1+(13)﹣2﹣(﹣23).-参考答案-一、单选题1、B【解析】【分析】逆用同底数幂的乘法和幂的乘方法则计算.【详解】解:∵3m =a ,3n =b ,∴33m +2n =33m ×32n =()()3233m n ⋅=()()3233m n ⋅= a 3b 2, 故选B .【点睛】本题考查了同底数幂的乘法和幂的乘方运算的的逆运算,熟练掌握幂的运算法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.2、D【解析】【分析】根据合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方法则逐项分析即可.【详解】解:A. a 与a 2不是同类项,不能合并,故不正确;B. 2a 6÷a 2=2a 4,故不正确;C. 2a 2•3a 3=6a 5,故不正确;D. (2a 3)2=4a 6,正确;故选D.【点睛】本题考查了合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方运算,熟练掌握运算法则是解答本题的关键.3、C【解析】【分析】由合并同类项可判断A ,由幂的乘方运算可判断B ,由积的乘方运算可判断C ,由同底数幂的除法运算可判断D ,从而可得答案.【详解】解:24,a a 不是同类项,不能合并,故A 不符合题意;()632,a a = 故B 不符合题意; 2234639,a b a b 故C 符合题意;826,a a a 故D 不符合题意;故选C【点睛】本题考查的是合并同类项,幂的乘方运算,积的乘方运算,同底数幂的除法,掌握以上基础运算是解本题的关键.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示这一最小刻度为2×10-10m ,故选:D .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、A【解析】【分析】变形后根据完全平方公式计算即可.【详解】解:()22a b -- =()2+2a b=2244a ab b ++,故选A .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.【解析】【分析】利用同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等运算法则分别计算,判断即可.【详解】解:A 、336x x x ⋅=,原式计算错误,不符合题意;B 、4322a a a ÷=,原式计算错误,不符合题意; C 、2242?36x x x =,原式计算错误,不符合题意;D 、()2510x x =,计算正确,符合题意;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等知识点,熟练掌握相关运算法则是解本题的关键.7、D【解析】【分析】由题意合并同类项原则和积的乘方以及幂的乘方和负指数幂运算逐项进行运算判断即可.【详解】解:A. 无法合并同类项,故本选项运算错误; B. 2222a a -=,故本选项运算错误; C. (﹣a 2)•a 4=6a -,故本选项运算错误;D. (a2b3c)2=a4b6c2,故本选项运算正确.故选:D.【点睛】本题考查整式加法和积的乘方以及幂的乘方和负指数幂运算,熟练掌握相关运算法则是解题的关键.8、D【解析】【分析】先由规律,得到(x64﹣1)÷(x﹣1)的结果,令x=2得结论.【详解】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:D.【点睛】本题考查了平方差公式、及数字类的规律题,认真阅读,总结规律,并利用规律解决问题.9、B【解析】【分析】先根据多项式乘以多项式法则展开,合并同类项,由题可得含x的平方的项的系数为0,求出a即可.【详解】解:(x 2+ax +2)(2x -4)=2x 3+2ax 2+4x -4x 2-4ax -8=2x 3+(-4+2a )x 2+(-4a +4)x -8,∵(x 2+ax +2)(2x -4)的结果中不含x 2项,∴-4+2a =0,解得:a =2.故选:B .【点睛】本题考查了多项式乘以多项式,能熟练地运用法则进行化简是解此题的关键.10、C【解析】【分析】分别根据同底数幂的除法运算法则,积的乘方与幂的乘方运算法则,单项式乘以单项式运算法则以及完全平方公式对各项分别计算出结果再进行判断即可.【详解】解:A 、1239a a a ÷=,原选项计算错误,故不符合题意;B 、()326327a a =,原选项计算错误,故不符合题意;C 、2236a a a ⋅=,原式计算正确,故符合题意;D 、222()2a b a ab b -=-+,原选项计算错误,故不符合题意;故选:C .【点睛】此题主要考查了同底数幂的除法,积的乘方与幂的乘方,单项式乘以单项式以及完全平方公式,熟练掌握相关运算法则是解答此题的关键.二、填空题1、4【解析】【分析】逆用积的乘方得到一元一次方程,求解方程即可得到x 的值.【详解】解:∵11233515x x x ++-⋅=∴123(35)15x x +-⨯=,即1231515x x +-=∴123x x +=-解得,4x =故答案为:4【点睛】本题主要考查了积的乘方逆运用以及解一元一次方程,熟练掌握积的乘方的性质是解答本题的关键. 2、72【解析】【分析】根据逆用同底数幂的乘法,计算即可.【详解】解:∵312m =,36n =,∴3n m +=1263723m n ⨯=⨯=故答案为:72【点睛】本题考查了同底数幂的乘法,掌握同底数幂的乘法是解题的关键.3、4⨯6.510-【解析】【分析】用科学记数法表示绝对值小于1的正数时,一般形式为10n⨯,指数中的n由原数左边起第一个不a-为零的数字前面的0的个数所决定.【详解】解:0.00065=4⨯.6.510-故答案为:4⨯.6.510-【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、1.56×10﹣4【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000156=1.56×10﹣4.故答案为:1.56×10﹣4.【点睛】本题考查了科学记数法,解题关键是熟练掌握绝对值小于1的数用科学记数法表示的方法. 5、3【解析】【分析】由22218,618a b ab c c +==++可得222221218,a ab b c c 再利用非负数的性质求解a b =且,a b 都不为0,从而可得答案.【详解】 解: 22218,618a b ab c c +==++, 2221236,ab c c222221218,a ab b c c22230,a b c0,30,a b c,3,a b c9,ab 则,a b 都不为0,2123,b a a b∴+=+= 故答案为:3.【点睛】本题考查的是非负数的性质,完全平方公式的应用,熟练的构建非负数之和为0的条件是解本题的关键.三、解答题1、 (1)3;1(2)见解析(3)k =【解析】【分析】(1)将2610x x ++配方,然后与22610()x x x a b ++=++比较,即可求出a 、b 的值;(2)先利用完全平方公式配方,再根据偶次方的非负性列式求解;(3)二次项系数为1的二次三项式配方时,常数项为一次项系数一半的平方,故先将代数式提取公因数2,再配方,然后根据2227x kx -+的最小值为4,可得关于k 的方程,求解即可.(1)解:22610(3)1x x x ++=++而22610()x x x a b ++=++所以a =3,b =1故答案为:3;1(2)解:∵25x ++22225x x =++-+(22x =+无论x 取何值,(20x ≥,∴(2022x +≥>∴无论x 取何值,代数式25x ++的值都是正数.(3)解:2227x kx -+22()7x kx =-+2222()()722k k x kx ⎡⎤=-+-+⎢⎥⎣⎦ 222()722k k x =--+ ∵代数式2227x kx -+有最小值4 ∴2742k -+= ∴26k =∴k =【点睛】本题考查了配方法在最值问题与证明题中的应用,明确如何配方并读懂材料中的方法是解题的关键,配方法属于重要的运算方法之一,需熟练掌握.2、2x 2-3x -5【解析】【分析】根据多项式乘多项式的运算法则以及完全平方公式计算即可.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:原式=x 2-3x +2x -6+x 2-2x +1=2x 2-3x -5.【点睛】本题考查了整式的混合运算,掌握相关公式与运算法则是解答本题的关键.3、(1)12;(2)453a a -【解析】【分析】(1)根据负整数指数幂、零指数幂可以解答本题;(2)根据幂的乘方和同底数幂的乘除法可以解答本题.【详解】解:(1)0120222--11122=-=; (2)()223412a a a a a --⋅-÷4454a a a =--453a a =-.【点睛】本题考查了幂的乘方、同底数幂的乘除、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.4、 (1)128x 6y 11(2)-a +8【解析】【分析】(1)原式首先计算积的乘方和幂的乘方,最后计算单项式乘以单项式即可得到答案;(2)原式先根据单项式乘以多项式法则去掉小括号,再根据多项式除以单项式运算法则进行计算即可.(1)()32332216xy y x y ⋅⋅=()3332332216x y y x y ⨯⨯⋅⨯=33326816x y y x y ⋅⨯=161128x y ;(2) ()()1352a a a a a ⎡⎤+--÷⎣⎦=22(+3+15)2a a a a a -÷=2(2+16)2a a a -÷=222+162a a a a -÷÷=-a +8【点睛】本题主要考查了整式的运算,熟练掌握运算法则是解答本题的关键.5、2163. 【解析】【分析】先计算乘方、零指数幂、负整数指数幂,再计算加减法即可得.【详解】 解:原式111()9(8)3=-++-+--1983=-++216.3【点睛】本题考查了乘方、零指数幂、负整数指数幂等知识点,熟练掌握各运算法则是解题关键.。

鲁教版六下数学-第六章整式的乘除综合测评(一)

鲁教版六下数学-第六章整式的乘除综合测评(一)

第六章整式的乘除综合测评(一)(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1. 【导学号84900176】计算2x·(-3x)的结果是( )A.-6xB.-xC.-6x2D.6x22.【导学号84900177】一个铁原子的直径大约是0.000 000 012 5厘米,则数据0.000 000 012 5 用科学记数法可表示为()**×10-8 B.1.25×108 C.1.25×10-7 D.1.25×10-93. 【导学号84900178】下列计算正确的是( )**+34=37 B.34-32=32 C.32×34=38 D.34÷32=324. 【导学号84900179】下列多项式的乘法,可以用平方差公式计算的是()A.(a-2b)(2a-b)B.(a-2b)(-a-2b)C.(a+2b)(-a-2b)D.(-a+2b)(a-2b)5. 【导学号84900180】-2a2bc×□=-6a6b2c,则□内应填的代数式是 ( )6.** B.-3a3b C.3a4b D.-3a4b【导学号84900181】用“<”将数据30、3-1、-3-、131-⎪⎭⎫⎝⎛连接起来,其中正确的是()**<3-1<-<B.-3-<3-1<30<131-⎪⎭⎫⎝⎛**<-<30<D.131-⎪⎭⎫⎝⎛<30<3-1<-3-7.【导学号84900182】若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的周长为()**+4b+1 B.2a+4b C.4a+4b+1 D.8a+8b+28. 【导学号84900183】小虎在利用完全平方公式计算时,不小心用墨水将式子中的两项染黑:(2x+ )2=4x2+12xy+ ,则被染黑的最后一项应该是()9.** B.9y C.9y2 D.36y2【导学号84900184】若(x-1)(x-m)=x2-4x+m,则m的值为()A.-3B.3C.-5D.510.【导学号84900185】若2x+y+2=0,则9x ×3y -90的值为( ) A.-10 B.-98 C.91 D.98 二、填空题(本大题共8小题,每小题4分,共32分)11. 【导学号84900186】若长方形长为a 3,面积为a 5,则该长方形的宽为________.12. 【导学号84900187】计算:-2xy(x 2y-3xy 2)=___________.13. 【导学号84900188】若(m-2)0无意义,则代数式(-m 2)3的值为_________.14. 【导学号84900189】若-24a 3b 2c ÷ma 2b=-3abc,则m 的值为_______.15. 【导学号84900190】若代数式41x 2-kxy+9y 2是完全平方式,则k 的值为_______. 16. 【导学号84900191】若a ,b 满足a+b=-2,a 2-b 2=8,则a-b=_________.17. 【导学号84900192】已知m+n=-3,mn=2,则m 2+n 2=________.18. 【导学号84900193】已知x 2-y 2=-5,则代数式(x+y)3•(x-y)3的值为_______.三、解答题(本大题共5小题,共58分)19. 【导学号84900194】(每小题4分,共16分)计算:(1)8a 2×a 4÷a 3-6a 3;(2)[(-2x 2y 3)2+6x 3y 4]÷(-2x 2y 2);(3)9.5×10.5;(4)982-10 000.20. 【导学号84900195】(8分)先化简,再求值:(x-1)(3x-1)-(x+1)2-2x 2,其中x=5-1.21. 【导学号84900196】(10分)如图1,在一块正方形的钢板中挖去两个边长分别为a,b的小正方形.(1)求剩余钢板的面积;(2)若原钢板的周长是40,且a=5,求剩余钢板的面积.22. 【导学号84900197】(10分)地球的质量约为5.98×1027千克,月球的质量约为7.20×1022千克,太阳的质量约为1.98×1030千克.(1)地球的质量约是月球质量的多少倍?(结果保留到0.1)(2)地球、月球的质量的乘积约是太阳质量的多少倍?(结果保留到0.1)23. 【导学号84900198】(14分)若a为任意自然数,多项式(a-4)2+a2-2a(a-8)的值能否被8整除?附加题(15分,不计入总分)24. 【导学号84900199】观察下列等式:4-0=4;9-1=8;16-4=12;25-9=16;36-16=20;…这些等式反应出自然数之间的某种规律.设n是自然数,试用关于n的等式表示出你所发现的规律,并用整式的运算加以说明.第六章整式的乘除综合测评(一)一、1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.C 9.B 10.B二、11.a2 12.-2x3y2+6x2y3 13.-64 14.8 15. 3 16.-4 17.5 18.-125三、19.解:(1)原式=8a2+4-3-6a3=8a3-6a3=2a3.(2)原式=(4x4y6+6x3y4)÷(-2x2y2)=4x4y6÷(-2x2y2)+6x3y4÷(-2x2y2)=-2x2y4-3xy2.(3)原式=(10-0.5)(10+0.5)=102-0.52=100-0.25=99.75.(4)原式=(100-2)2-10 000=1002-2×2×100+22-10 000=10 000-400+4-10 000=-396.20. 解:原式=3x 2-4x+1-x 2-2x-1-2x 2=-6x.当x=5-1=51时,原式=-6×51=-56. 21.(1)剩余钢板的面积=(a+b)2-(a 2+b 2)=a 2+b 2+2ab-a 2-b 2=2ab.(2)因为原钢板的周长是40,所以a+b=10.因为a=5,所以b=10-a=5.所以剩余钢板的面积=2×5×5=50.22. 解:(1)(5.98×1027)÷(7.20×1022)≈8.3×104.所以地球的质量约是月球质量的8.3×104倍.(2(5.98×1027×7.20×1022)÷(1.98×1030)≈2.2×1020.所以地球、月球的质量的乘积约是太阳质量的2.2×1020倍.23. 解:能.(a-4)2+a 2-2a (a-8)=a 2-8a+16+a 2-2a 2+16a=8a+16=8(a+2),因为a 为任意自然数,所以a+2一定是正整数,所以8(a+2)一定是8的倍数,故(a-4)2+a 2-2a (a-8)的值能被8整除.24.解:规律:(n+2)2-n 2=4(n+1).理由如下:因为左边=(n+2)2-n 2=n 2+4n+4-n 2=4n+4=4(n+1),右边=4(n+1),所以左边=右边.。

第六章整式的乘除 综合练习题 2022—2023学年鲁教版(五四制)数学六年级下册

第六章整式的乘除 综合练习题 2022—2023学年鲁教版(五四制)数学六年级下册

第六章 整式的乘除综合练习题一、选择题:1、计算a ²· a 的结果是 ( )A.a ²B.a ³C.aD.2a ²2、① a 2n ⋅a n =a 3n ;② 22×33=65;③ 32×32=81;④ a 2⋅a 3=5a ;⑤ (−a )2⋅(−a )3=a 5 中,计算正确的式子有 ( )A . 4 个B . 3 个C . 2 个D . 1 个3、计算﹣(3x 3)2的结果是( )A .9x 5B .9x 6C .﹣9x 5D .﹣9x 64、下列各式中,正确的有( )A .a 3+a 2=a 5B .2a 3•a 2=2a 6C .(﹣2a 3)2=4a 6D .﹣(a ﹣1)=﹣a ﹣15、计算(a 2)3-5a 3·a 3的结果是( )A.a 5-5a 6B.a 6-5a 9C.-4a 6D.4a 66、已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A.ab 2B.a+b 2C.a 2b 3D.a 2+b 27、下列运算结果是a 6的是( )A .﹣(a 2)3B .a 3+a 3C .(﹣2a )3D .﹣3a 8÷(﹣3a 2)8、计算 (-a ²)³÷a ² 的结果是( )A.-a ⁴B.-a ³C.a ⁴D.a ³9、如果 a ³÷a ˣ⁻²=a ⁶,那么x 的值为 ( )A.-1B.1C.2D.310、20230×2﹣1等于( )A .107B .0C .D .﹣2022 11、若a =0.32,b =﹣3﹣2,c =(﹣)﹣2,d =(﹣)0,则( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b12、计算的结果是( ) A. B. C. D.2322)(xy y x -⋅105y x 84y x 85y x -126y x13、计算(-3x)·(2x2-5x-1)的结果是()A.-6x2-15x2-3x B.-6x3+15x2+3xC.-6x3+15x2 D.-6x3+15x2-114、t2-(t+1)(t-5)的计算结果正确的是 [ ]A.-4t-5 ; B.4t+5; C.t2-4t+5; D.t2+4t-5.15、下列运算正确的是()A.a4•a2=a8B.(2a3)2=4a6C.(ab)6÷(ab)2=a3b3D.(a+b)(a﹣b)=a2+b216、下列算式中不能利用平方差公式计算的是()A.(x+y)(x﹣y)B.(x﹣y)(﹣x﹣y)C.(x﹣y)(﹣x+y)D.(x+y)(y﹣x)17、若m2﹣n2=24,且m﹣n=4,则m+n等于()A.7 B.6 C.5 D.818、下列等式成立的是()A.(a-b)2=a2-ab+b2B.(a+3b)2=a2+9b2C.(a+b)2=a2+2ab+b2D.(x+9)(x-9)=x2 -919、若x2+2ax+36是一个完全平方公式展开式,则a的值是()A.6 B.±6 C.18 D.±1820、若(x+m)2=x2+kx+16,则m的值为()A.4 B.±4 C.8 D.±821、已知(x﹣1)2=2,则代数式x2﹣2x+5的值为()A.4 B.5 C.6 D.722、下列计算正确的是()A.x10÷x2=x5B.(x3)2÷(x2)3=xC.(15x2y﹣10xy2)÷5xy=3x﹣2yD.(12x3﹣6x2+3x)÷3x=4x2﹣2x23、一个长方形的面积为(2mn+3n)平方米,长为n米,则它的宽为()A.(2mn+2n)米B.(2mn2+3n2)米C.(2m+3)米D.(2mn+4n)米24、已知4y2+my+9是完全平方式,求(6m4﹣8m3)÷(﹣2m2)+3m2的值是()A.±48 B.±24 C.48 D.2425、下列各式运算:①﹣2x(x﹣3)=﹣2x2﹣6x,②(x﹣2)(x+3)=x2+x﹣6,③(﹣2x ﹣y)(2x﹣y)=4x2﹣y2,④(﹣a﹣b)2=a2﹣2ab+b2.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题1、若a⋅a3⋅a m=a8,则m=.2、若2x=3,2y=5,则2x+y=___________.3、已知3m=8,9n=2,则3m+2n=.4、计算:(﹣2)2021×(﹣3)2022×(﹣)2023=.5、计算202320222332⎛⎫⎛⎫⨯-⎪ ⎪⎝⎭⎝⎭的结果是___________.6、已知x a=4,x b=3,则x a−2b=____________.7、若2a-3b=2,则5²ᵃ÷5³ᵇ=________________.8、计算:=.9、若实数m,n满足|m﹣2|+(n﹣2023)2=0,则m﹣1+n0=.10、化简x2-(x+2)(x-2)的结果是___________.11、若a2﹣b2=18,a+b=6,则a﹣b=.12、计算:2021×2023﹣20222=.13、已知m2﹣kmn+4n2是一个完全平方式,则k=.14、若a2+b2=13,a﹣b=1,则ab的值是.15、若x2+2(m﹣3)x+16是完全平方式,则m的值等于.16、若x+y=5,则(x﹣y)2+4xy+1的值为.17、已知a﹣b=4,则a2﹣b2﹣8b的值为.18、(9a2﹣6ab)÷3a=.19、在有理数的原有运算法则中,我们定义新运算“@”如下:a@b=ab÷b2,根据这个新规定可知2x@(﹣3x)=.20、观察下列各式:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,…根据规律可得:(x ﹣1)(x 2023+x 2022+…+x +1)= .三、解答题:1、计算:(1)−x ⁵⋅x ²⋅x ¹⁰; (2)( -2)⁹(-2)⁸·( -2)³;(3)(m ⁴)²+m ⁵·m ³+(-m)⁴·m ⁴; (4)(-m ²)⁴·m-(m ³)²+(-m)²·m ⁴;(5)(-x ²)³÷(-x)²; (6) (-a)·(-a)⁷÷(a ²)³.(7) (-a)⁵·(-a ³)÷(-a)²; (8)(2a ²)³·(a ²)⁴÷(-a ²)⁵;(9)(10) (-3ab)·(-a 2c)·6ab 2. (11)(-4a)·(2a 2+3a-1).(12))23)(23()32)(32(n m n m n m n m +---+;(13))()())((2222a a b a b a -⋅---+;1012312023332---÷-+⨯)()()(π(14)(x﹣3y)(3x+2y)﹣(2x﹣y)2.(15)(x﹣2)2﹣x(x+4).2、化简,求值(1)(a+b)(2a-b)+(2a+b)(a-2b),其中a=-2,b=3(2)求(a+b)2-(a-b)2-4ab的值,其中a=2022,b=2023.(3)[(x+1)(x+4)﹣(3x﹣2)2]÷x,其中x=.(4)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=3,y=﹣3.(5)(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中x=2133、按要求完成下列各题:(1)已知4x =8,4y =32,求x +y 的值.(2) 已知 a 3⋅a m ⋅a 2m+1=a 25,求 m 的值(3)若x 2n =2,求(3x 3n )2﹣4(x 2)2n的值.(1)已知a m =2,a n =3,求a m +n 的值;a 3m ﹣2n 的值.(2)已知3×9m ×27m =321,(﹣m 2)3÷(m 3•m 2)(3)解方程3x(x+2)+(x+1)(x-1)=4(x 2+8).(7)计算:1)12()12)(12)(12)(12(64842++++++ .(8)已知m满足(3m﹣2023)2+(2022﹣3m)2=5.(1)求(2023﹣3m)(2022﹣3m)的值;(2)求6m﹣4045的值.4、数学活动课上,张老师准备了若干个如图①的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图②的大正方形.(1)观察图②,请你写出代数式(a+b)2,a2+b2,ab之间的等量关系是;(2)根据(1)中的等量关系,解决下列问题;①已知a+b=4,a2+b2=10,求ab的值;②已知(x﹣2020)2+(x﹣2018)2=52,求x﹣2019的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 整式的乘除综合测评
(满分:100分)
一、选择题(每小题3分,共30分) 1. PM2.5是指大气中直径小于或等于2.5 μm (0.000 002 5 m )的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物. 数据0.000 002 5用科学记数法可表示为 ( )
A. 2.5×10-6
B. -2.5×106
C. 2.5×10-7
D. 2.5×10-5
2. 若一个正方体的棱长为2×102,则该正方体的体积为 ( )
A. 6×106
B. 8×106
C. 6×108
D. 9×106
3.下列计算正确的是 ( )
A. a 3•a 2=a 6
B. (2x 5)2=2x 10
C. (-3)-2=9
1 D.(6×104)÷(-3×104)=0 4.若(-8x m y 3)÷(nx 2y )=-16x 3y 2,则m ,n 的值分别为 ( )
A. 6,21
B. 6,2
C. 5,2
1 D. 5,
2 5. 下列计算正确的是 ( )
A.(x-1)(x+2)=x 2-x-2
B.(x-1)(x-2)=x 2-2x+2
C.(x+1)(x+2)=x 2+2x+2
D.(x+1)(x-2)=x 2-x-2
6. 若a 2-2a-2=0,则(a-1)2的值为( )
A. 1
B. 2 C . 3 D. 4
7. 利用图1所示的两个图形的面积关系,可以验证的乘法公式是( )
A.(a+b )(a-b )=a 2-b 2
B. a 2-b 2=(a+b )(a-b )
C.(a-b )2=a 2-2ab+b 2
D.(a+b )2=a 2+2ab+b 2
8. 如图2,在一个长为3m+n ,宽为m+3n 的长方形地面上,四个角各有一个边长n 的正方形草坪,其中阴影部分为花坛,则花坛的面积为 ( )
A. 3m 2+10mn+n 2
B. 3m 2+10mn-n 2
C. 3m 2+10mn+7n 2
D. 3m 2+10mn-7n 2
9.计算(-4
5)2018×(-0.8)2017的结果是 ( ) A. 1 B. -1 C .-
54 D. -45 10. 已知a+b=3,ab=-4,有下列结论:①(a-b )2=25;②a 2+b 2=17;③a 2+b 2+3ab=5;a 2+b 2-ab=-3,其中正确的有 ( )
A. ①②③④
B. 仅①②③
C. 仅②③④
D. 仅①③④
二、填空题(每小题3分,共18分)
11. 若(m-2)0无意义,则m 的值为__________.
12. 【导学号47896876】计算(2×103)2×106÷1000=_________.
13. 如果单项式-2
1x 3y a+b 与6x 2a-b y 2是同类项,则这两个单项式的积为__________.
14. 已知梯形的上底长为2m+n ,高为2m ,面积为10m 2+6mn ,则梯形的下底长为_________.
a c -4x 2y 8x 6
15. 【导学号47896974】规定一种新运算: =ac÷bd ,则 =___________ b d -2x 3 -x
16. 若2x =5,2y =3,则4x-2y ×(-32)2=________.
三、解答题(共52分)
17.(每小题3分,共6分)用整式的乘法公式计算:
(1)10012-2000;
(2)5032×4931.
18.(每小题4分,共8分)计算:
(1)(m+1)(m-5)-m (m-6);
(2)(x-y+1)(x+y-1)-6x 2y 3÷3x 2y 2.
19.(8分)先化简,再求值:[(2x-y )2+(x+y )(x-y )-x (2y-x )]÷(-2x ),其中x=-1,y=-2.
20.(8分)在一节数学课上,刘老师请同学心里想一个非零的有理数,然后把这个数按照下面的程序进行计算后,刘老师立刻说出计算结果.
(1)小明同学心里想的数是8,列出了下面的算式,请你计算出最后的结果:[(8+2)2-(8-2)2]×(-25)÷8.
(2)小明又试了几个数进行计算,发现结果都相等,于是小明把心里想的这个数记作 a (a≠0),并按照程序通过计算进行验证,请你写出这个验证过程.
21.(10分)边长分别为a ,b 的两块正方形地砖按图3所示放置,其中点D ,C ,E 在同一条直线上,连接BD ,BF ,DF ,求阴影部分的面积.
22.(12分)观察以下等式:
(x+1)(x 2-x+1)=x 3+1;
(x+3)(x 2-3x+9)=x 3+27;
(x+6)(x 2-6x+36)=x 3+216;

(1)按以上等式的规律填空:(a+b )(_____________)=a 3+b 3.
(2)利用多项式的乘法法则,说明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y )(x 2-xy+y 2)-(x+2y )(x 2-2xy+4y 2).
附加题(20分,不计入总分)
24. (12分)若x 满足(9-x )(x-4)=4,求(4-x )+
(x-9)2的值.
解:设9-x=a ,x-4=b ,则(9-x )(x-4)=ab=4,a+b=9-x+x-4=5,
所以(9-x )2+(x-4)2=a 2+b 2=(a+b )2-2ab=52-2×4=17.
请仿照上面的解题思路求解下面问题:
(1)若x 满足(5-x )(x-2)=2,求(5-x )2+(x-2)2的值.
(2)如图4,已知正方形ABCD 的边长为x ,E ,F 分别是AD ,DC 上的点,且AE=1,CF=3,长方形EMFD 的面积是48,分别以MF ,DF 为边作正方形,求阴影部分的面积.
参考答案
一、1. A 2. B 3. C 4. C 5. D 6. C 7. A 8. B 9. D 10. B
二、11. 2 12. 4×109 13. -3x 6y 4
14. 8m+5n 15. -16x 4y 16. 25
三、17. 解:(1)原式=(1000+1)2-2000=10002+2000+1-2000=1 000 001. (2)原式=(50+32)(50-32)=502-(32)2=2500-94=249995.
18.解:(1)(m+1)(m-5)-m (m-6)=m 2-5m+m-5-m 2+6m=2m-5.
(2)(x-y+1)(x+y-1)-6x 2y 3÷3x 2y 2=[x-(y-1)][x+(y-1)]-2y=x 2-
(y-1)2-2y=x 2-y 2+2y-1-2y=x 2-y 2-1.
19. 解:原式=(4x 2-4xy+y 2+x 2-y 2-2xy+x 2)÷(-2x )=(6x 2-6xy )÷(-2x )=-3x+3y. 当x=-1,y=-2时,原式=-3×(-1)+3×(-2)=3-6=-3.
20.解:(1)原式=(100-36)×(-25)÷8=64×(-25)÷8=-200;
(2)根据题意得 [(a+2)2-(a-2)2]×(-25)÷a=8a×(-25)÷a=-200.
21. 解:S 三角形BDF =S 正方形ABCD +S 正方形CEFG -S 三角形DEF -S 三角形ABD -S 三角形BGF
=a 2+b 2-
21DE ·EF-21AB ·AD-21GF ·BG =a 2+b 2-
21(a+b )b-21a ·a-21b (b-a ) =a 2+b 2-
21ab-21b 2-21a 2-21b 2+2
1ab =21a 2. 22. 解:(1)a 2-ab+b 2
(2)(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+ba 2-ab 2+b 3=a 3+b 3.
(3)原式=(x 3+y 3)-(x 3+8y 3)=-7y 3.
附加题。

相关文档
最新文档