工业催化催化剂论文

合集下载

高效催化剂在工业催化反应中的应用

高效催化剂在工业催化反应中的应用

高效催化剂在工业催化反应中的应用催化剂是一种物质,它能够通过提供新的反应通道或降低反应的活化能,加速化学反应的速率,从而实现高效催化。

在工业催化反应中,高效催化剂是非常重要的,它不仅可以提高反应速率,还可以提高产物的选择性和收率。

本文将通过探讨几个工业催化反应的案例来介绍高效催化剂在工业中的应用。

首先,让我们来看看在合成氨过程中高效催化剂的应用。

合成氨是一种重要的化学原料,在农业领域中用于合成肥料。

该反应的催化剂是铁和钼的氧化物。

这种催化剂能够在相对较低的温度和压力下催化氮气和氢气的反应,生成氨。

这种催化剂不仅具有高效催化的能力,而且其催化剂床的设计和工艺参数也被优化,以保证生产过程的稳定性和连续性。

其次,我们来探讨高效催化剂在石化工业中的应用。

蒸汽重整是石化工业中非常重要的过程,它用于产生氢气,供应给氢气处理单元。

传统的重整催化剂是铬、镍和钼等的氧化物。

然而,这种催化剂存在着烧结和结焦的问题,导致其官能活性降低。

为了解决这个问题,石化工业引入了高效催化剂,如白金基催化剂。

白金基催化剂能够在较低温度下实现高效重整,同时还具有更好的结焦抑制能力。

除了以上两个案例,高效催化剂在其他工业催化反应中也有着广泛的应用。

例如,在有机合成领域中,高效催化剂的应用可以大大提升有机合成反应的速率和选择性。

比如,苯酚的氨甲基化反应是一种重要的有机合成反应,它可以合成介于芳香胺和邻氨基酚之间的化合物。

在这个反应中,高效催化剂如钯和镍催化剂在适当的条件下能够将苯酚和甲醛催化为目标产物。

这种催化剂不仅具有高催化活性,还能够提高产物的选择性,减少副产物的生成。

此外,高效催化剂在环境保护领域也发挥着重要的作用。

例如,汽车尾气中的氮氧化物(NOx)通常会导致空气污染和酸雨的生成。

通过使用高效催化剂,如钯和铂基催化剂,可以将NOx转化为无害的氮和水,从而有效减少尾气对环境的影响。

总结起来,高效催化剂在工业催化反应中具有广泛的应用。

工业催化工艺课程论文——聚烯烃反应过程中的催化剂及其发展状况资料

工业催化工艺课程论文——聚烯烃反应过程中的催化剂及其发展状况资料

聚烯烃反应过程中的催化剂及其发展状况研究背景随着我国经济建设的快速发展,我们对聚烯烃合成树脂材料特别是高性能聚烯烃产品的需求量正持续地增长,但目前国内的生产量远不及我们的需求量;与欧、美、日等国的聚烯烃的研发及产业化相比,我国起步晚了大约有10年之久,导致我国的催化技术基础比较薄弱。

而且我国生产的聚烯烃产品还存在产品结构不合理,中低档聚烯烃产品的比例过大,高性能聚烯烃产品却开发不足的一系列问题;同时我国又缺少具有自主知识产权的聚烯烃工艺生产技术以及对核心技术的开发;这些都是目前我国聚烯烃产业亟待解决的难题,我们需要有针对性地进行深入广泛地研发。

目前我国政府、工业界及学术界都将注意力着重放在加快对聚烯烃材料科学与技术的自主创新上,努力提高聚烯烃产品的性能,实现聚烯烃产品的结构优化,并把提高聚烯烃产品的合成技术与实现产品的专用化及功能化作为聚烯烃类产品下一步发展的重要目标。

近四十年来,世界各国的聚烯烃产业都有了飞速的发展,而这正是由于聚烯烃催化剂技术的研发取得了突破性进展,且它的发展和进步也最大程度地推动了其工业应用技术的快速发展以及聚烯烃理论的深入研究。

因此催化技术的研发是聚烯烃产品实现更新换代以及优化其性能的原动力,同时它也是拥有自主知识产权及研发核心技术的关键所在。

基于催化剂扮演的重要角色以及聚烯烃产业巨大的经济利益与社会需求,使烯烃聚合用催化剂研究领域中的竞争极其激烈。

1聚合反应1.1聚合反应的定义聚合反应是由单体合成聚合物的反应过程。

有聚合能力的低分子原料称单体,分子量较大的聚合原料称大分子单体。

若单体聚合生成分子量较低的低聚物,则称为齐聚反应(oligomerization),产物称齐聚物。

一种单体的聚合称均聚合反应,产物称均聚物。

两种或两种以上单体参加的聚合,则称共聚合反应,产物称为共聚物。

1.2 聚合反应的分类1929年,W。

H。

卡罗瑟斯按照反应过程中是否析出低分子物,把聚合反应分为缩聚反应和加聚反应。

工业催化期末论文

工业催化期末论文
(4)环保催化剂及技术研究
催化技术应用于化工生产和石油加工的污染控制以及能源转换工艺过程中效果良好,目前我国采用催化氧化、湿式氧化、光催化等先进技术的较少,主要是因为这些技术国内研究较少且仍处于实验室阶段,缺乏理论基础研究和工业化应用试验, “重点实验室”主要在这些方加强研究力度。
5、技术、科研状况
我国政府和行业主管部门已充分认识到催化在石油化学工业中的战略地位,十分重视催化研究,并进行了中长期研究开发战略部署,将一批基础研究项目列入了国家“八五”和“九五”的重点科技攻关计划项目。
3、研究方向和内容
.3.1研究方向
(1)新型催化剂的创制开发
跟踪国外研究方向,结合国情,以实现清洁生产为前提,主要开展高附加值化学品合成用催化剂的创制研究工作。
(2)催化反应过程强化技术的开发与应用
主要围绕以功能组合、反应—分离耦合和规整构件反应器等为基础的催化反应过程强化技术的开发,选取一批具有代表性的反应过程,如非稳态反应技术、超重力反应技术、微波催化技术等开展催化过程强化技术的攻关。
(3)催化剂制备共性技术及新型催化材料的开发与应用
主要围绕结构可控催化材料制备中的共性技术开发,选取一批具有代表性的反应过程开展催化新材料、制备技术的攻关,以满足国内生产之需要。
目前工业催化总体的发展趋势是:
(1)新型催化剂的研发与应用发展迅速
新型、高效催化剂的创制,是石油化学工业实现跨越式发展的基础。近几年来,国际上有关催化的研究中,近50%的工作围绕开发新型催化剂。此外,新型催化剂的开发与环境友好又密切相关,要求催化剂及催化技术要从源头消除污染。根据权威检索系统收录的研究论文数量,有关新型催化剂的报道自1990年至1999年至少增加了15倍,择形催化剂、均相络合催化剂、固体超强酸催化剂、膜催化剂、光学活性催化剂、纳米催化剂等各种新型催化材料已成为当前催化剂研究的热点。

工业催化-课程小论文(精)

工业催化-课程小论文(精)

重庆科技学院《工业催化》课程小论文题目 Ag基催化剂院 (系化学化工学院专业班级学生姓名学号指导教师冯建2013年 5 月 10 日Ag 基催化剂的研究进展摘要:本文主要叙述 Ag 基催化剂的发展概述、催化剂作用机理、制备方法和进展。

重点对银作为催化剂的催化机理和 Ag 催化剂的制备。

Ag 是一种历史悠久、应用广泛的催化剂 , 近几十年来 , 在制备、表征和改性等方面的研究进展 , 大大加深了对其物理性质和制备机理的了解。

关键词:Ag ,发展历史,机理,制备,发展1 Ag催化剂发展概述1.1 Ag催化剂的发展历史自从 1835年 Berzelius 提出催化作用概念后,催化学不断获得发展。

最早用 Ag 作为乙烯环氧化反应催化剂的是 Lefort ,其时是 1931年 [1]。

在此之前的研究者用多种组分作为乙烯环氧化反应的催化剂,唯有 Ag 对乙烯环氧化的催化效果最佳,至今 Ag 仍是乙烯环氧化反应催化剂中的主要组分。

在选定 Ag 作为乙烯环氧化反应催化剂的主要成分后,要提高环氧乙烷生成的选择性,必须对催化剂的制备方法和载体、助催化剂的添加、反应原料气的配比等诸多方面进行探索研究。

早期的 Ag 催化剂采用陶瓷载体,粘结法制备的陶瓷载体,由于其比表面积较小,制得的催化剂选择性、稳定性均不理想;后期 Ag 催化剂采用具有较佳孔结构和比表面积的氧化铝作为载体,使催化剂选择性的提高有了一个重要的前提条件。

Ag 是催化剂的主要成分,在催化剂中加入助催化剂可使催化剂的性能有效提高。

在 Ag 催化剂助催化剂的研究历史中, 研究较早较多的是 Se 助催化剂的性能。

在随后的研究中, Se 的同族元素碱金属及碱土金属、稀土金属、卤素及其他金属都显示出较好的助催性能。

广义的研究表明, 元素周期表中的所有元素都有助催性能,其中钙、钡、 Se 等是首选的助催剂元素。

助催剂的组成成分及其在催化剂中的含量等是 Ag 催化剂研究的重要组成部分。

工业催化论文

工业催化论文

催化剂的失活与再生发展研究摘要:本文首先简单的分析了催化剂失活的原因、阶段,随后着重陈述了由于催化剂的金属沉积、积碳及操作条件的改变造成了催化剂的失活过程,还对催化剂在使用过程中提出了改进建议,以及催化剂的再生机理和方法以及研究前景。

关键词:催化剂;失活;再生;发展前景。

Abstract: The reason of catalyst deactivation and its stage first were simply analyzed, and the process of catalyst deactivation as a result of metals deposition, carbon deposition and the change of the operating conditions was emphatically stated. And, some improvement proposals on the using of catalyst were put forward. And the solution of catalyst regeneration in furture.Keywords: catalyst; deactivation;regeneration;正文:化工生产中常使用大量各种各样的多相催化剂,来生产各种重要的化学产品。

由于种种原因,所用的催化剂常随使用时间的延长而失活。

失活速率受多种因素影响,如操作条件和原料纯度等,但在大多情况下,大部分失活都是由于催化剂表面烃(焦炭)层的缓慢积聚,覆盖了活性中心或者某些物质被强烈地吸附在活性中心上而引起的。

在这种情况下,失活是可逆的,即催化剂再生是可能的-------去掉焦炭层或者使被吸附的物质分解,活性就得到恢复。

一、催化剂的失活朱洪法【1】研究了固体催化剂的失活机理,认为主要存在以下几种失活原因:1. 中毒失活;2. 烧结失活( 比表面积减小) ;3. 积炭失活;4. 化合态、化学组成变化引起的失活。

新型催化剂在工业催化中的应用

新型催化剂在工业催化中的应用

新型催化剂在工业催化中的应用催化剂是一种用于增加化学反应速率、改善反应的选择性或使反应路径发生变化的物质。

因其能够大幅减少化学反应所需的能量和时间,催化剂被广泛应用于各种化学工业领域。

而新型催化剂则是指最近几年研发出来的、性能更加卓越、使用更加方便的催化剂。

本文将探讨新型催化剂在工业催化中的应用。

一、新型催化剂的研发背景随着化学工业的发展,对催化剂的性能提出了越来越高的要求。

新型催化剂因其性能更为优异,已经取代了一些传统催化剂并得到了广泛应用。

比如,在石化、煤化工、环保、医药和化妆品等领域,新型催化剂已经成为一种重要的工具。

二、新型催化剂的种类1. 纳米催化剂纳米催化剂是一种颗粒尺寸在纳米级别的催化剂。

与传统催化剂相比,纳米催化剂具有更高的比表面积和更好的活性,从而可以提高反应速率和选择性。

在石油化工和生化工领域中,纳米催化剂已经得到广泛应用。

2. 孔道催化剂孔道催化剂是一种在催化剂表面上形成孔道结构的催化剂。

这种催化剂具有更高的比表面积、更好的催化活性和选择性,并且可以缓解催化剂的失活。

孔道催化剂已在工业催化领域得到了广泛应用,尤其是在制备高附加值化学品方面。

3. 生物催化剂生物催化剂是利用生物体系来催化化学反应的催化剂。

这种催化剂具有选择性好、废物排放少、反应时间短、条件温和等优点。

在化学和医药工业领域中,生物催化剂已经应用于有机合成、药物制备等方面。

三、1. 石化工业石油化工行业是新型催化剂应用最广泛的领域之一。

新型催化剂已应用于苯乙烯、异戊二烯、MTBE等工业化学品的制备过程中。

2. 煤化工业煤化工行业是新型催化剂应用的另一个重要领域。

目前,优质润滑油和沥青的生产主要通过催化加氢实现。

在这一过程中,新型催化剂的应用可以提高反应速率和产品选择性。

3. 环保领域环保领域也是新型催化剂应用的一个重要领域,尤其是在空气和水污染治理方面。

新型催化剂可以对废气中的二氧化硫、氮氧化物、甲醛、苯等有害物质进行高效、低能、低污染的处理。

有关催化原理应用的小论文

有关催化原理应用的小论文

有关催化原理应用的小论文引言催化是化学反应中常用的一种方法,通过添加催化剂来提高反应速率和选择性。

催化剂通常是一种物质,能够参与反应但在反应结束后不会被消耗。

催化的原理和应用在化学工业中具有重要的意义。

本论文将着重介绍催化原理及其在实际应用中的例子。

催化原理催化原理是基于能量变化和活化能的概念。

基本上,催化剂通过降低反应的活化能,加速了反应的进行。

下面是催化原理的一些基本概念:1.催化剂与反应物之间的相互作用:催化剂可以与反应物发生物理和/或化学相互作用。

这些相互作用能够改变反应物的排列方式,降低反应的能垒,从而加速反应速率。

2.催化剂的活性位点:催化剂通常具有活性位点,反应物能够在这些位点上吸附并进行反应。

活性位点的数量和特性对催化的效果起着重要作用。

3.催化剂的再生:催化剂在反应过程中不会被消耗,而是通过与产物分离,或者通过与其他物质发生反应后重新获得活性。

催化的应用催化在化学工业中有广泛的应用。

以下是一些催化在实际应用中的例子:1. 壳聚糖酶催化酶解反应壳聚糖酶是一种常见的酶催化剂,在食品工业中应用广泛。

壳聚糖酶能够催化壳聚糖分子的酶解反应,将其分解成小分子的壳聚糖单体。

这一反应可以使壳聚糖在食品中的溶解性和生物利用率提高。

2. 贵金属催化剂在汽车尾气净化中的应用贵金属催化剂,如铂、钯等,被广泛应用于汽车尾气净化系统中。

这些催化剂能够催化氧化反应和还原反应,将有毒的气体,如一氧化碳和氮氧化物,转化为无害的物质。

这种催化剂具有高度的选择性和活性。

3. Ziegler-Natta催化剂在聚合反应中的应用Ziegler-Natta催化剂是一类用于聚合反应的重要催化剂。

它们通常由过渡金属化合物和有机铝化合物组成。

这种催化剂可以控制聚合反应的聚合度和分子量分布,制备出具有特定物理和化学性质的聚合物。

4. 硅胶催化剂在化学合成中的应用硅胶催化剂是一种固体酸催化剂,广泛应用于化学合成中。

它们能够催化酸碱中和反应、酯化和醚化等反应,从而高效地合成出目标化合物。

工业催化论文

工业催化论文

手性催化研究发展黄善青班级:09化工(2)班学号:09206040201摘要:不对称催化是有机化学的前沿领域和发展方向。

手性是自然界的基本属性之一。

构成生命体的有机分子绝大多数是不对称的,手性是三维物体的基本属性,如果一个物体不能与其镜像重合,就称为手性物体。

这两种形态称为对映体,互为对映体的两个分子结构从平面上看完全相同,但在空间上完全不同,如同人的左右手互为镜像,但不能完全重合,科学上称其为手性。

近年来,人们对单一手性化合物(如手性医药和农药等)及手性功能材料的需求推动了手性科学的蓬勃发展。

手性物质的获得,除了来自天然以外,人工合成是主要的途径。

外消旋体拆分、底物诱导的手性合成和手性催化合成是获得手性物质的三种方法,其中,手性催化是最有效的方法,因为他能够实现手性增殖。

一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。

2001年,诺贝尔化学奖授予了三位从事手性催化研究的科学家Knowles、Noyori 和Sharpless,以表彰他们在手性催化氢化和氧化方面做出的开拓性贡献,同时也彰显了这个领域的重要性以及对相关领域如药物、新材料等产生的深远影响。

关键字:手性催化催化剂影响引言:我国关于手性催化研究的进程与发展本文结合国际上手性催化研究的最新进展,主要回顾了我国科学家近年来在新型手性配体、金属配合物手性催化、生物手性催化、有机小分子手性催化、负载手性催化剂、以及新概念与新方法等方面取得的重要研究进展[4],并展望了手性催化的未来发展趋势。

一、手性催化结构与性能的关系虽然化学家们对各种类型的不对称反应以及许多手性催化剂进行了大量的研究,同时对未能发现的机理、影响对映选择性因素和过渡态模型的设计与近似计算也都做了大量的工作,但也没有找出其中的关键因素。

对不同的有机反应,手性配体需要什么样的结构与构型,使用何种金属或过渡金属才是最有效的等等一系列问题都值得进一步研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵金属催化剂的应用XXX(XXXX院,XX级应用化工技术XXX班衡阳421002)摘要:叙述贵金属催化剂在技术经济领域中的重要地位及其应用研究发展态势,井探讨汽车尾气净化用贵金属催化剂研究进展.关键词:贵金属,合金,汽车尾气,净化概述贵金属催化剂(precious metal catalyst)一种能改变化学反应速度而本身又不参与反应最终产物的贵金属材料。

几乎所有的贵金属都可用作催化剂,但常用的是铂、钯、铑、银、钌等,其中尤以铂、铑应用最广。

它们的d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。

贵金属催化剂对于国家的经济建设与环境和公众健康有着密切的关系。

如化学工业和石油加工业的发展均取擞于催化反应,全世界85%以上的化学工业都与催化反应有关。

1930—1980年初.美国化工部门63种主要产品与34种工艺过程的革新是由化学工业带来的,其中超过60%的产品与90%的过程是基于催化过程。

一个新的催化过程商业化需要大量的投资,时问长达10一15年,催化剂的研究促使这个时间滞后减至最小。

公众对于化学品与工业排放物对环境的污染及治理生存空间状况越来越关注,许多现代化的低成本且节能的环境技术是与催化技术相关的。

汽车尾气排放控制是国际性的战略问题.美国和部分欧洲国家此项催化剂得到了很好地发展和应用,某些国家也在符合排放的指令性指标之上还要求在本世纪末尾气排放减至1/10E 。

此外,有机废物的生物降解,土壤、污水和地下水污染物处理,净化石油污染物等都与贵金属催化剂密不可分。

现代减少化学品对环境损害的三大策略是:尽可能减少废弃物、废气排放减少和整治措施,贵金属催化剂在其中将发挥巨大作用。

简史1831年英国菲利普斯提出以铂为催化剂的接触法制造硫酸,到1875年该法实现工业化,这是贵金属催化剂的最早工业应用。

此后,贵金属催化剂的工业化应用层出不穷。

1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到本世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。

从1974年起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。

贵金属催化剂开发应用百余年(1875~1994年)来,其发展势头长盛不衰。

新的品种、新的制备方法、新的应用领域不断出现,有关基础理论也在不断完善。

随着科学技术的不断进步,贵金属催化剂将会在一些新领域中继续发挥重要作用。

当然,由于贵金属资源稀少、价格昂贵,人们也在不断研究开发非贵金属或低含量贵金属催化剂。

贵金属分类组成及制备方法按催化反应类别,贵金属催化剂可分为均相催化用和多相催化用两大类。

均相催化用催化剂通常为可溶性化合物(盐或络合物),如氯化钯、氯化铑、醋酸钯、羰基铑、三苯膦羰基铑等。

多相催化用催化剂为不溶性固体物,其主要形态为金属丝网态和多孔无机载体负载金属态。

金属丝网催化剂(如铂网、银网)的应用范围及用量有限。

绝大多数多相催化剂为载体负载贵金属型,如Pt/A12O3、Pd/C、Ag/Al2O3、Rh /SiO2、Pt-Pd/Al2O3、Pt-Rh/Al2O3等。

在全部催化反应过程中,多相催化反应占80%~90%。

按载体的形状,负载型催化剂又可分为微粒状、球状、柱状及蜂窝状。

均相催化剂的组成较单纯,通常为某种化合物。

多相催化用负载型催化剂的组成较复杂,通常由活性金属组分、助催化剂及载体组成。

助催化剂是添加到催化剂中的少量物质,它本身无活性或活性很小,但能改善催化剂的性能。

载体是催化剂活性组分的分散剂或支持物。

载体的主要作用是增加催化剂的有效表面,提供合适的孔结构,保证足够的机械强度和热稳定性。

常用的催化剂载体有Al2O3、SiO2,多孔陶瓷、活性炭等。

不同类型的催化剂有不同的制备方法。

均相催化用催化剂的制备主要是用化学法获得所需化合物及有机络合物。

多相催化用无载体催化剂(如Pt-RH网)的制备是先用火法熔炼制成合金,然后经拉丝、织网而成。

载体催化剂的制备较为复杂,一般是将载体原料经配料、成形、烧成等工艺过程加工成一定形状(如球状、柱状、蜂窝状),然后用浸渍法加载贵金属活性组分及助催化剂,最后经还原焙烧而成。

贵金属的催化特性贵金属催化剂在许多化学反应中得到应用,特别是铂族金属有高的催化活性。

1996年在亚特兰大召开的第l6届有机反应催化剂会议中,论述铂族金属催化剂的论文占70%_8J,贵金属催化剂为何有如此好的催化作用呢?贵金属属过渡金属元素,具有空的d能带轨道,从而具有对反应分子的亲电性、亲核性、氧化还原能力等性质,由于其多样性、多变性和在高活动性,通过配位体或其它金属离子的调变作用,使反应分子活化或活化了的分子吸咐而稳定下来,所以过渡金属是组成催化剂的组分元素,按照吸咐键不能太弱也不能太强的能量适应性原理,贵金属是最理想的催化剂。

贵金属多以载体催化剂的方式得以应用,即以Al2、活性C、SiO2等为载体,担载少量的贵金属作为催化剂。

贵金属以纯金属和合金形式作为催化剂的应用非常有限,本文谨对贵金属以纯金属或合金作为催化剂的应用和发展进行概述和探讨。

贵金属合金催化剂可分为(1)整块金属催化剂,即金属及合金以整体状态暴露于反应物中,其催化活性与金属特性以金属表面有着本质的联系,如金属丝网、金属蒸发膜等;(2)分散金属催化剂,即金属及合金以分散状态存在,如金属粉末、骨架催化剂、超薄金属蒸发膜等等。

催化剂以合金的形式替代单组分催化剂,除催化选择性好以外,还能够在较高温度或苛刻条件下保持活性或失活缓慢。

贵金属催化剂的应用贵金属催化剂以其优良的活性、选择性及稳定性而倍受重视,广泛用于加氢、脱氢、氧化、还原、异构化、芳构化、裂化、合成等反应,在化工、石油精制、石油化学、医药、环保及新能源等领域起着非常重要的作用。

一整块金属催化剂:(1)硝酸工业:硝酸是生产化肥、炸药、人造纤维、染料等的基本化工原料,铂族金属几乎是氨氧化唯一的催化剂,主要有Pt一10Rh(称标准催化剂)、Pt一4Pd一3、5Rh(称三元催化剂)、Pt—Pd—Itll—RE合金网状催化剂。

据不完全统计,1992年用于硝酸生产的铂催化剂美国为20t,西欧为2ol,全世界为52t。

我国1994年一1996年间为1—1.2t/a。

铂催化网合金在使用中不断得到改进,现已推出n—Pd—Rh—RE新型合金系列催化网,在保持催化活性的同时,减少Pt、RH的用量,降低催化剂成本。

铂催化剂的编织技术也有所改进,从70年代的经线二上一下与纬线交织的斜纹织网,到90年代针织网的推出;制备工艺也有改进,1987年美国Ettgelhard公司推出称HyliIe 的新型网,即在铂网上喷涂一层的可分解的含铂溶液,HyliIe网具有起燃温度低,产生Rh2O3量少,快速达到最佳活性的特点。

铂催化网在生产硝酸过程中,因高温(800~900T:)和气压(101~1010kPa)的作用,使Pt氧化挥发而损失.全世界硝酸工业每年无法回收的Pt:1740KG、Pax:156 、Pd:312KG我国为150—200ks,研究铂回收网成了热点,目前使用的回收网合金有Pd—Au、Pd—Rh、Pd—Ni、Pd—G0、Pd— Nj—RE,Pt的回收率达50%~80%不等,国际国内都在积极推广使用。

(2)氨合成:氨是生产氮肥必不可少的原料,合成氨工业在国民经济和化学工业中占有极其重要的位置,而所使用的催化剂又直接影响到合成氨的产量、能耗、成本等指标,通常使用的催化剂为Fe基氧化物。

英国BP公司和美国KL公司联合开发了Ru基氨合成催化剂,并设计了KAAP工艺(新型合成氨工艺),被认为是合成氨催化技术80年来所取得的真正根本性的突破,它具有投资小、转换率高、寿命长、产量高等优点,其Ru —Pd20含石墨碳体已形成工业化生产.(3)氢氰酸合成:制备氢氰酸使用Pt一10Rh合金网催化剂经天然气氧化制得,其使用条件与硝酸工业催化剂的使用相当,也使用Pd基金属网作为其捕集网。

单层的Pt一10Rh网还可用于乙烷、丙烷、丁烷、异丁烷的不完全氧化用催化剂.(4)醋酸合成:醋酸和醋酸酐是用于制造醋酸乙烯酯、醋酸纤维、药物、染料、农药的主要化学品,其使用的催化剂有羰基G0催化剂、Rh盐、Rh化合物和Ag金属丝网。

Ag 网工艺简单,活性高,目前多用此种催化剂.(5)汽车尾气净化:催化技术的最新发展是以环境保护这个方向为目标的,除去汽车尾气中的污染物是环境保护的重要目标。

以汽油内燃机和柴油机为动力的车辆,因燃料燃烧不完全,排出含有CO、NO,和碳氢化台物等有害气体,是造成城市污染的主要污染源,它制约着国家经济发展,并损害人类健康。

以前曾使用Pt—Pd—RlI、Pt—Rh、Pt—Pd、Pt—Ag合金丝网,Pt(合金)一Nb(合金)复合丝作为其催化剂_l (同时也作为硝酸工厂排出废气处理催化剂),目前这方面最先进的催化剂为Pt、Pt—RlI、Pt —Pd、Pd—RlI、Pt—Pd—Rh、Pt—Pd—Rh—RE (稀土)等合金相担载于蜂窝状氧化物载体上,形成氧化或氧化还原催化剂,使CO氧化成CO2,NO 还原成N2,碳氢化合物氧化成CO2和H2O.(6)燃料电池:这是将化学能转化为电能的装置,燃料电池的效率比火力发电高,具有无声、无污染、机动灵活等优点,其原理是借助催化剂的完全吸附、电子传送和表面反应来完成的。

最初用的贵金属催化剂为纯Pt,后来发展成为Pt/C负载型催化剂,以提高催化剂的比表面和使用效率。

近年来研究的合金催化剂不同程度地提高了催化活性、稳定性和使用寿命,如Pt—Cr/C、Pt—V/C、Pt—Fe—Co/C等。

二分散金属催化剂:(1)双氧水制备:双氧水是1种具有广泛用途的化工产品,工业生产用催化剂有内部涂有Pd黑的Al2O3管催化剂和负载Pd或Pt的催化剂,我国主要采用后者.(2)乙烯氧化制环氧乙烷:环氧乙烷是纤维、塑料的1种重要单体,在石油化工乙烯产品中,环氧乙烷的产量仅次于聚乙烯,居第二位,环氧乙烷是通过乙烯环氧化来制备的,骨架Ag或Ag系负载型催化剂是其过程中使用的唯一有效的催化剂。

在Ag组分中也加人Au,Au的配比对乙烯氧化的反应活性及环氧乙烷的选择性不同。

(3)甲醇氧化制甲醛:世界各国主要采用Ag催化剂使甲醇氧化脱氢制甲醛,Ag催化剂多数为颗粒状电解Ag,少数为浮石Ag。

使用浮石作催化剂,其工艺复杂,活性低,甲醇单耗高,并且伴有有害气体的放出;使用颗粒电解Ag作催化剂,其活性高,再生容易,工艺简便,Ag回收率高,无有害气体,目前多采用此种催化剂。

相关文档
最新文档