周期信号的分解与合成
周期信号的分解与合成

0引言
1 周期信号的分解
在《信号与 系 统 》课 程 中,信 号 分 解 与 合 成 的 思 想几乎贯穿了整个教材内容。如在连续系统的时域 分析中,连续信号分解为许多冲激信号的线性组合, 系统的响应可看作不同强度冲激信号产生的响应的 合成。同样连续系统的频域分析中,系统响应可看作 不同幅度虚指数信号产生的响应的合成。这种思想 是信号处理和系统分析与设计的重要基础。周期信 号分解与合成是信号和系统分析由时域向变换域转 换的转折点,它对于信号频谱特性的理解及系统频域 分析等都有着非常重要的作用。本文对三角形式傅 里叶级数中 周 期 信 号 的 分 解 与 合 成 进 行 介 绍,运 用 Matlab 软件对方波信号分解与合成进行仿真分析。
2011 年第 9 期
郗艳华: 基于 Matlab 周期信号的分解与合成
157
形式的傅里叶级数展开式。但( 1) 式中对于周期信
号中 n 次谐波分量的幅度和相位不是很明了,因此利
用三角函数化简得到:
∞
f( t) = A0 + n∑= 1An cos( nΩt + Φn )
( 2)
式中 An
=
槡a2n
T
∫2
-
T 2
f(
t)
dt
=
E T
,
an =
2 T
∫ -
T
2 T
2
f(
t)
cosnΩtdt
=
2nπEsin
nπ T
,
bn
=
2 T
T
∫2
-
T 2
f(
t)
sinnΩtdt = 0
周期矩形脉冲信号的傅里叶级数展开式为:
周期信号的分解与合成

T
f (t) 1
0
T
t
ak
2 T
T
2 T
f (t ) cos (k 0t)d t = 0
2
1
bk
2 T
T 2
T 2
f
(t ) sin(k0t ) dt
4 T
T
2 f (t ) sin(k0t ) dt 0
0
奇函数:直流分量和余弦项为零,正弦项不为零。
周期信号对称性与傅里叶系数的关系
周期信号对称性与傅里叶系数的关系
(3)f(t)为半波镜像信号
f (t)
f (t ) f t T 2
波形移动T/2后与原波形镜像对称
T
OT T
t
2
f(t)的傅氏级数中,仅含有奇次谐波,偶次谐波为零,即:
a0 a2 a4 0 b2 b4 0
周期信号对称性与傅里叶系数的关系
k 1
将上式同频率的正弦和余弦项合并,可写为:
其中
f (t) A0 A1 cos(0t 1 ) A2 cos(20t 2 )
f (t) A0 Ak cos(k0t k )
k 1
A0 a0
Ak
a
2 k
bk2
k
arctan
bk ak
周期信号用余弦形式的傅里叶级数表示
f (t) A0 Ak cos(k0t k )
例2求周期锯齿波的三角形式傅里叶级数展开式
f
(t)
A T
t
T 2
t
T 2
f(t)
A
2
T
0
解:
0,其他
T 2
TT
2
t
A
实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告⼈09光信2)实验四信号的分解与合成实验报告⼀、实验⽬的1、进⼀步掌握周期信号的傅⾥叶级数。
2、⽤同时分析法观测锯齿波的频谱。
3、全⾯了解信号分解与合成的原理。
4、掌握带通滤波器的有关特性测试⽅法及其选频作⽤。
5、掌握不同频率的正弦波相位差是否为零的鉴别和测试⽅法(李沙育图形法)。
⼆、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加⽽成的。
对周期信号由它的傅⾥叶级数展开式可知,各次谐波为基波频率的整数倍。
⽽⾮周期信号包含了从零到⽆穷⼤的所有频率成分,每⼀频率成分的幅度均趋向⽆限⼩,但其相对⼤⼩是不同的。
通过⼀个选频⽹络可以将信号中所包含的某⼀频率成分提取出来。
对周期信号的分解,可以采⽤性能较佳的有源带通滤波器作为选频⽹络。
若周期信号的⾓频率0w ,则⽤作选频⽹络的N种有源带通滤波器的输出频率分别是0w 、02w 、03w 、04w 、05w ....0N w ,从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。
把分离出来的各次谐波重新加在⼀起,这个过程称为信号的合成。
因此对周期信号分解与合成的实验⽅案如图2-7-1所⽰。
本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的⼀系列有源带通滤波器电路上。
从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应频率的正弦波。
本实验所⽤的被测周期信号是100Hz的锯齿波,⽽⽤作选频⽹络的7种有源带通滤波器的输出频率分别是100Hz、200Hz 、300Hz 、400Hz 、500Hz 、600Hz 、700Hz ,因⽽能从各有源带通滤波器的两端观察到基波和各次谐波。
按照锯齿波的傅⾥叶级数展开式如下所⽰:111111211111f(t)=[sin()sin(2)sin(3)sin(4)sin(5)sin(6)....]23456w t w t w t w t w t w t -+-+-+∏可知,锯齿波的1~7次谐波的幅度⽐应为 1111111::::::234567。
信系统非正弦周期信的分解与合成实验报告

信系统非正弦周期信的分解与合成实验报告实验报告:信号系统的非正弦周期信号的分解与合成一、实验目的:1.理解周期信号的概念和特点;2.学习如何分解一个非正弦周期信号的频谱成分;3.学习如何合成一个非正弦周期信号。
二、实验原理:1.傅里叶级数展开:任何周期信号都可以由一系列谐波分量叠加而成;2.傅里叶级数中的谐波分量:频率是整数倍的基频信号,基频信号频率为信号周期的倒数。
三、实验仪器:1.计算机;2. 数字信号处理软件(如MATLAB、Python等);3.数字音频信号采集卡(可选);4.电脑音箱或音频耳机。
四、实验步骤:1.将采集卡连接至计算机(若使用);2.打开信号处理软件,并导入需要处理的非正弦周期信号的音频文件;3.将音频信号从时域转换到频域,得到信号的频谱;4.分析频谱,找出频率成分较高的谐波分量;5.根据谐波分量的频率、振幅和初相位,计算每个谐波分量的波形;6.对所有谐波分量进行叠加,得到合成后的信号。
五、实验结果与讨论:1.实验结果:可以得到信号的频谱,并分析出频率较高的谐波分量;2.讨论:根据实验结果可以探讨信号的频谱结构、谐波的产生原理等,以及分析不同谐波分量对信号特性的影响;3.实验中还可以根据实际情况进行合理的参数选择,例如选择合适的采样率、截断频率等。
六、实验总结:通过本次实验,我们学会了如何分解一个非正弦周期信号的频谱成分,并根据谐波分量的频率、振幅和初相位计算每个谐波分量的波形。
同时,我们也学会了如何合成一个非正弦周期信号。
实验结果表明,通过傅里叶级数展开,我们可以准确地分解和合成周期信号,这对于理解信号的频谱结构、谐波的产生原理等有着重要的意义。
希望通过本次实验,同学们能对非正弦周期信号的分解与合成有更深刻的理解,并能够运用所学知识解决实际问题。
周期信号的合成与分解实验报告

subplot(221)
plot(t,y);
axis([0,0.05,-4,4]);
xlabel('time');
ylabel('前1 项有限级数');
y=0;
for i=1:10
y=y+sishu*(sin((2*i-1)*100*pi*t)/(2*i-1));
选取奇对称周期方波的周期T=0.02s,幅度E=6,请采用有限项级数替代无限项级数来逼近该函数。分别取前 1、10、50和200 项有限级数来近似,编写程序并把结果显示在一幅图中,观察它们逼近方波的过程。
MATLAB 程序如下:
%奇对称方波合成
t=0:0.00001:0.1;
sishu=12/pi;
1.实验目的
2.实验基本原理
3.主要仪器设备(含必要的元器件、工具)
一、实验目的
1.在理论学习的基础上,通过实验深刻领会周期信号傅里叶级数分解的物理意义。
2.理解实际应用中通常采用有限项级数来逼近无限项级数,此时方均误差随项数的增加而减小。
3.观察并初步了解 Gibbs 现象。
4.深入理解周期信号的频谱特点,比较不同周期信号频谱的差异。
周期信号的合成与分解实验报告
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
武汉大学教学实验报告
电子信息学院通信工程专业2017年9月14日
实验名称周期信号的合成与分解指导教师
姓名年级学号成绩
一、预习部分
y=0;
for i=1:10
y=y+sishu*(sin((2*i-1)*100*pi*t)/(2*i-1));
周期信号分解与合成

信号与线性系统课程设计报告课题1 周期信号分解与合成班级:姓名:学号:组号及同组人:成绩:指导教师:日期:题目:周期信号分解与合成摘要:本文主要利用多反馈带通滤波器的设计方法,设计五中不同中心频率的带通滤波器,分别对应于输入信号利用傅里叶级数展开后的基波分量频率、二次谐波分量频率、三次谐波分量频率、四次谐波分量频率、五次谐波分量频率,通过带通滤波器对原输入信号进行滤波将各个分量分开,实现信号的分解,利用加法器实现信号的合成,在设计时先采用Multisim 软件进行模拟电路设计及仿真,然后根据仿真结果进行元件参数的修改,当仿真结果比较理想后,进行硬件电路的调试。
关键词:周期信号,分解,合成,带通滤波器,加法器1课程设计的目的、意义本课题主要研究周期信号分解与合成的软硬件实现方法以及相关滤波器的设计及应用。
通过本课题的设计,主要达到以下几个目的:1.了解周期信号分解与合成电路的原理及实现方法。
2.深入理解信号频谱和信号滤波的概念,理解滤波器幅频响应和相频响应对信号的影响以及无失真传输的概念。
3.掌握模拟带通滤波器的原理与设计方法。
4.掌握利用Multisim软件进行模拟电路设计及仿真的方法。
5.了解周期信号分解与合成硬件电路的设计、制作、调试过程及步骤。
6.掌握新一代信号与系统实验系统及虚拟示波器、虚拟信号发生器的操作使用方法。
7.培养运用所学知识分析和解决实际问题的能力。
2 设计任务及技术指标本课题的任务包括周期信号分解与合成电路设计、电路(系统)仿真分析、电路板焊接、电路调试与测试、仿真和测试结果分析等内容,主要工作有:1. 采用有源带通滤波器,选择适当的滤波器参数,设计一个能分解出周期信号(周期信号基波频率在100Hz~2kHz之间自行选择)前5次谐波的电路,并用Multisim软件进行仿真验证和参数调整。
2. 列出所设计带通滤波器的系统函数,用Matlab软件分析其频率响应、时域响应,并与Multisim电路仿真的结果进行比较分析。
4.1_周期信号的分解与合成

4.1_周期信号的分解与合成周期信号是指具有一定周期的信号,它在某段时间内表现出相似的特征。
周期信号的分解和合成是信号处理领域中常用的基础操作,可以将复杂的信号分解成若干个简单的周期信号,或将多个简单的周期信号合成成一个复杂的周期信号,为后续的信号处理和分析提供基础。
周期信号的分解可以通过傅里叶级数展开实现,即将周期信号表达为一系列正弦函数和余弦函数的线性组合。
傅里叶级数展开的公式为:f(x) = a0 + Σ(An*cos(nω0*x) + Bn*sin(nω0*x))其中,a0、An、Bn分别表示直流分量、余弦项系数、正弦项系数,ω0表示基波角频率。
例如,对于周期为T的方波信号,可以通过傅里叶级数展开得到:其中,n为正整数,ω0为基波角频率。
展开后得到的式子是一系列正弦函数的和,它们的频率是基波频率的整数倍,每一项的振幅都有一定的规律。
这些项的和就可以表示出原始的方波信号。
同理,其他周期信号也可以通过傅里叶级数展开来进行分解。
周期信号的合成则是将多个周期信号组合起来,形成一个新的周期信号。
例如,可以将三角波信号和方波信号进行合成,得到一个新的复合信号:f(x) = (4/π)*∑([(-1)^n-1]/(2n-1)*sin((2n-1)ω0*x))+ (4/π)*∑sin(2nπ*x/T)/n其中,第一项为三角波信号的傅里叶级数展开形式,第二项为方波信号的傅里叶级数展开形式。
将上述两项相加即可得到合成信号的形式。
周期信号的分解和合成是信号处理中常用的基础操作,在信号分析和处理中具有重要的应用价值。
通过周期信号的分解和合成,可以有效地简化信号的处理和分析过程,为实际工程应用提供了基础支撑。
信号与系统实验(MATLAB 西电版)实验10 周期信号的合成与分解

逼近
t=-2:0.001:2;
%
N=20; c0=0.5;
f1=c0*ones(1,length(t)); %
for n=1:N %
f1=f1+cos(pi*n*t)*sinc(n/2);
end plot(t,f1); axis([-2 2 -0.2 0.8]);
方波的傅里叶级数逼近如图10.3
实验10 周期信号的合成与分解 图 10.3 方波的傅里叶级数逼近
实验10 周期信号的合成与分解
3) 用正弦信号的叠加近似合成一频率为50 Hz,幅值为3
MATLAB clear all;
fs=10000; t=[0:1/fs:0.1]; f0=50; sum=0; subplot(211) for n=1:2:9;
实验10 周期信号的合成与分解
plot(t,4/pi*1/n*sin(2*pi*n*f0*t),′k′); title(′信号叠加前′); hold on;
写出相应MATLAB
实验10 周期信号的合成与分解
五、
简述实验目的及原理,按实验步骤附上相应的信号波形
六、
(1) (2) 傅里叶级数分解有三种形式,请以另外两种形式重
(3) 若周期函数为奇谐波函数,重复上述实验,比较实 验结果。
end subplot(221); plot(t,xN) xlabel(′time′); ylabel(′approximation N′); axis([-2 2 -0.7 0.7]);
实验10 周期信号的合成与分解 2.
x(t)=
4
π n1
sin(2πnf0t)
1 n
n=1,3,5,…
Hale Waihona Puke 用前5项谐波近似合成一频率为50 Hz,幅值为3的方波,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一周期信号的分解与合成
一、实验目的
1.用同时分析法观测50Hz 非正弦周期信号的频谱。
2.观测基波和其谐波的合成。
二、实验原理
1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。
2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。
3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1
表1-1 各种不同波形的傅里叶级数表达式(下)
1.方波
2.三角波
3.半波
4.全波
5.矩形波
三、预习要求
在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。
四、实验内容
1. 50HZ方波信号的频谱。
2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi
3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。
4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。
五、思考题
1.什么样的周期性函数没有直流分量和余弦项?
附:
1. 50HZ方波信号的频谱。
>> w1= ; %基波角频率
>> n=0:1:30;
>>bn= ; %三角级数中系数bn,参考书p122
>> stem(n*w1,bn),grid on
>> xlabel('\omega(rad/s)'),ylabel('bn')
>> title('方波信号频谱分析图')
2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi
tao= ;
w1= ;
n=-15:1:15;
fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on
xlabel('n');
ylabel('Fn');
title('周期矩形脉冲的频谱图');
3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形
%发生的变化。
t=-1:0.001:1;
omega=2*pi;
y=square(2*pi*t,50);
plot(t,y);grid on
xlabel('t');
ylabel('周期方波信号');
axis([-1 1 -1.5 1.5]);
n_max=[1 3 5 11 47];
N=length(n_max);
for k=1:N
n=1:2:n_max(k);
b=4./(pi*n);
x=b*sin(omega*n'*t);
figure;
plot(t,y)
hold on;
plot(t,x);
hold off;
xlabel('t');
ylabel('部分和的波形');
axis([-1 1 -1.5 1.5]),grid on
title(['最大谐波数=',num2str(n_max(k))])
end
4. %使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形%发生的变化。
t=-2:0.001:2;
omega=pi;
y=rectpuls(t)+rectpuls(t-2)+rectpuls(t+2);
axis([-2.2 2.2 0 1.2]);
plot(t,y);grid on
xlabel('t');
ylabel('周期矩形脉冲信号');
axis([-2.2 2.2 -1.5 1.5]);
n_max=[1 3 5 11 47];
N=length(n_max);
for k=1:N
n=1:1:n_max(k);
a=2*sin(n*omega/2)./(n*pi);
x=a*cos(omega*n'*t);
x=x+1/2;
figure;
plot(t,y)
hold on;
plot(t,x);
hold off;
xlabel('t');
ylabel('部分和的波形');
axis([0 2 -1.5 1.5]),grid on
title(['最大谐波数=',num2str(n_max(k))])
end。