杨辉三角中的一些秘密(浙江省优质课一等奖)

合集下载

_杨辉三角中的一些秘密_教学设计_陈碧文

_杨辉三角中的一些秘密_教学设计_陈碧文

……
1 2 r n-1 C0 Cn n Cn Cn … Cn … C n n
r n-2 n-1 1 1 8 28 56 70 56 28 8 1 Cn0 - 1 Cn1 - 1 Cn2 - 1 … Crn - 1 Cn - 1 … C n - 1 Cn - 1
(2 )
】 导学案中已经为学生准备了两个杨辉 【 设计意图 三角,一个用数字表示,一个用组合数表示 . 笔者要 求学生从数字表示的杨辉三角中寻找规律,从组合数 表示的杨辉三角中总结规律,并加以证明 . 这体现了 “观察—归纳—猜想—证明”的数学研究理念,并且通 过小组合作的方式,既能降低探究的难度,也能培养 学生的合作意识,提高学生的学习兴趣. 4. 小组展示,分享所得 杨辉三角的性质. 角度 1: (1 )杨辉三角中每一行数的平方和都是杨 辉三角中的数.
取其中的 xn 项,
2 2 2 (C0 (C1 (Cn ) ] ·xn, 等式左边 =[ n) + n) + … + n
等式右边 = C2nn xn. 由于等式2 (C1 (Cn 即 (C0 n) + n) + … + n) = C2n .
(2 )杨辉三角每一行数字错一位叠加就得到 11 的
图1 图2
而二项式系数都可以写成组合数 . 从而我们就可以把 杨辉三角写成以下的形式,其中第 n 行第 r 个数可以
1 写成 an,r = Crn 如图 4 ) . -1 (
什么是数阵呢?将数字按照一定顺序组合成图形 就是数阵. 今天这节课,我们就一起来研究一下数阵 . 当然, 对于一个新的内容,我们需要一个研究的载体. 所以, 我们从一个特殊的三角数阵开始. 大家认识这个数阵 ( 如图 3 ) 吗?在古代,我们 称它为“开方作法本源图” . 而在现代,它还有另外一 个名字— ——杨辉三角.

1.杨辉三角中的秘密2.赵爽弦图中的不等式性质的再探究

1.杨辉三角中的秘密2.赵爽弦图中的不等式性质的再探究

课堂实录1.3.2“杨辉三角”中的一些秘密浙江省宁波市正始中学陈碧文人教版选修2-3第一章第三节课题:1.3.2“杨辉三角”中的一些秘密授课教师姓名及学校:陈碧文正始中学一:引经据典,步入新课师:(展示图片)今天这节课,我们从一幅图画开始,大家认识这两个图案吗?这是我们华夏传说中的河图、洛书。

“河出图,洛出书,圣人则之”,伏羲根据河图演绎了八卦,大禹依据洛书划分了九州。

由此可以说河图、洛书是我们华夏文化的起源。

可你们知道吗,河图、洛书其实也是世界上最古老的数阵。

什么是数阵呢?将数字按照一定顺序组合成图形就是数阵。

今天这节课,我们就一起来研究一下数阵。

当然,对于一个新的内容,我们需要一个研究的载体。

所以,我们从一个特殊的三角数阵开始。

大家认识这个数阵吗?(生:杨辉三角)在古代,我们称它为“开方作法本源图”。

而在现代,它还有另外一个名字——杨辉三角。

杨辉三角在整个数学史中扮演着重要的角色:北宋的贾宪用它手算高次方根;元朝的朱世杰用它研究高阶等差级数(垛积术);牛顿用它算微积分;华罗庚老先生思路更广,差分方程,无穷级数都谈到了。

那么,我们又能从杨辉三角中探寻到哪些秘密呢?让我们一起来研究一下。

二:复习回顾,总结已知师:杨辉三角在我们学习二项式系数的性质时已经有所接触。

那么,我们已经学习过杨辉三角的哪些性质呢?我请一位同学来回答一下。

学生1:杨辉三角中每一个数都是二项式系数。

贾宪在他的《开方作法本源图》中写道:“左衺乃积数,右衺乃隅算,中藏者皆廉”。

用今天的话来讲,就是说杨辉三角中的每一个数都是二项式系数,而二项式系数都可以写成组合数。

从而我们就可以把杨辉三角写成以下的形式,其中第n 行第r 个数可以写成11,--=r n r n C a :这对我们今天的研究非常重要。

师:还有吗?学生1:杨辉三角中每一个数都是两肩上数之和。

师:非常好!杨辉三角中每一个数都是两肩上数之和,用组合数表示就是:r n r n r n C C C =+---111,这个结论最早是由南宋时期的杨辉所发现的,所以称之为杨辉恒等式。

杨辉三角中的一些秘密(浙江省优质课一等奖)

杨辉三角中的一些秘密(浙江省优质课一等奖)

Cnr 1-1Cnr1- Cnr 杨辉恒等式 8
第 1行 1 第 2行 1 1 第 3行 1 2 1 第 4行 1 3 3 1 第 5行 1 4 6 4 1 第 6行 1 5 10 10 5 1 第 7行 1 6 15 20 15 6 1 第 8行 1 7 21 35 35 21 7 1 第 9行 1 8 28 56 70 56 28 8 1 第10行 1 9 36 84 126126 84 36 9 1
0 n
藏 ( a b ) n C n 0 a n C n 1 a n 1 b . C .n r a . n r b r . C .n n 1 . a n 1 C b n n b n
》者 贾皆 宪廉
杨辉三角中,第n行第r个数为
an,r
Cr1 n1
7
1
11
121
13 31
146 41
1 5 10 10 5 1
方衺 作乃
1
1C860 728C261156C35672.0..3.C5..5..663..21.C.28647
C1
8
5
61
C
6 6
法 本 源 图
,

算C

n1 0C1 n0Cn 1 1C n1 Cn 11 n 2 n1CC -C -1C nn 22 C1-n2..-.1...............n .r. .C1 .1 .-...n r .Cn.r.-.1n .1rnC .r1 C-C .nr.-..1.. ...C ...n n C 1 n n 2 - n1 n-C11 2C 1 nC nC1 n0C1
“杨` 辉三角”
中的一些秘密
宁波市正始中学 陈碧文
1

《探究与发现 “杨辉三角”中的一些秘密》PPT课件(部级优课)

《探究与发现 “杨辉三角”中的一些秘密》PPT课件(部级优课)

3 数学文化,拓展视野 谢 尔 宾 斯 基
谢 尔 宾 斯 基 三 角 形
埃 菲 尔 铁 塔
分形几何 奇异、美丽、 超乎想象!
4 课堂小结,升华“点睛”
斜看 三角形数 四面体数 高阶等差数列 斐波那契数列
贾宪



C
m n
C nm n
组合数对称性

杨横看 辉
2的幂、11的幂
杨辉三角
朱世杰
Cnm
成林处处云,抽笋年年玉。
调清金石怨,吟苦鬼神悲。
天风乍起争韵,池一水相涵更五绿。 十
十 天下只五应我爱一,世间惟有君知。
却寻庚信小员中一,闲对数六竿心自足十五。


自从十五都尉别六苏句,便一到司空送白辞。
3 数学文化,拓展视野
(动手操作):如果用笔将杨辉三角中的偶数与奇数 分别标出,并保留全部的奇数,会出现什么现象?
对称性:Cnm
C nm n
递推性: Cnm
C m1 n 1
Cm n 1
1
C10 C11
C
0 2
C
1 2
C
2 2
C30
C
1 3
C32
C33
C
0 4
C
1 4
C
2 4
C
3 4
C
4 4
C
0 5
C
1 5
C52 C53
C
4 5
C
5 5
C 60
C
1 6
C
2 6
C
3 6
C
4 6
C
5 6
C
6 6
2 善于观察,发现“秘密”

杨辉三角中的一些秘密——数学课本“探索与发现”的进一步探索

杨辉三角中的一些秘密——数学课本“探索与发现”的进一步探索

周刊
杨辉三角中的一些秘密
数学课本 探索与发现 的进一步探索 杨海跃
杨辉三角出发 , 探索它的精妙绝伦的性质 . 用研究与总结来揭开它神秘的面纱 . 关键词 : 三角的秘密 ; 杨辉三角 ; 数学探索 摘㊀要: 作为中国数学史上重要的发现 , 杨辉三角带我们领略数字的奥秘 , 为我 们 打 开 二 项 式 系 数 的 大 门 . 现 在 , 让我们从
1 n- 1 n- 1 n- 1 n - 则 Cn +Cn+1 + ������ +Cn+m-2 = Cn+m-1 n- 1 +C n
所以 k = m +1 时成立 . +Cn+m-1 = Cn+m = Cn+mห้องสมุดไป่ตู้1+1 ,
n- 1 n n
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������
) 边的一列就是它的一阶差数 列 . 并 且 从 右 向 左 第 n( n ȡ0
Cn + ������ +Cn+ Cn + ������ +Cn+ Cn+1 + ������ k- 2 =C n+ k- 2 =C n+ 1+

0 1 0 ㊁n ㊁ ������Ck , 列, 可表示为Cn 1 C n- 1 k 所以它们的前k 项和C n- 1+ - +

全国高中数学青教师展评课:杨辉三角中的一些秘密课件(浙江宁波正始中学陈碧文)

全国高中数学青教师展评课:杨辉三角中的一些秘密课件(浙江宁波正始中学陈碧文)
……
1 11 121 1331 14641 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126126 84 36 9 1
…….
111111111 1 … 123456789… 1 3 6 10 15 21 28 36 … 1 4 10 20 35 56 84 … 1 5 15 35 70 126 … 1 6 21 56 126 … 1 7 28 84 … 1 8 36 … 19… 1… …
1 1C860 728C2611563C5672.0.3..5C.5.636.2..1..2.C8647 8C1651 C66
法 本 源 图
,
隅算中Cn10C1nC0Cn11n1CCnC1-1n2n1-CC1 nn22-C1 .rnCr.-.1Cn1.rn-r.1..C.....nr.-1.....C.nnC-1nnC2n1n-112C1nn1Cn01Cn0
藏 (a b)n Cn0an Cn1an1b... Cnr anrbr ... Cnn1abn1 Cnnbn
》者 贾皆 宪廉
杨辉三角中,第n行第r个数为
an,r
C r1 n1
1
11
121
13 31
146 41
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
左 衺 乃 积 《数
,
贾宪
1C1405C143101CC0312410C162C11133100CC11442211CC531121CC12432C33C每 式 以44 一系写杨个数成数,组辉都都合三是可数角二都中项可的

“杨辉三角”中的一些秘密公开课教案教学设计课件案例试卷

“杨辉三角”中的一些秘密公开课教案教学设计课件案例试卷

均为 n,(2)表中的递推关系类似杨辉
三角,则第
n
行(n≥2)第
2
个数
n2
n 2
2
.
第1行 第2行 第3行 第4行
1
an1 an n(n 2)
2 2 an1 an n
34 3
47 7 4
第5行 5 11 14 11 5
第6行 6 16 25 25 16 6
…… …… ……
(n 1)(n 2)
关系吗?
第0行
1
第1行
11
第2行
121
第3行 第4行
1 3 31 1 4 6 41
第5行 第6行
1 5 10 10 5 1 1 6 15 20 15 6 1
…… ……
… … 第n-1行
1
C C 1
2
n1 n1
C C r 1 r n1 n1
C n2 n1
1
第n行 1
C
1 n
C
2 n
… ……C…nr … …
• • 本节课的学习难点是:根据具体横行、斜
行的数字规律,猜想出一般的结论。
五、学习方法
• 本节课采用的是教师引导探究的探究课类型。使用自主探究 与合作交流相结合的探究方式。
• 探究时采用先思考后小组合作互动的方式,重点在于发现规 律,使学生通过思维碰撞,擦出智慧的火花,达到共同完成 建构知识的目的;也使不同层次的学生都学有所获,让学生 体会再发现再创造的过程,发展学生的创造性思维。
C2 n1
Cn3
当r
3时,C33
C43
C53
C3 n1
Cn4
探究4 (斜看2) :按照图示的方法写出斜线上的各行数字的和, 仔细观察这些和,你有什么发现?

探索杨辉三角的秘密

探索杨辉三角的秘密





















候在Biblioteka 这样做时 现 镜 有




穿















戴 。
是 东







以 的
■电你是否有这样经历,当 你在做某一项工作 和学习的时候,脑 子里经常会蹦出各 种不同的需求。比 如你想安 心下来看2小时的书,大脑会 蹦出口渴想喝水, 然后喝水的时候自 然的打开电视。。 。。。。,一个小 时过去 了,可能书还没看2页。很多 时候甚至你自己都 没有意思到,你的 大脑不停地超控你 的注意力,你就这 么轻易 的被你的大脑所左右。你已 经不知不觉地变成 了大脑的奴隶。尽 管你在用它思考, 但是你要明白你不 应该隶属 于你的大脑,而应该是你拥 有你的大脑,并且 应该是你可以控制 你的大脑才对。一 切从你意识到你可 以控制你 的大脑的时候,会改变你的 很多东西。比如控 制你的情绪,无论 身处何种境地,都 要明白自己所
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——
, ,
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 .......... .......... 1 2 r r n 1 C n-1 C n-1 ... C n-1 C n-1 ... C n- 2 1 1 1 1 2 r n 1 1 Cn Cn . .. C n ... Cn 1
《 开 方 作 法 本 源 图 》 贾 宪
1 1 0 1 左 杨辉三角中的 1C1 C1 1 衺 02 11 2 1 C2 C 2 C 2 每一个数都是二项 乃 10 3 3 1 2 1 3 积 贾宪 3 10C4 1C 3 42C 3 3C 3 式系数,都可都可 6 1 4 数 C45 104 10 4 5 C1 C 4 C C 1 以写成组合数 4 0 1 2 3 4 5 1C5 6 C 5 205 15 5 6 C1 C 5 15 C C 5 右 0 7 21 35 35 3 21 4 1 2 6 1 6 C 6 C 6 C 6 C 67 C 6 C 6 15 C 衺 1 8 28 56 70 56 .. 乃 .......... 28 8 1 0 1 2 r 0 .......... .......... r 隅 Cn 1 C n-1 2C n-1 ...r C n-1 C n-1 ... n2 n- 2 C n 1 1 1 r C n1 1 C n-1 Cn-1 ... C n-1 C1n-r1 ... C n-1 1 n 1 0 0 算C C 1 2C 2 1 . .. C nrC n... ... C nn1 C 1 Cn 1 . .. n Cn n Cn n n 中 0 1 r n n (a b) n Cn a n Cn a n1b... Cn a nr b r ... Cn 1ab n1 Cn b n 藏 者 r 1 杨辉三角中,第n行第r个数为 an ,r Cn 1 皆 廉
奇异、美丽的图案-----超出想象!
是工艺美术大师的创作吗?
这是数学 的杰作!
斐 波 那 契
1、1、2、3、5、8、13、21、34 、55 、89 …
悄悄的我走了, 正如我悄悄的来; 我翻一翻课本, 让我收获点什么 。
再 见
宁波市正始中学 陈碧文
杨辉三角中每一个数均为肩上两数之和
r 1 n-1
C
C
r n-1
C
r n
杨辉恒等式
第 1行 1 第 2行 1 1 第 3行 1 2 1 第 4行 1 3 3 1 第 5行 1 4 6 4 1 第 6行 1 5 10 10 5 1 第 7行 1 6 15 20 15 6 1 第 8行 1 7 21 35 35 21 7 1 第 9行 1 8 28 56 70 56 28 8 1 第10行 1 9 36 84 126126 84 36 9 1 ……
“杨辉三角”
中的一些秘密
`
宁波市正始中学 陈碧文
圣 人 则 之
河 出 系 图 辞 洛 上 出 》 书
·
《 易
图 形 ,将 就数 是字 数按 阵一 定 顺 序 排 列 成阶等差级数(垛积术)
艾 萨 克 牛 顿 朱世杰
研究微积分
·
差分方程、无穷级数
1 3 6 10 15 21 28 36 …
1 1 1 1 1 1 1 4 5 6 7 8 9 … 10 15 21 28 36 … 20 35 56 84 … 35 70 126 … 56 126 … 84 … …

奇偶:第1,2,4,8,16…这些行即2k(k是自然数)行的各个数 字均为奇数, 第2k+1行除两端的1之外都是偶数。
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
1 3 6 10 15 21 28 36
1 4 1 10 5 1 20 15 6 1 35 35 21 7 1 56 70 56 28 8 1 84 126126 84 36 9 …….
1
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 … …
第 1行 1 第 2行 1 1 贾宪 第 3行 1 2 1 第 4行 1 3 3 1 第 5行 1 4 6 4 1 第 6行 1 5 10 10 5 1 第 7行 1 6 15 20 15 6 1 第 8行 1 7 21 35 35 21 7 1 第 9行 1 8 28 56 70 56 28 8 1 第10行 1 9 36 84 126126 84 36 9 1
相关文档
最新文档