中考葵花宝典:数学篇
高等代数葵花宝典

例 1.7. 设 A 是 n 阶正定矩阵,求证 |A| ≤ a11a22 · · · ann,等号成立当且仅当 A 是 对角矩阵。
习题课上多了,自己也有一些体会。 讲课跟做题是不一样的,你必须脑子里时刻 清楚自己在讲什么,接下来要讲什么,然后把它们用平缓的节奏一遍讲正确。 你讲的 语气速度快了,或者思维有了跳跃,学生一下跟不上,那么你后面的内容他们听起 来都很茫然。 当我一时不知道说什么好的时候,我会面色如常地擦擦黑板,换换粉 笔,整理一下自己的思路,绝不轻易开口。 因为如果你不小心说错了话,那比没说要 糟糕一百倍:接下来你要用十句话来挽救你的错误,学生很可能就被绕晕了。 即使是 “嗯”、“啊”、“那么”这些口头禅,也会暴露你的思路的紊乱。高深莫测永远是 Hold 局面的不二法宝。 我曾经开玩笑地给学生说,我讲课有一个优点,就是从来没有口头 禅。 结果大家都笑了。 我不解,然后大家异口同声的告诉我:老师,你讲课有一个口 头禅,就是“很显然”(囧)。希望我在这个文档里没有再犯这个错误 :P。
证明. 首先做合同变换把 A 化成标准形
( A ∼ Er
0
) 0, 0
这时 B 仍然是半正定的(虽然 B 也发生了变化),所以不妨从一开始就假设 A 就是如
上的标准形,并设
( B = B11
B21
) B12 , B22
B12 = B2′ 1,
我们要在保持 A 的形状的前提下把 B 化成标准形。
设正交矩阵 Q 使得
目录
第零章 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
番外话 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 将打洞进行到底 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Jordan 标准形总结 . . . . . . . . . . . . . . . . . . . . . . . . 7 秩不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 交结数:刻画相似程度的不变量 . . . . . . . . . . . . . . . . 16 同时上三角化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 覆盖定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 有理标准形和交换的矩阵 . . . . . . . . . . . . . . . . . . . . 25 解题的艺术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2022年中考数学复习 ——专题4化折为直-费马点与胡不归

化折为直—费马点费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离.若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点.例1.1已知,如图在△ABC 中,∠ACB=30°,BC=5,AC=6,在△ABC 内部有一点 D,连接DA、DB、DC,则 DA+DB+DC 的最小值是________.例1.2已知,如图在△ABC中,∠ACB=30°,BC=5,AC=6,在△ABC内部有一点D,连接DA、DB、DC,则DA+DB+DC的最小值是.知识精讲典例突破例1.3如图,矩形ABCD中,AB=3,AD=6,点E是矩形内一个动点,且满足S△BCE=S,点P是△EBC内一个点,则PE+PB+PC的最小值为.矩形ABCD例1.4如图,在长方形ABCD中,AB=8,AD=7.点P是长方形内一动点,点Q是DC边上的动点.若△ABP的面积为12,则AP+BP+PQ的最小值是.例1.5问题提出(1)如图,点M、N是直线1外两点,在直线1上找一点K,使得MK+NK最小.问题探究(2)在等边三角形ABC内有一点P,且P A=3,PB=4,PC=5,求∠APB度数的大小.问题解决(3)如图,矩形ABCD是某公园的平面图,AB=30米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的和的最小值;若不存在,请说明理由.例1.6问题提出(1)如图①,点M为⊙O外一点,点A在⊙O上,⊙O的半径为3,MO=5,则MA的最大值是,MA的最小值是.问题探究(2)如图②,在正方形ABCD内部有一点P,连接PD=3,PC=6,∠DPC=135°,求PB 的长;问题解决(3)如图③,所示区域为某小区一块空地,∠BAD=∠ADC=90°,AB=20m,AD=10 m,CD=10m,所对的圆心角为60°,该物业管理部门计划在这块空地内部点P处建造一个凉亭,同时在上取一点Q,从P点分别向A、D、Q处修建文化长廊,为了节约修建文化长廊的成本,不考虑其他因素,是否存在这样的点P,使得PA+PD+PQ最小,若存在,请求PA+PD+PQ的最小值;若不存在,请说明理由.1.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为()A.+B.+C.4D.32.如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E,F,则EA+EB+EF+FC+FD的最小值为公里.3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.巩固反击化折为直—胡不归问题例1.1如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M 为对角BD(不含B点)上任意一点,则 AM+21BM的最小值为。
葵花宝典——初中数学解题思维方法篇

初中数学解题方法小结1.配方法它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2.因式分解法因式分解在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3.换元法(等量代换)所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
换元法是数学中一个非常重要而且应用十分广泛的解题方法4.判别式法与韦达定理方程思想b²-4ac与0的大小关系例如:求函数的解析式,先设方程,再代入坐标求系数值6. 构造法(数形结合法)在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
例如:如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =5,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长;并求AC +CE 的最小值;(2)若x +y =12,x >0,y >0请仿照(1)中的规律,运用构图法求出代数式9422+++y x 的最小值.7. 反证法反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
8. 等(面或体)积法9. 几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10. 归纳法归纳法是指通过前几个式子或图形的规律归纳出通项公式。
11. 数学分析法数学分析法是指根据某些技术问题之间的内在联系,运用数学模型来分析其相互之间关系的一种方法。
北京中考数学定义总结(3篇)

北京中考数学定义总结第1篇二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方形式(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
代数式1、代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2、整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
葵花宝典2.0

导数-----------By 墨(如有错误欢迎指正)一.参变分离1. 注意分离后的函数是否严格单调2. 注意定义域上是否取遍3. 严格单调且定义域取遍用端点效应 二.端点效应比较适用于恒成立问题,那么区间的端点也一定满足恒成立要求 1. 优先论证函数严格单调2. 在区间左右端至少能找一点满足题干3. 不到万不得已不要取无穷远端注:一旦定义域完全为开区间,要么丢失此法,要么洛必达开始论述,要么证明函数严格单调并证函数值大于(小于)端点值 【例1】方法1:参变分离 方法2:端点效应解: (我们可以看到函数要非负一定要增,也可能又增又减出现极小值) (这就是函数增的一个条件)(这就是函数值非负的必要条件,我们仅考虑的是函数严格递增的条件) (现在我们论证一下函数是否在此条件下单调增)显然我们应有此方法成立的充要条件是函数严格单调,我们考虑的端点并不是整个定义域的增减趋势,但是从0开始函数值一定要单调增,否则恒成立失效。
于是才有导函数在0处也非负,我们就得到a 的一个大致范围,通过这个大致范围作为已知条件验证其充分性。
【注】:充分性验证时一旦出现导函数有小于0的情况,表示函数不单调,则在必要性的条件下研究函数的最值。
【思考1】的取值范围,求有,a x f x ax e ax x f x0)(,01)1()(≥∀++-=φ 20,0)(0)('22)('202)0(')('0)('0,0)(0)0(0,0)(≤∀≥∴≥-+=∴≤≥+-+=≤∴≥-=-+=≥∀≥=∀≥----a x x f a e e x f a e e a e e xf a a f a e e x f x f x x f f x x f xx x x x x x x 是恒成立的充分必要条件充分性:恒成立的必要条件为又恒成立φΘφφΘ的取值范围恒成立,求,使得,其中a x f x ax e e x f x x 0)(0)(≥∀--=-φ三:极值点偏移我们分析一下二次函数:我们把1).构造:判断函数单调性确定两对称点的区间,分析法(传统艺能,不在论述))()()(,.2)2()()(,2.1)()(),(,),(2020210021212121xx f x f x G x x x x x f x f x F x x x x f x f x x x x x f -=--=+=≠∃构造与构造与已知函数2) 对数均值不等式2222ln ln 112b 0b a ba b a b a ab ba a ++--+ππππππ,则若)1()(02)11(2211)('0)(,ln 21)()1(ln 211ln ln ln 12ln ln 12ln ln 0=∴≥-=-+=--=-⇔∴=-⇔--⇔+--⇔+--f t f x xx t f t f t t t t f t t t t ba t baa b b a b a b a abb a b a b a abba b a b a ab b a φφφφφφφφφππφφ恒成立只需证则令原式令①左边:要证不妨设证明:021********2),()()(,)(x x x x x f x f x x x x c bx ax x f =+=≠∃++=我们有是二次函数的对称轴,使得,称为极值点右偏。
2024年中考数学抢分秘籍(解析版)(全国通用版):知识必备03 函数及其图像

知识必备03函数及其图像(公式、定理、结论图表)考点一、平面直角坐标系点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y;(2)点P(x,y)到y(3)点.典例1:(2022•淄博)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是(﹣2023,2022).【分析】由题意观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),由2022=505×4+2,推出D2022(﹣2023,2022).【解答】解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).【点评】本题考查坐标与图形的变化﹣旋转,等腰直角三角形性质,规律型问题,解题的关键是学会探究规律的方法,属于中考选择题中的压轴题.考点二、函数及其图象由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数y (k 0)中的常数k;确定一个一次函数,确定一个正比例函数,就是要确定正比例函数定义式kx典例2:(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P (m ,2)是△ABC 内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值,当P 为直线y =2与直线y 1的交点时,m 取最小值,∵y 2=﹣x +3中令y =2,则x =1,y 1=x +3中令y =2,则x =﹣1,∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2.故选:B .【点评】本题考查一次函数的性质,要求符合题意的m 值,关键要理解当P 在何处时m 存在最大值与最小值,由于P 的纵坐标为2,故作出直线y =2有助于判断P 的位置.需要确定一次函数定义式b kx y (k 0)中的常数k 和b.解这类问题的一般方法是待定系数法.典例3:(2022•y =kx +b 的图象与x 轴交于点A ,与y 轴交于点B (0,9),与直线OC 交于点C (8,3).(1)求直线AB 的函数表达式;(2)过点C 作CD ⊥x 轴于点D ,将△ACD 沿射线CB 平移得到的三角形记为△A ′C ′D ′,点A ,C ,D 的对应点分别为A ′,C ′,D ′,若△A ′C ′D ′与△BOC 重叠部分的面积为S ,平移的距离CC ′=m ,当点A ′与点B 重合时停止运动.①若直线C ′D ′交直线OC 于点E ,则线段C ′E 的长为m (用含有m 的代数式表示);②当0<m <时,S 与m 的关系式为m 2;③当S =时,m 的值为或15﹣2.【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;②根据题意可知,当0<m<时,点D′未到直线OC上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m<时,当<m<5时,当5<m<10时,当10<m<15时,S与m 的关系式,分别令S=,建立方程,求出m即可.【解答】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②法一、当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;法二、∵C′D′∥BO,∴△CC′E∽△CBO,∴=()2,即=,∴S=m2.故答案为:m2.③法一、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=SA′C′D′=×4×3=6≠,不符合题意;△当10≤m≤15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.法二、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);(同法一)当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∵SA′C′D′=×4×3=6,△∴SA′CM=6﹣=,△∵SAOC=18,△∵A′D′∥OA,∴△A′CM∽△ACO,∴=,∴CA′=,∴m=C′A′﹣CA′=5﹣,当5≤m<10时,如图3,S=SA′C′D′=×4×3=6≠,不符合题意;△当10≤m≤15时,如图4,∵A′D′∥x轴,∴△A′BK∽△ABO,∵S=,SABO=54,△∴=,解得BA′=2,∴m=BA﹣BA′=15﹣2.故答案为:或15﹣2.【点评】本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A ′C ′D ′的运动,进行正确的分类讨论是解题关键.考点四、反比例函数反比例函数中反比例系数的几何意义,如下图,过反比例函数)0( k xk y 图像上任一点),(y x P 作x 轴、y 轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON 的面积S=PM PN=xy x y .,y x k ∵∴||k S k xy ,.典例4:(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=的图象相交于A ,B 两点,点A 的横坐标为2,点B的横坐标为﹣1,则不等式k1x+b<的解集是()A.﹣1<x<0或x>2B.x<﹣1或0<x<2C.x<﹣1或x>2D.﹣1<x<2【分析】根据两函数图象的上下位置关系结合交点横坐标,即可得出不等式k1x+b<的解集,此题得解.【解答】解:观察函数图象可知,当﹣1<x<0或x>2时,一次函数y1=k1x+b的图象在反比例函数y2=的图象的下方,∴不等式k1x+b<的解集为:﹣1<x<0或x>2,故选:A.解集是解题的关键.典例5:(2022•徐州)如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.【分析】(1)设点A的坐标为(m,),根据轴对称的性质得到AD⊥CE,AD平分CE,如图,连接CE交AD于H,得到CH=EH,求得E(2m,),于是得到点E在这个反比例函数的图象上;(2)①根据正方形的性质得到AD=CE,AD垂直平分CE,求得CH=AD,设点A的坐标为(m,),得到m=2(负值舍去),求得A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,解方程组即可得到结论;②延长ED交y轴于P,根据已知条件得到点B与点D关于y轴对称,求得|PE﹣PD|=|PE﹣PB|,则点P 即为符合条件的点,求得直线DE的解析式为y=x﹣2,于是得到结论.【解答】解:(1)点E在这个反比例函数的图象上,理由:∵一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,∴设点A的坐标为(m,),∵点C关于直线AD的对称点为点E,∴AD⊥CE,AD平分CE,如图.连接CE交AD于H,∴CH=EH,∵BC=CD,OC⊥BD,∴OB=OD,∴OC=AD,∵AD⊥x轴于D,∴CE∥x轴,∴E(2m,),∵2m×=8,∴点E在这个反比例函数的图象上;(2)①∵四边形ACDE为正方形,∴AD=CE,AD垂直平分CE,∴CH=AD,设点A的坐标为(m,),∴CH=m,AD=,∴m=×,∴m=2(负值舍去),∴A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,∴;②延长ED交y轴于P,∵CB=CD,OC⊥BD,∴点B与点D关于y轴对称,∴|PE﹣PD|=|PE﹣PB|,则点P即为符合条件的点,由①知,A(2,4),C(0,2),∴D(2,0),E(4,2),设直线DE的解析式为y=ax+n,∴,∴,∴直线DE的解析式为y=x﹣2,当x=0时,y=﹣2,∴P(0,﹣2).故当|PE ﹣PB |最大时,点P 的坐标为(0,﹣2).【点评】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.考点五、二次函数1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为 221221y y x x .2、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a b x 2 时,ab ac y 442 最值.如果自变量的取值范围是21x x x ,那么,首先要看a b 2是否在自变量取值范围21x x x 内,若在此范围内,则当x=a b 2 时,ab ac y 442最值;若不在此范围内,则需要考虑函数在21x x x 范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x 时,c bx ax y 222最大,当1x x 时,c bx ax y 121最小;如果在此范围内,y 随x 的增大而减小,则当1x x 时,c bx ax y 121最大,当2x x 时,c bx ax y 222最小.4、抛物线的对称变换①关于x 轴对称2y ax bx c 关于x 轴对称后,得到的解析式是2y ax bx c ;2y a x h k 关于x 轴对称后,得到的解析式是 2y a x h k .②关于y 轴对称2y ax bx c 关于y 轴对称后,得到的解析式是2y ax bx c ;2y a x h k 关于y 轴对称后,得到的解析式是 2y a x h k .③关于原点对称2y ax bx c 关于原点对称后,得到的解析式是2y ax bx c ;2y a x h k 关于原点对称后,得到的解析式是 2y a x h k .④关于顶点对称2y ax bx c 关于顶点对称后,得到的解析式是222b y ax bx c a ; 2y a x h k 关于顶点对称后,得到的解析式是 2y a x h k .⑤关于点 m n ,对称2y a x h k 关于点 m n ,对称后,得到的解析式是 222y a x h m n k .根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称图象的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.典例6:(2022•内蒙古)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x =1,下列结论:①abc <0;②3a +c =0;③当y >0时,x 的取值范围是﹣1≤x <3;④点(﹣2,y 1),(2,y 2)都在抛物线上,则有y 1<0<y 2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图象知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图象看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.考点六、函数的应用分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.典例7:(2022•德州)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为y=x2﹣4x+1.已知二次函数y=ax2+bx+c的图象经过点A(0,1),B(1,﹣2),.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:C(2,﹣3)(答案不唯一);(2)当函数值y<6时,自变量x的取值范围:﹣1<x<5;(3)如图1,将函数y=x2﹣4x+1(x<0)的图象向右平移4个单位长度,与y=x2﹣4x+1(x≥4)的图象组成一个新的函数图象,记为L.若点P(3,m)在L上,求m的值;(4)如图2,在(3)的条件下,点A的坐标为(2,0),在L上是否存在点Q,使得SOAQ=9.若存△在,求出所有满足条件的点Q的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出y=6时,对应的x值,再结合图象写出x的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为y=(x﹣6)2﹣3,根据题意可知x=3时,P点在抛物线y=(x﹣6)2﹣3的部分上,再求m的值即可;(4)分两种情况讨论:当Q点在抛物线y=(x﹣6)2﹣3的部分上时,设Q(t,t2﹣12x+33),由SOAQ△=2×(t2﹣12x+33)=9,求出Q点坐标即可;当Q点在抛物线y=x2﹣4x+1的部分上时,设Q(m,m2﹣4m+1),由SOAQ=2×(m2﹣4m+1)=9,求出Q点坐标即可.△【解答】解:(1)C(2,﹣3),故答案为:C(2,﹣3)(答案不唯一);(2)∵y=x2﹣4x+1,∴当x2﹣4x+1=6时,解得x=5或x=﹣1,∴当y<6时,﹣1<x<5,故答案为:﹣1<x<5;(3)∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线向右平移4个单位后的解析式为y=(x﹣6)2﹣3,当x=3时,点P在抛物线y=(x﹣6)2﹣3的部分上,∴m=6;(4)存在点Q,使得SOAQ=9,理由如下:△当Q点在抛物线y=(x﹣6)2﹣3的部分上时,设Q(t,t2﹣12x+33),∴SOAQ=2×(t2﹣12x+33)=9,△解得t=6+2或t=6﹣2,∴t<4,∴t=6﹣2,∴Q(6﹣2,9);当Q点在抛物线y=x2﹣4x+1的部分上时,设Q(m,m2﹣4m+1),∴SOAQ=2×(m2﹣4m+1)=9,△解得m=2+2或m=﹣2,∵m≥4,∴m=2+2,∴Q(2+2,9);综上所述:Q点坐标为(6﹣2,9)或(2+2,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.。
高等数学公式大全之葵花宝典

高等数学公式大全导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
研究方法之葵花宝典

1.选题的来源: (1)现实生活 2.选题的依据: (1)意义 备 (4)经验 3.选题的原则: (1)必要性 (2)创造性 (3)可行性 (4)适当性(主要是与能力相适应) (2)感兴趣 (3)知识结构和知识准 (2)个人经历 (3)相关文献
心诀二:葵花点穴 三招致命
研究目的清晰,是你所能掌握和控制的 研究目的清晰,
所以, 所以,
我们要做前人没有做过的,哪怕只是一点点。 我们要做前人没有做过的,哪怕只是一点点。 要从小问题入手,先做透了, 要从小问题入手,先做透了,再慢慢往外扩展 (或放松假设条件、或考虑更多的因素)。只 或放松假设条件、或考虑更多的因素)。只 )。 要你确确实实解决了一个新问题,哪怕再小, 要你确确实实解决了一个新问题,哪怕再小, 学术界也要接受它, 学术界也要接受它,而重复别人的研究是不会 留下痕迹的。 留下痕迹的。
不能在一个领域里长期研究的人,心太浮躁, 不能在一个领域里长期研究的人,心太浮躁, 往往投机取巧,简单重复别人的工作, 往往投机取巧,简单重复别人的工作,尤 其是外国人的成果,拿来蒙骗国人。 其是外国人的成果,拿来蒙骗国人。 重复制作容易涉嫌剽窃,是在浪费纳税人提 重复制作容易涉嫌剽窃, 供的科研经费! 供的科研经费!
一篇文章只能解决几个小问题,忌贪多求大 一篇文章只能解决几个小问题,
心诀三:言之成理 持之有故
阅读与使用文献: 阅读与使用文献:文献综述
要大量阅读前人的文献, 要大量阅读前人的文献,没有前人成果做基 础的夸夸其谈,只能显示其“无知” 础的夸夸其谈,只能显示其“无知”。世界 很大,人很多, 很大,人很多,你思考的别人可能早思考过 千万不要闭关自守。 了,千万不要闭关自守。 歌德早就说过: 在任何一个方向上, 歌德早就说过 在任何一个方向上 我们能够 提出的任何一个问题, 前人都早已提出来过。 提出的任何一个问题 前人都早已提出来过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考葵花宝典(选择题篇)作者注:中考欲练此功,必须上课用功!!在中考数学试题中,选择题占相当大的比例,因此,解答选择题对考试成绩影响很大。
解数学选择题,常可以从选择支出发进行思考,充分利用选择支所提供的信息与"只有一个正确答案"的方向,改变解题策略,充分发挥直观的作用,发现其特殊的数量关系和图形位置特征,迅速解题。
下面举例谈谈解数学选择题的五种常用方法,供大家复习时参考。
一. 直接法例1. 若有意义,则()。
解:根据题设,注意到a<0,直接化简原式,可得。
选C。
点拨:直接法就是直接从条件出发,通过合理运算和严密推理,最后推出正确的结果,再对照选择支解答的一种解题思路。
二. 特例法例2. 若a<0,-1<b<0,则()解:取a=-1,b=-1/2,很容易得到答案为D。
点拨:特例法就是用符合已知条件的特例或考虑特殊情况、特殊位置,检验选择支或化简已知条件,得出答案。
当已知条件中有范围时可考虑使用特例法。
三. 检验法例3. 方程的解是()A. 3B. 2C. 1D.3/7解:把四个选择支的数值代入方程中,很快就可知道答案为C。
点拨:检验法就是将选择支分别代入题设中或将题设代入选择支中检验,从而确定答案。
解答本题时若直接解方程,要浪费很多时间和精力。
当结论为具体值时可考虑使用检验法。
四. 排除法例4. 在同一坐标平面内,函数与的图象只可能是()解:选择支A中抛物线肯定错误,B中直线肯定错误(若为抛物线也错误),C中直线和抛物线不是同时正确的,故选D。
点拨:排除法就是利用一些基本概念、定理和简单的运算,通过排除容易发现错误的选择支,从而推断正确答案的方法。
五. 图解法例5. 二元一次方程组的解的情况是()A. x、y均为正数B. x、y均为负数C. x、y异号D. 无解解:将两个二元一次方程分别看作两个一次函数和,在直角坐标平面内画出图象,由于直线与平行,所以选D。
点拨:图解法就是根据数形结合的原理,先画出示意图,再通过观察图象的特征作出选择的方法。
在解数学选择题时,直接法是最基本和使用率最高的一种方法。
当题目具备一定的条件和特征时,可考虑采用其他四种方法。
有时解一个选择题需要几种方法配合使用。
另外还要注意充分利用题干和选择支两方面所提供的信息,全面审题。
不但要审清题干给出的条件,还要考察四个选项所提供的信息(它们之间的异同点及关系、选项与题干的关系等),通过审题对可能存在的各种解法(直接的、间接的)进行比较,包括其思维的难易程度、运算量大小等,初步确定解题的切入点。
思考题:在△ABC中,,AB>AC,则()。
中考数学填空题的四大常用方法数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是中考数学中的三种常考题型之一。
它和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍、跨度大、知识覆盖面广、考查目标集中,形式灵活,答案简短、明确、具体,评分客观、公正、准确等。
填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学中考命题重要的组成部分,它约占了整张试卷的三分之一。
因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。
解答填空题的基本策略是准确、迅速、整洁。
准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过2 0分钟左右,速度越快越好,要避免"超时失分"现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。
中考中的数学填空题一般是容易题或中档题,数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
求解填空题的基本策略是要在"准"、"巧"、"快"上下功夫。
常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
例1、如果是线段AB的两个黄金分割点,且=1,则AB=_________.解:设AB=x, 则x-2(1-)x=1,解得x=,所以AB=.例2、函数的定义域是___________________.解:由函数成立的条件得解得-1<x≤1,所以定义域为-1<x≤1的一切实数.例3、如图,现有线段AB=2,MN=3,若在线段MN上随机取一点P,恰能使线段AB、MP、NP组成一个三角形三边的概率是____________.解:设MP=x,则NP=3-x,由三角形两边之和大于第三边,两边之差小于第三边,得,解得1/2<x<5/2,直接得出P点在线段MN大于1/2和小于5/2之间,占线段MN=3的2/3,所以恰能使线段AB、MP、NP组成一个三角形三边的概率为2/3.例4、(扑克牌游戏)小明背对小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。
这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是____________.解:不妨设分发左、中、右三堆牌均为a张,且a>2,经过第二、三步后,左堆牌为(a-2)张,中间一堆牌有(a+3)张,操作第四步,则中间一堆剩下的张数为(a+3)-(a -2)=5.二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。
这样可大大地简化推理、论证的过程。
例5、填空题:已知a<0,那么,点P(-a^2-2,2-a)关于x轴的对称点是在第_______象限.解:设a=-1,则P{-3,3}关于x轴的对称点是{-3,-3}在第三象限,所以点P (-a^2-2,2-a)关于x轴的对称点是在第三象限.例6、无论m为任何实数,二次函数y=x^ 2+(2-m)x+m的图像都经过的点是 _ ______.解:因为m可以为任何实数,所以不妨设m=2,则y=x ^2+2,再设m=0,则y=x ^2+2x解方程组解得所以二次函数y=x ^2+(2-m)x+m的图像都经过的点是(1,3).三、数形结合法"数缺形时少直观,形缺数时难入微。
"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
例7、在直线l上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,,则S1+S2+S3+S4=_______。
解:四个正方形的面积依次是S1、S2、S3、S4,可设它们的边长分别为a、b、c、d,由直角三角形全等可得,解得a^2+b^2+c^2+d^2=4,则S1+S2+S3+S 4=4.例8、如图,由10块相同的长方形地砖拼成的一块长方形地面图案(地砖间隙不计),如果图案的宽为75cm,那么图案的长为_______cm.解:设小长方形是宽为xcm,长为ycm,由图可得,解得,则图案的长为2y=90cm.四、等价转化法通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。
例9、若是方程x^2-3x-5=0的两个根,则的值是________.解:这里的不是关于根的对称式,不能直接用韦达定理求解,但利用方程根的概念,将降次,转化为两根的对称式,就可以使问题迎刃而解.因为,所以,从而.例10、如图,在△ABC中,AB=7,AC=11,点M是B C的中点,AD是∠BAC 的平分线,MF∥AD,则FC的长为_________.解:如图,设点N是AC的中点,连接MN,则MN∥AB.又MF∥AD,所以,所以.因此例11、如图,矩形内两相邻正方形的面积分别是和,那么矩形内阴影部分的面积是________(结果可用根号表示)解:把小阴影部分的图形向上平移,组合成阴影部分的一个矩形,它的长是,宽为,则阴影部分的面积是例12、如图6,在中,E为斜边AB上一点,AE=2,EB=1,四边形DEFC为正方形,则阴影部分的面积为________.解:将直角三角形EFB绕E点,按逆时针方向旋转,因为CDEF是正方形,所以EF和ED 重合,B点落在CD上,阴影部分的面积转化为直角三角形ABE的面积,因为AE=2,EB =1,所以阴影部分的面积为1/2*2*1=1.由以上的例子我们可以看到数学思想方法是处理数学填空题的指导思想和基本策略,是数学的灵魂,它能够帮助我们从多角度思考问题,灵活选择方法,是快速准确地解数学填空题的关键。
因此,我们首先要对初中数学知识和技能做到"透彻理解,牢固掌握,融会贯通"进而领悟和掌握以数学知识为载体的数学思想方法,来提高思维水平,运用数学思想方法达到"举一反三,熟练运用,提升素养"的目的。