华一寄宿2016~2017学年度下学期八年级3月月考数学参考答案

合集下载

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:10分)成绩一.选择题(本大题共有6小题,每小题3分,共18分)1.要使分式有意义,则x的取值应满足()A.x=﹣2B.x<﹣2.x>﹣2D.x≠﹣22.下列函数表达式中,不是x的反比例函数的是()A.= B.= .= D.x=3.如果=2﹣a,那么()A.a<2B.a≤2.a>2D.a≥24.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形B.对角线平分一组对角的平行四边形.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形.如图,在△AB中,∠AB=90°,∠A=40°,以为圆心,B为半径的圆交AB于点D,连接D,则∠AD=()A.10°B.1°.20°D.2°6.在同一平面直角坐标系中,函数=(x﹣1)与= 的大致图象是()A.B..D.二.填空题(本大题共10小题,每小题3分,共30分)7.+ =.8.如果最简二次根式与是同类二次根式,则a=.9.在式子、、、、+ 、9x+ 中,分式有个.10.已知反比例函数,当x<0时,随x的增大而减小,那么的取值范围是.11.如图,点A、B在函数= (x>0)的图象上,过点A、B分别向x、轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2=.12.如图,在⊙中,弦AB垂直平分半径,垂足为D,若⊙的半径为4,则弦AB的长为.13.如图,已知⊙的半径为,若AB=8,点P是线段AB上的任意一点,则P的取值范围是.14.如图,直角坐标系中一条圆弧经过格点A,B,,其中B点坐标为(3,4),则该弧所在圆心的坐标是.1.汛期临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原的2倍,结果共用10天便完成了全部任务.请求出施工单位原每天加固河堤多少米?设原每天加固河堤x米,根据题意可得方程.16.矩形ABD中,AB=4,B=6,点E是AB的中点,点F 是B上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则P的最小值是.三.解答题(本大题共10小题,共102分)17.(12分)⑴计算×﹣(2 )2 ;⑵已知x=2﹣,求x2﹣4x+1的值.18.(12分)解下列分式方程.⑴;⑵+1.19.(8分)先化简后求值:其中x=-4.20.(8分)如图,在以点为圆心的两个圆中,大圆的弦AB交小圆于点、D,求证:A=BD.21.(10分)如图,∠=90°,以A为半径的圆与AB相交于点D.若A=3,B=4,求BD长.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.⑴请你补全这个输水管道的圆形截面;⑵若这个输水管道有水部分的水面宽AB=16,水面最深地方的高度为4,求这个圆形截面的半径.23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高2%,原计划完成这项工程需要多少个月?24.(10分)如图,一次函数=1x+b与反比例函数= 的图象交于A(2,3),B(n,﹣2)两点.过点B作B⊥x轴,垂足为.⑴求一次函数与反比例函数的解析式;⑵求△AB的面积;⑶若P(p,1),Q(﹣2,2)是函数= 图象上的两点,且1≥2,求实数p的取值范围.2.(10分)在Rt△AB中,∠AB=90°,以点A为圆心,AB为半径,作⊙A交A于点F,交BA的延长线于点D,过点D作A的平行线交⊙A于点E,连接AE、E,EF.⑴求证:E⊥AE;⑵当∠AB等于多少度时,四边形ADEF为菱形,并给于证明.26.(12分)已知如图,正方形ABD在第一象限,边长为4,顶点A、B分别在轴与x轴正半轴上运动,点P为正方形ABD对角线A、BD 的交点.⑴当点A坐标为(0,2)时,求点坐标;⑵试说明点A、、B、P四点在同一个圆上;⑶正方形在运动过程中,直接写出线段的最大值四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:10分)成绩一.选择题(本大题共有6小题,每小题3分,共18分)1.要使分式有意义,则x的取值应满足(D)A.x=﹣2B.x<﹣2.x>﹣2D.x≠﹣22.下列函数表达式中,不是x的反比例函数的是(B)A.= B.= .= D.x=3.如果=2﹣a,那么(B)A.a<2B.a≤2.a>2D.a≥24.下列四边形中不一定为菱形的是(A)A.对角线相等的平行四边形B.对角线平分一组对角的平行四边形.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形.如图,在△AB中,∠AB=90°,∠A=40°,以为圆心,B为半径的圆交AB于点D,连接D,则∠AD=(A)A.10°B.1°.20°D.2°6.在同一平面直角坐标系中,函数=(x﹣1)与= 的大致图象是(B)A.B..D.二.填空题(本大题共10小题,每小题3分,共30分)7.+ = 3 .8.如果最简二次根式与是同类二次根式,则a= 1 .9.在式子、、、、+ 、9x+ 中,分式有 3 个.10.已知反比例函数,当x<0时,随x的增大而减小,那么的取值范围是>2 .11.如图,点A、B在函数= (x>0)的图象上,过点A、B分别向x、轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2= 4 .12.如图,在⊙中,弦AB垂直平分半径,垂足为D,若⊙的半径为4,则弦AB的长为 4 .13.如图,已知⊙的半径为,若AB=8,点P是线段AB上的任意一点,则P的取值范围是3≤P≤ .14.如图,直角坐标系中一条圆弧经过格点A,B,,其中B点坐标为(3,4),则该弧所在圆心的坐标是(1,1).1.汛期临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原的2倍,结果共用10天便完成了全部任务.请求出施工单位原每天加固河堤多少米?设原每天加固河堤x米,根据题意可得方程+ =10 .16.矩形ABD,AB=4,B=6,点E是AB的中点,点F 是B上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则P的最小值是2 -2 .三.解答题(共10小题)17.(12分)(1)计算×﹣(2 )2 (2)已知x=2﹣,求x2﹣4x+1的值.解:(1)原式= ﹣8 = ﹣8 = ﹣3;(2)∵x=2﹣,∴x﹣2=﹣,∴(x﹣2)2=3,∴x2﹣4x+1=0.18.(12分)解下列分式方程.(1) ;(2) +1.解:(1)x=3 (2) x=-1 (2)x=1是增根19.(8分)先化简后求值:其中x=-4.解:= = 120.(8分)如图,在以点为圆心的两个圆中,大圆的弦AB交小圆于点、D,求证:A=BD.证明:过圆心作E⊥AB于点E,在大圆中,E⊥AB,∴AE=BE.在小圆中,E⊥D,∴E=DE.∴AE﹣E=BE﹣DE.∴A=BD.21.(10分)如图,∠=90°,以A为半径的圆与AB相交于点D.若A=3,B=4,求BD长.(1)∵在三角形AB中,∠AB=90°,A=3,B=4,∴AB= = =,点作E⊥AB于点E,由三角形面积可求E=24AE=18,∴AD=2AE=2×18=36∴BD=AB﹣AD=﹣36=14.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16,水面最深地方的高度为4,求这个圆形截面的半径.解:(1)图略,(2)截面的半径=10.23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高2%,原计划完成这项工程需要多少个月?解:原计划完成这项工程需要30个月24.(10分)如图,一次函数=1x+b与反比例函数= 的图象交于A(2,3),B(n,﹣2)两点.过点B作B⊥x轴,垂足为.(1)求一次函数与反比例函数的解析式;(2)求△AB的面积;(3)若P(p,1),Q(﹣2,2)是函数= 图象上的两点,且1≥2,求实数p的取值范围.(1)反比例函数的解析式是= ;一次函数的解析式是=x+1;(2)(3)分为两种情况:当点P在第三象限时,要使1≥2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使1≥2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.2.(10分)在Rt△AB中∠AB=90°,以点A为圆心,AB为半径,作⊙A交A于点F,交BA的延长线于点D,过点D作A的平行线交⊙A于点E,连接AE、E,EF.(1)求证:E⊥AE;(2)当∠AB等于多少度时,四边形ADEF为菱形并给于证明.【解答】(1)证明:∵DE∥A,∴∠D=∠AB,∠DEA=∠EAF,∵∠D=∠DEA,∴∠FAE=∠AB,∴△AB≌△AE(SAS),∴∠AE=∠AB=90°,∴AE⊥E;(2)解:当∠AB=60°时,四边形ADFE为菱形.理由如下:∵∠AB=60°,∴∠FAB=∠AE=∠DAE=60°,∵AD=AE=AF ∴△ADE △AEF都是等边三角形∴AD=DE=EF=AF,∴四边形ADFE是菱形.26.(12分)已知如图:正方形ABD在第一象限,边长为4,顶点A、B分别在轴与x轴正半轴上运动,点P为正方形ABD对角线A、BD 的交点。

八年级(下)学期3月份月考检测数学试卷含解析

八年级(下)学期3月份月考检测数学试卷含解析

八年级(下)学期3月份月考检测数学试卷含解析一、选择题 1.若a 是最简二次根式,则a 的值可能是( ) A .2- B .2 C .32 D .82.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .63.下列等式正确的是( ) A .497-=- B .2(3)3-= C .2(5)5--=D .822-= 4.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=5.下列各式是二次根式的是( )A .3B .1-C .35D .4π- 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x 7.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .101 8.下列各式计算正确的是( ) A .2+3=5B .43-33=1C .2333=63⨯D .123=2÷ 9.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .610.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .911.若a b >3a b - )A .ab --B .-abC .a abD .-ab12.下列计算正确的是( )A=B.2-= C.22= D3=二、填空题13.若mm 3﹣m 2﹣2017m +2015=_____. 14.==________.15.甲容器中装有浓度为a,乙容器中装有浓度为b,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.若6x ,小数部分为y,则(2x y 的值是___.17.化简二次根式_____. 18.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________ 19.已知:可用含x=_____. 20.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.23.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)=31-2==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.24.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b aa ab a b-+⨯+-=()()()2·a b aa ab a b-+-=a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.计算(1))(121123-⎛⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==, 1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-, 17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.29.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.30.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2.故选:B .此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.B解析:B【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【详解】由题意得:20,40m n -=-=,解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形,4a n ∴==,则ABC 的周长为24410++=,故选:B .【点睛】 本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.3.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意;故选:B .【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项.A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x-≥,解得:2x,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 7.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n -+, ∴=1111111+11122399100-++-+++- =199+1100- =100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】 1111n n =+-+是解答本题的基础.8.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知4333-=3,故不正确;根据二次根式的性质,可知2333⨯=18,故不正确; 根据二次根式除法的性质,可知2733333÷=÷=,故正确.故选D.9.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D10.A解析:A【解析】根据题意得:|x 2–4x 23x y --,所以|x 2–4x +4|=023x y --,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .11.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3a b -∴-a 3b≥0∵a >b ,∴a >0,b <023=a b ab a a ab --=-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.14.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5 【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键. 16.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 17.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为18.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 19.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 20.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

2017年3月八年级数学月考试卷及答案

2017年3月八年级数学月考试卷及答案

2016~2017学年度下学期三月月考八年级数学试题仁当X 是怎样的实数时,.x —2在实数范围内有意义?() A. x > 3 B. x > 2 C. x > 1 D. x > 42•下列二次根式中与 ,2是同类二次根式的是() 3•下列计算错误的是( )4 •下列命题的逆命题不正确的是() A •同旁内角互补,两直线平行 C .两个全等三角形的对应边相等宽2.7 m ;② 号木板长2.8 m,宽2.8 m ;③ 号木板长4 m,宽2.4 m .可以从这扇门通过的木板是( ) 9•如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边 AB 、BC 的长分别为3和4,那么 点P 到矩形的B •如果两个角是直角,那么它们相等D •如果两个实数的平方相等,那么它们相等 5 •在直角坐标系中,点 P (-2,3)到原点的距离是(A. 2B. -2C. 、2D. - 27 •如图,是一扇高为 2 m ,宽为1.5 m 的门框,童师傅有 3块薄木板,尺寸如下:① 号木板 长3 m ,A •②B •③C •②③D •都不能通过8.如图,在矩形ABCD 中,AB = 8,BC = 4,将矩形沿AC 折叠,点D 落在点D 处,则重叠部分 △ AFC 的面积为( ) C • 10D • 12 二(两条对角线AC和BD的距离之和是()10.在直角三角形中,自锐角顶点所引的两条中线长为二、填空题(每小题3分,共18 分)12. 在实数范围内因式分解: X 2 -2 = ____________________________ .13. 如图,正方形 A 、B 、C 的边长分别为直角三角形的三边长,若正方形A 、B 的边长分别为3和5,则正方形C 的面积为 ___________________ .14. 若.9-6a a 2「=3-a ,贝U a 与3的大小关系为15•已知,J 2—, J 3空=3j3 , J 4— =4^— ,请你用含 n \ 3 II 3 V 8 I! 8 \ 15 V15的式子将其中的规律表示岀来 _______________________________16.如图, ABC 中,.ACB =90 , BC =2 , AC = 4,将.ABC 绕 C 点旋转一个角度到 DEC ,直线AD 、EB 交于F 点,在旋转过程中,MBF 的面积的最大值是 ___________________ .三、解答题:(共72分)12 ~5D •不确定 边长为() A. 6 B. 7 C. 2.6 D. 2. 7 17. (8 分)计 算:(1)14 7 3 5 2.10 18. ( 8分)先化简,再求值: 19..(本题8分)如图,(1) AC 的长为■:( X x -2x 1 ..10和•. 35,那么这个直角三角形的斜 11•化简:⑵求证:AC 丄BC ⑶ 若以A 、B 、C 及点D 为顶点的四边形为 口ABCD ,画岀口ABCD ,并写岀D 点的坐标 ____________求CD 的值BD 21. (10分)如图,正方形 ABCD 中,E 、F 分别在 EF 的延长线交BC 的延长线于G 点,且/ AEB= /1(1 )求证:.ABE 二一.BGE ;2(2)若 AB =4, AE 求 S BEG •22. (本题10分)如图,在矩形 ABCD 中,AD = 12,分/ ADC ,AF 丄 EF ⑴求EF 长(2)在平面上是否存在点 Q ,使得QA = QD = QE = QF ?若存在,求岀 QA 的长;若不存在,说明理23. (本题 10 分)已知△ ABC 中,/ ACB = 90 ° AC = 2BC⑴ 如图1,若 AB = BD ,AB 丄BD ,求证:CD = 2 AB(2) 如图 2,若 AB = AD , AB 丄 AD , BC = 1,求 CD 的长(3) 如图 3,若 AD = BD , AD 丄 BD , AB = 2、一5,求 CD 的长(1)如图1,求点C 的坐标⑵如图2, E 、F 分别为OA 上的动点,且/ ECF = 45 °求证:EF 2= OE 2 + AF 2 ⑶ 如图3,点D 在y 轴正半轴上运动, 以AD 为腰向下作等腰 RT △ ADM , / DAM = 90 °为线段OA 的中点,连 DT 并延长至点 N,使DT=TN ,连MN ,求MN 的最小值. 20 ••如图,在等边三角形 △ ABC 中,射线 AD 四等分/ BAC 交 BC 于点 D ,其中/ BAD >/ CAD ,24.(本题12分)已知点A 、B 分别在x 轴和y 轴上, OA = OB ,点C 为 AB 的中点,AB = 12、2AB = 7, DF 平AD 、DC 上,BEG ;。

河北省邯郸市2016-2017学年八年级下第三次月考数学试题含答案

河北省邯郸市2016-2017学年八年级下第三次月考数学试题含答案

八年级下学期第三次月考数学试题一、 选择题(每题3分,共16题,共48分) 1、下列说法中,正确的是( )A. 一次函数也是正比例函数B. 正比例函数也是一次函数C. 一个函数不是正比例函数就不是一次函数D. y =kx +b 是一次函数2、若点A (-2,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A.41 B. 41- C. 1 D. -1 3、关于x 的一元二次方程()01122=-++-a x x a 的一个根是0,则a 的值为( )A. 1B. -1C. 1或-1D. 0.54、已知一次函数b kx y +=,当x 增加5时,y 减少2,则k 的值是( )A. 52-B. 25- C. 52 D. 255、下列关于x 的一元二次方程中,有实数根的是( )A. 012=+-x xB. 0322=+-x xC. 012=-+x xD. 042=+x6、一组数据54321,,,,x x x x x 的平均数是a ,另一组数据521+x ,522+x ,523+x ,524+x ,525+x 的平均数是( )A. aB. 2aC. 2a +5D. 无法确定7、已知方程02=++a bx x 有一个跟是a (a ≠0),则下列代数式的值恒为常数的是( )A. abB.baC. a +bD. a -b 8、用配方法解下列方程时,配方正确的是( )A. 方程0562=--x x ,可化为()432=-x B. 方程0201522=--y y ,可化为()201512=-yC. 方程0982=++a a ,可化为()2542=+aD. 方程07622=--x x ,可化为423232=⎪⎭⎫ ⎝⎛-x9、函数11+=x y 与b ax y +=2的图象如图所示,这两个函数的交点在y 轴上,那么21,y y 的值都大于零的x 的取值范围是( ) A. x <-1 B. x >2 C. x <-1或x >2 D. -1<x <210、若关于x 的一元二次方程0122=++-kb x x 有两个不相等的实数根,则一次函数b kx y +=的大致图象可能是( )11、某校九年级(3)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了1980张相片,若全班有x 名学生,根据题意,列出方程为( )A. ()19801=-x xB. ()19801=+x xC. ()198012=+x xD.()198021=-x x12、已知一元二次方程0432=--x x 的两个根分别为21,x x ,则221221x x x x +的值为( )A. -12B. 12C. -6D. 613、若三角形ABC 两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )A. 24B. 58C. 48D. 24或58 14、如图,在平面直角坐标系中,直线3232-=x y 与矩形ABCD 的边OC 、BC 分别交于点E 、F ,已知OA =3,OC =4,则△CEF的面积是( )A. 6B. 3C. 12D.34 15、一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成,为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图②所示,则寻宝者的行进路线可能是( )A. C→B→OB. A→O→BC. B→A→CD. B→O→C 16、如图所示,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( ) A.(0,64) B.(0,128) C.(0,256) D.(0,512) 二、 填空题(每题3分,共12分)17、函数13-+=x x y 中自变量x 的取值范围是__________。

人教版八年级(下)学期3月份 自主检测数学试题含答案

人教版八年级(下)学期3月份 自主检测数学试题含答案

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=3.下列计算正确的是( )A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-4.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-5.下列根式中,最简二次根式是( )A B C D 6.下列各式计算正确的是( )A =B 6=C .3+=D 2=-7.1在3和4中x 的取值范围是1x ≥-;③3;④5=-58>.其中正确的个数为( ) A .1个B .2个C .3个D .4个8.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤49.若a ,b =,则a b 的值为( )A .12B .14C .321+D10.下列运算正确的是( )A =B 2=C =D 9=二、填空题11.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.12.当x =2+3时,式子x 2﹣4x +2017=________. 13.把1m m-根号外的因式移到根号内,得_____________. 14.若2x ﹣1=3,则x 2﹣x=_____.15.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____.16.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______. 17.计算:200820092+323⋅-=_________.18.20n n 的最小值为___ 19.2a ·8a (a ≥0)的结果是_________.20.12a 1-能合并成一项,则a =______.三、解答题21.计算及解方程组: (11324-2-1-26() (2)262-153-2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)72102)-3107;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11324126-()1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩ ∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b+b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可; (2)根据二次根式及绝对值的非负性得到2a +6=0,b=0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+-=1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.24.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.25.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==26.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.27.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.28.一样的式子,其实我====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2)12.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n++++=.考点:分母有理化.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x==-=-,∴5-x≥0,解得:x≤5, 故选D . 【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.B解析:B 【分析】=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可. 【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误; 故选B . 【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.3.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .4.C解析:C 【分析】根据二次根式的性质及除法法则逐一判断即可得答案. 【详解】=,故该选项计算错误,不符合题意,9=C.(22=,故该选项计算正确,符合题意,=,故该选项计算错误,不符合题意,5故选:C.【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.5.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.6.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据=对D进行判断.a【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22=--=(),所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.7.A解析:A【分析】答.【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;58=,(229<,∴1528-<,即1528<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.8.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.B解析:B【解析】【分析】将a可化简为关于b的式子,从而得到a和b的关系,继而能得出ab的值.【详解】a=b44=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.10.C解析:C【分析】根据二次根式的减法法则对A进行判断;根据二次根式的加法法则对B进行判断;根据二次根式的乘法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A=,所以A选项错误;B=B选项错误;C=C选项正确;D3=,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017 =(x﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因. 13.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.14.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型. 15.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.16.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数: ∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.17.【解析】原式==18.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∵,且是整数,∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.19.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键. 20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

2016-2017学年度人教版八年级数学第三次月考试卷 含答案

2016-2017学年度人教版八年级数学第三次月考试卷 含答案

2016-2017学年度八年级第三次月考数学试卷1.若关于x 的方程222(1)0x k x k --+=有实数根m 和n ,则m n +的取值范围是( ) A .1m n +≥ B .1m n +≤ C .12m n +≥ D .12m n +≤ 2.下列一元二次方程中没有实数根的是A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=3.三角形两边长分别是8和6,第三边长是一元二次方程216600x x -+=一个实数根,则该三角形的面积是( )A .24B .48C .24或.4.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ).A .2144(1)100x -=B .2100(1)144x -=C .2144(1)100x +=D .2100(1)144x += 5.关于x 的方程(k +2)x 2-kx-2=0必有一个根为( ). A.x=1 B.x=-1 C.x=2 D.x=-26.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )A .3cmB .6cmC .3cm D .6cm7.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .B .25C .D .358.下列关于x 的方程:①20ax bx c ++=;②223(9)(1)1x x --+=;③13x x+=;④22(1)0a a x a ++-=1x =-.其中是一元二次方程有( )A.1个B.2个C.3个D.4个9.如图,每个小正方形的边长为1,A 、B 、C 是正方形的顶点,则∠ABC 的度数为( )A.30°B.45°C.60°D.90°10.定义:如果一元二次方程ax 2+bx +c =0(a≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a =cB .a =bC .b =cD .a =b =c 二、填空题(5分*4题=20分)11.已知关于x 的方程x 2+(1﹣m )x+24m =0有两个不相等的实数根,则m 的最大整数值是 .12.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m .一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m .13.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),2三、计算题(15) 15.(3分)1232127---16.(6分)(1)013212=-+x x (2)()()2234x x x ++=-17.(6分)已知关于x 的一元二次方程x 2-(2k+1)x+4k-3=0,(1)求证:无论k 取什么实数值,该方程总有两个不相等的实数根?(2)当Rt △ABC 的斜边b 和c 恰好是这个方程的两个根时,求k 的值.四、解答题(题型注释)18.(本题满分7分)已知关于x 的方程x 2﹣mx+m ﹣3=0, (1)若该方程的一个根为﹣1,求m 的值及该方程的另一根; (2)求证:不论m 取何实数,该方程都有两个不相等的实数根. 19.(本题满分8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 20.(10分)如图,在△ABC 中,∠B=90°,AB=6米,BC=8米,动点P 以2米/秒的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1米/秒的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止.设移动的时间为t 秒.(1)当t=2.5秒时,求△CPQ 的面积;(2)求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式; (3)在P ,Q 移动过程中,当△CPQ 为等腰三角形时,写出t 的值;21.(本题10分)如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在x 轴上,AB=25,顶点C 在y 轴的负半轴上,tan ∠ACO=34,点P 在线段OC 上,且PO 、PC 的长(PO<PC )是关于x 的方程x 2-12x+32=O 的两根. (1) 求P 点坐标求 (2) 求AC 、BC 的长;(3)在x 轴上是否存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形是梯形?若存在,请直接写出直线PQ 的解析式;若不存在,请说明理由. 22.(10分)某工程队在我城中村拆迁改造过程中承包了一项拆迁工程,原计划每天拆迁1250平方米,应准备工作不足,第一天少拆迁了20% 。

八年级数学下册第三次月考试卷及答案.doc

八年级数学下册第三次月考试卷及答案.doc

2019-2020 年八年级数学下册第三次月考试卷及答案一、选择题(每小题 3 分,共 30 分) 1.不等式x>3 的解集是()A x 3B x 3Cx 3 D x 32.如果把分式2x 中的 x 和 y 都扩大 2 倍,那么分式的值()x yA 扩大 2 倍B 不变C缩小 2 倍D扩大 4 倍3. 若反比例函数图像经过点( 1,6) ,则此函数图像也经过的点是()A (6,1)B(3,2) C (2,3)D( 3,2)4.在 △ ABC 和 △DEF 中, AB2DE ,AC2DF , AD ,如果 △ ABC 的周长是 16,面积是 12,那么 △DEF 的周长、面积依次为()A 8 , 3B 8 , 6C 4 , 3D 4, 65.为抢修一段 120 米的铁路,施工队每天比原计划多修 5 米,结果提前 4 天开通了列车,问原计划每天修多少米 ?若设原计划每天修 x 米,则所列方程正确的是()A 120 120 4 B120 120 4 C120 120 4 D 120 1204x x 5x 5 xx 5 xx x 56.如图是反比例函数yk1和 y k 2 (k 1<k 2) 在第一象限的图象,直xx线 AB//y 轴,并分别交两条曲线于 A 、 B 两点,若 S △AOB = 4,则k - k 1 的值是 ( )2A . 1B . 2 C. 4D.87、在菱形 ABCD 中, E 是 BC 边上的点,连接 AE 交BD 于点 F,若EC =2BE , 则 BF的值是( )FDA.1111ADB.C.D.2345FBEC8.如图 Rt △ ABC 中,∠ C = 90°, CD ⊥ AB ,垂足为 D , AD = 8, DB = 2,则 CD 的长为( )A . 4B. 16C. 2 5D . 4 59、在△ ABC 与△ A ’B ’C ’中,有下列条件:① ABBC ;⑵AC BC③∠ A =∠ A ;④∠ C =∠ C 。

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)

2017年八年级数学下第三次月考试卷(含答案)四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:150分)成绩一.选择题(本大题共有6小题,每小题3分,共18分) 1.要使分式有意义,则x的取值应满足() A.x=�2 B.x<�2 C.x>�2 D.x≠�2 2.下列函数表达式中,y不是x的反比例函数的是() A.y= B.y= C.y= D.xy= 3.如果 =2�a,那么() A.a<2 B.a≤2 C.a >2 D.a≥2 4.下列四边形中不一定为菱形的是() A.对角线相等的平行四边形 B.对角线平分一组对角的平行四边形 C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形5.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=() A.10° B.15° C.20° D.25° 6.在同一平面直角坐标系中,函数y=k(x�1)与y= 的大致图象是() A. B. C. D.二.填空题(本大题共10小题,每小题3分,共30分) 7. += . 8.如果最简二次根式与是同类二次根式,则a= . 9.在式子、、、、 + 、9x+ 中,分式有个. 10.已知反比例函数,当x<0时,y随x的增大而减小,那么k的取值范围是. 11.如图,点A、B在函数y= (x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2= . 12.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为. 13.如图,已知⊙O的半径为5,若AB=8,点P是线段AB上的任意一点,则OP的取值范围是.14.如图,直角坐标系中一条圆弧经过格点A,B,C,其中B点坐标为(3,4),则该弧所在圆心的坐标是. 15.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x米,根据题意可得方程. 16.矩形ABCD 中,AB=4,BC=6,点E是AB的中点,点F 是BC上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则PC的最小值是.三.解答题(本大题共10小题,共102分) 17.(12分)⑴计算× �(2 )2 ;⑵已知x=2�,求 x2�4x+1的值.18.(12分)解下列分式方程.⑴ ;⑵ +1.19.(8分)先化简后求值:其中x=-4.20.(8分)如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.21.(10分)如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.⑴请你补全这个输水管道的圆形截面;⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. 23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高25%,原计划完成这项工程需要多少个月?24.(10分)如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,3),B(n,�2)两点.过点B作BC⊥x轴,垂足为C.⑴求一次函数与反比例函数的解析式;⑵求△ABC的面积;⑶若P(p,y1),Q(�2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p 的取值范围.25.(10分)在Rt△ABC中,∠ABC=90°,以点A为圆心,AB为半径,作⊙A交AC于点F,交BA的延长线于点D,过点D作AC的平行线交⊙A于点E,连接AE、CE,EF.⑴求证:CE⊥AE; ⑵当∠CAB等于多少度时,四边形ADEF为菱形,并给于证明.26.(12分)已知如图,正方形ABCD在第一象限,边长为4,顶点A、B分别在y轴与x轴正半轴上运动,点P为正方形ABCD对角线AC、BD的交点.⑴当点A坐标为(0,2)时,求点C坐标;⑵试说明点A、O、B、P四点在同一个圆上;⑶正方形在运动过程中,直接写出线段OC的最大值四校2016~2017学年度第二学期第三次月度联考八年级数学试题(考试时间:120分钟,满分:150分)成绩一.选择题(本大题共有6小题,每小题3分,共18分) 1.要使分式有意义,则x的取值应满足( D ) A.x=�2 B.x<�2 C.x >�2 D.x≠�2 2.下列函数表达式中,y不是x的反比例函数的是( B ) A.y= B.y= C.y= D.xy= 3.如果 =2�a,那么( B )A.a<2 B.a≤2 C.a>2 D.a≥2 4.下列四边形中不一定为菱形的是( A ) A.对角线相等的平行四边形 B.对角线平分一组对角的平行四边形 C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形 5.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=( A )A.10° B.15° C.20° D.25° 6.在同一平面直角坐标系中,函数y=k(x�1)与y= 的大致图象是( B ) A. B. C. D.二.填空题(本大题共10小题,每小题3分,共30分) 7. + =3 . 8.如果最简二次根式与是同类二次根式,则a=1 . 9.在式子、、、、 + 、9x+ 中,分式有 3 个. 10.已知反比例函数,当x<0时,y随x的增大而减小,那么k的取值范围是k>2 . 11.如图,点A、B在函数y= (x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2= 4 . 12.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为 4 . 13.如图,已知⊙O的半径为5,若AB=8,点P是线段AB上的任意一点,则OP的取值范围是3≤OP≤5 .14.如图,直角坐标系中一条圆弧经过格点A,B,C,其中B点坐标为(3,4),则该弧所在圆心的坐标是(1,1). 15.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x米,根据题意可得方程 +=10 . 16.矩形ABCD,AB=4,BC=6,点E是AB的中点,点F 是BC 上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则PC的最小值是 2 -2 .三.解答题(共10小题) 17.(12分)(1)计算× �(2 )2 (2)已知x=2�,求 x2�4x+1的值.解:(1)原式= �8 = 5�8 = �3;(2)∵x=2�,∴x�2=�,∴(x�2)2=3,∴x2�4x+1=0.18.(12分)解下列分式方程. (1) ; (2) +1.解:(1)x=3 (2) x=-1 (2)x=1是增根19.(8分)先化简后求值:其中x=-4.解:= = 1 20.(8分)如图,在以点O为圆心的两个圆中,大圆的弦AB交小圆于点C、D,求证:AC=BD.证明:过圆心O作OE⊥AB于点E,在大圆O中,OE⊥AB,∴AE=BE.在小圆O中,OE⊥CD,∴CE=DE.∴AE�CE=BE�DE.∴AC=BD.21.(10分)如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.(1)∵在三角形ABC中,∠ACB=90°,AC=3,BC=4,∴AB= = =5,点C作CE⊥AB于点E,由三角形面积可求CE=2.4 AE=1.8,∴AD=2AE=2×1.8=3.6 ∴BD=AB�AD=5�3.6=1.4.22.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.解:(1)图略,(2)截面的半径=10.23.(10分)某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高25%,原计划完成这项工程需要多少个月?解:原计划完成这项工程需要30个月24.(10分)如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,3),B(n,�2)两点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)若P(p,y1),Q(�2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p的取值范围.(1)反比例函数的解析式是y= ;一次函数的解析式是y=x+1;(2)5 (3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤�2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤�2或p>0.25.(10分)在Rt△ABC中∠ABC=90°,以点A为圆心,AB为半径,作⊙A交AC于点F,交BA的延长线于点D,过点D作AC的平行线交⊙A于点E,连接AE、CE,EF.(1)求证:CE⊥AE; (2)当∠CAB等于多少度时,四边形ADEF为菱形并给于证明.【解答】(1)证明:∵DE∥AC,∴∠D=∠CAB,∠DEA=∠EAF,∵∠D=∠DEA,∴∠FAE=∠CAB,∴△ABC≌△AEC(SAS),∴∠AEC=∠ABC=90°,∴AE⊥CE;(2)解:当∠CAB=60°时,四边形ADFE为菱形.理由如下:∵∠CAB=60°,∴∠FAB=∠CAE=∠DAE=60°,∵AD=AE=AF ∴△ADE △AE F都是等边三角形∴AD=DE=EF=AF,∴四边形ADFE是菱形. 26.(12分)已知如图:正方形ABCD在第一象限,边长为4,顶点A、B分别在y轴与x轴正半轴上运动,点P为正方形ABCD对角线AC、BD的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华一寄宿八年级数学月考答案
一,B,A,B,C,D,B,B,C,C,D
二,11,-2
12,13
13,相等的角是对顶角
14,4 15,33
16,2(∵∠PAB=∠PBC,∴∠APB=90°,取AB 中点D,连PD,CP ,由题设OP=3,OC=5 当O,P ,C 三点共线时,CPmin=2)
三,17,(1)0,(2),a 2a 20
18,4-2x
19.证:∵四边形ABCD 是平行四边形
∴AD ∥BC,AD=BC;
又E,F 为AD,BC 的中点
∴ED=BF
∴四边形BFDE 为平行四边形
∴BE ∥FD
∴∠EGH=∠FHG
∴∠AGE=∠FHC
又∠EAG=∠FCH,AE=FC
∴△AEG ≌△CFH
∴AG=CH
20,证:连EB,ED.
∵∠ABC=90°E 为AC 中点,
∴EB=
2
1AC, 同理,ED=21AC ∴EB=ED
又∵F 为BD 中点。

∴EF ⊥BD.
21, 20
22,(1)证:∵四边形ABCD 是平行四边形
∴AB=DC,AD=BC,∠ADC=∠CBA,
又△ADF,△ABE 为等边三角形
∴DA=DF,BA=BE,∠ADF=∠ABE=60°
而∠FDC=360°-60°-∠ADC,∠CBE=360°-60°-∠ABC
∴DC=BE,DF=BC,∠FDC=∠CBE
∴△FDC ≌△CBE(SAS)
(2)证△FAE ≌△CBE 得EC=EF,或证∠FCE=60°
23,(1)证得EFGH 为矩形,得EH=5
(2)有面积法和勾股定理得,
45=BC AB ,(考察勾股,用相似不给分) 24,(1)(-3,3)
(2)倍长QR 至点G,连GB,GO,证△BAQ ≌△BOG 由中位线定理得RT=
2
1AQ (3)233+(过D 作DM ⊥DP 交OP 于点M)。

相关文档
最新文档