立体几何

合集下载

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

(完整版)立体几何初步知识点(很详细的)

(完整版)立体几何初步知识点(很详细的)

立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

立体几何基本概念

立体几何基本概念

1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。

立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。

立体测绘(Stereometry)是处理不同形体的体积的测量问题。

如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。

立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。

立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。

各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。

学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。

三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。

1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。

立体几何大题15种题型全归纳

立体几何大题15种题型全归纳

【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。

第9讲 立体几何

第9讲  立体几何

在四棱锥 P-ABCD 中,PA⊥底面 ABCD,底面各边 都相等, 是 PC 上的一动点, M 当点 M 满足BM⊥PC 时, 平面 MBD⊥平面 PCD. 立体几何中平行、垂直关系的证明的基本思路是利用线 面关系的转化,即: 线∥线↔线∥面↔面∥面
判定 线⊥线↔线⊥面↔面⊥面 性质
线∥线↔线⊥面↔面∥面 如(ⅲ)已知直线 l⊥平面 α,直线 m⊂平面 β,给出下列 四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒ α⊥β ; ④l⊥m ⇒ α∥β. 其 中 正 确 的 命 题 是
8.直线与平面平行的判定和性质 (1)判定:①判定定理:如果平面外的一条直线和这个 平面内的一条直线平行,那么这条直线和这个平面平 行;②面面平行的性质:若两个平面平行,则其中一 个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这 条直线的平面和这个平面相交的交线和这条直线平 行.在遇到线面平行时, 常需作出过已知直线且与已知 平面相交的辅助平面,以便运用线面平行的性质.如 α、β 表示平面,a、b 表示直线,则 a∥α 的一个充分 不必要条件是( D ) A.α⊥β,a⊥β C.a∥b 且 b∥α B.α∩β=b,且 a∥b D.α∥β 且 a⊂β
(4)体积公式 V 柱=S·h (S 为底面面积,h 为高), 1 V 锥= S·h(S 为底面面积,h 为高). 3 (5)球的表面积和体积 4 3 2 S 球=4πR ,V 球= πR . 3
2.空间直线的位置关系:①相交直线——有且只有一个 公共点.②平行直线——在同一平面内,没有公共 点.③异面直线——不在同一平面内,也没有公共点. 如(1)空间四边形 ABCD 中,E、F、G、H 分别是四边 上的中点,则直线 EG 和 FH 的位置关系是 相交 . (2)给出下列四个命题: ①异面直线是指空间既不平行又不相交的直线; ②两异面直线 a,b,如果 a 平行于平面 α,那么 b 不 平行平面 α; ③两异面直线 a,b,如果 a⊥平面 α,那么 b 不垂直 于平面 α; ④两异面直线在同一平面内的射影不可能是两条平 行直线.其中正确的命题是 ①③ .

高中立体几何(全一册)

高中立体几何(全一册)

高中立体几何 (全一册)第一章直线和平面第三单元空间直线和平面一、教法建议【抛砖引玉】本单元主要研究空间直线与平面的位置关系,是立体几何基础中的支柱.通过研究空间直线与平面位置关系的判定和性质,用以解决立体几何中的计算和证明问题.空间直线和平面的位置关系共分为两类:一是直线在平面内,如果一条直线上有不同的两点落在同一个平面内,那么整条直线就落这个平面内.此时直线这个点集是平面点集的真子集;二是直线在平面外,直线在平面外又分为两种情况:直线与平面平行,这里有平行的定义、平行的判定和平行的性质;还有直线与平面相交,当直线与平面有且仅有一个交点时,直线就与平面相交,相交时又有两种不同的位置关系,第一是直线与平面垂直,垂直的定义、垂直的判定和垂直的性质,同时提出了立体几何中最重要的定理──三垂线定理及其逆定理,为后续知识的学习奠定坚实的基础;第二是直线与平面斜交,有直线在平面内的射影和直线与平面所成角的概念.本单元的重点之一是研究直线与平面的平行.平行的定义是直线与平面没有公共点;如何判定直线与平面的平行呢?如果平面外的一条直线和这个平面内的某一条直线平行,那么这条直线就平行于这个平面.这就是判定定理,简称为“线线平行,线面平行”.直线和平面平行以后又有些什么性质呢?当直线a平行于平面α以后是否有平面内任何一条直线都平行于直线a呢?结论是否定的,我们有如下的性质定理:如果一条直线和一个平面平行,经过这条直线的一个平面与已知平面相交,那么这条直线就和交线平行.这是直线与平面平行的性质定理,简称为“线面平行,线线平行.”这两种简称都要在理解原定理的意思中说出各个线和面的意义.本单元重点之二是研究直线与平面的垂直.垂直的定义要求很高,一条直线如果垂直于一个平面内的任何一条直线,那么称这条直线垂直于这个平面.有了这个要求很高的定义以后,判定就变行相对宽松一些,如果一条直线垂直于平面内的两条相交直线,那么称这条直线垂直于已知平面.注意它的证明纯粹应用平面几何中等腰三角形的性质和判定.此外,还有两条平行直线与平面垂直的判定和性质的两个定理.平面的斜线与平面所成的角是指斜线和它在平面上的射影所成的锐角,特别地当直线垂直于平面时,直线与平面成直角;当直线平行于平面时,直线与平面成零角.因此,设Q是直线l与平面α所成的角时,角θ的取值范围是θ∈[0,2 ].本单元的重点之三是三垂线定理及其逆定理,它们都是研究直线与直线关系的.在研究空间图形时,常常利用它们把某些空间图形的计算问题转化为平面图形的计算问题,证明问题也的这样,所以三垂线定理及其逆定理是立体几何的重要支柱.这两个定理的证明仅仅用到直线与平面垂直的判定和定义,是不难掌握的,同学们在学习过程中应特别注意的是搞清三垂线定理及其逆定理的区别,应用定理时,说清究竟是用三垂线定理,还是三垂线定理的逆定理.【指点迷津】本单元的知识,既重要,又难学.教师对学生的指导必须在给学生认真讲清概念关键的同时,用模型给学生摆清各种直线和平面的位置关系,解决好使学生建立空间概念的问题.在教学过程中使学生的空间想象能力逐步得到培养;同时还要学会把空间想象出来的线面关系在二维平面上表示出来.在纸面上画出来.也就是要做到:第一,直线与平面的位置要想得出,能理解,会比划;第二是把想象出的位置关系画到平面上.这是有一定难度的.因为平面几何研究的是二维的平面图形的性质,学生从初中升入高一,本来就对想象三维空间的线面关系感到困难,又要把想象出来的三维线面关系重新表示到二维纸面上来,画好图,画得直观、生动,关键是符合科学性,而且看到图又要能想象出位置关系,而这个过程是必须要过的,而且一定要过好,这就叫做空间想象能力的培养.二、学海导航【思维基础】学习本单元的知识,主要抓住空间直线与平面的平行、斜交和垂直三种主要位置关系.每一种位置关系都要搞清一系列问题.例如,怎样定义直线与平面平行?如何判定直线与平面平行,有几种方法?直线与平面平行以后,有些什么性质?又例如,怎样定义直线与平面的垂直?如何判定直线与平面垂直,有几种方法?直线与平面垂直以后,又有些什么性质?都必须通过整理,弄懂弄通,运用自如,才真掌握了这些知识;还比如,平面的斜线中有一个斜线长和射影长的定理,这是必须注意定理的条件、前提,必须是以平面外一点出发的诸多斜线和一条垂线,如果遗忘这个条件,结论虽然是不对的.所以要求同学们认真地阅读理解定理中的原文原句,正确地掌握其内在含意.试完成以下各题:1.直线和平面平行的充要条件是这条直线和平面内的()(A)一条直线不相交(B)两条直线不相交(C)任意一条直线都不相交(D)无数条直线不相交2.设a、b是两条异面直线,下列命题中,正确的是()(A)有且仅有一条直线与a、b都垂直(B)有一个平面与a、b都垂直(C)过直线a有且仅有一个平面与b平行(D)过空间任何一点必可作一条直线与a、b都相交3.正方体AB CD—A1B1C1D1中,E、F分别是AA1和AB的中点,则EF与对角面AA1C1C 所成的角是()(A)300 (B)450(C)600(D)15004.设P是△AB C所在平面外一点,则点P在此三角形所在平面内的射影是△AB C的垂心的主要条件是()(A)P A=P B=PC (B)P A⊥B C且P B⊥A C(C)点P到△AB C三边的距离相等(D)P A、P B、PC与△AB C所在平面所成的角相等5.已知△AB C 在平面α的同侧,顶点A 、B 、C 到平面α的距离分别是11、7、3,G 是△AB C 的重心,则G 到平面α的距离等于 .6.已知长方体AB CD —A ′B ′C ′D ′中,AA ′=5,AB =12,那么直线B ′C ′′与平面A ′B CD ′的距离等于 .7.在长方体AB CD —A 1B 1C 1D 1中,AB =6,A D=8,AA 1=3.6,A E 与低面对角线B 1D 1垂直于点E .(1)求证 A 1E B 1D 1;(2)求 A E 的长.【学法指要】例1.四棱锥的四个侧面中,直角三角形的个数最多的是 ( )(A )1个(B )2个 (C)3个 (D)4个 解:如图,当四棱锥P —AB CD 的侧棱P A 垂直于底面AB CD 时,P A ⊥AB ,P A ⊥A D ,△P AB 和△P A D 都是直角三角形;当底面AB CD 是矩形时,∵B C ⊥AB ,由三垂线定理知B C ⊥P B ,∴△P B C 也是直角三角形,同理△PCD 也是直角三角形,因此侧面中直角三角形的个数最多是4个,选(D ).例如2.等腰直角三角形△AB C 中,AB =A C=1,P A ⊥平面AB C ,且P B =2.求P A 与平面P B C 所成角的正弦值. ( )解:如图,在AB C 中作A C ⊥B C 于D ,则D 是B C 中点,且A D=22,又因为P A =2,PD=412322+=, ∵A D ⊥B C ,由三垂线定理知PD ⊥B C ,∴B C ⊥平面P A D ,平面P A D ⊥平面P B C , 过A 作A O ⊥PD 于O ,则A O ⊥平面P B C .∠A PO=θ就是P A 与平面P B C 所成的角,在Rt △P A D 中,A O=PA AD PD ⋅=23, ∴sin θ=AO PA =13.即P A 与平面P B C 所成角的正弦值等于13. 例3.异面直线a 、b 分别与平面α平行,且a 、b 到平面α的距离相等,A 是直线a 上任意一点,B 是直线b 一的任意一点,求证线段AB 被平面α平分.证明:设CD 是异面直线a 、b 的公垂线段,CD 交平面α于点O ,则CO=DO ,如图,过D 作直线a ′∥a ,则相交直线a ′与b 确定的平面与平面α平行.过点A 作A ′A ⊥直线a ′,交直线a ′于点A ′,则AA ′⊥面α,设AA ′交平面α于点M ,则由于异面直线a 、b 到平面α的距离相等,所以A M=M A ′,即M 是AA ′的中点,又设AB 交平面α于点P ,连MP 、A ′B . 由于相交直线a ′与b 所确定的平面与平面α平行,这两个平行平面被平面AA ′B 所截,截得的交线MP 与A ′B 平行,由M 是AA ′的中点,知PM 是△AA ′B 的中位线,故P 是AB 的中点,即线段AB 被平面α平分.例4.在正方形SG 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 及EF 把正方形折成一个四面体,使G 1、G 2、G 3三点重合,重合后记为G ,那么在四面体S-EFG 中必有 ( )(A )SG ⊥△EFG 所在平面(B )SD ⊥△EFG 所在平面(C )GF ⊥△SEF 所在平面(D )GD ⊥△SEF 所在平面解:由于在平面图形SG 1G 2G 3中,SG 1⊥G 1G 2,SG 3⊥G 2G 3,所以折成四面休SGEF 中,∠SGE=∠SGF=Rt ∠,GE 、GF 、相交于点G ,因此SG ⊥△EFG 所在平面.故应选(A )例5.已知∠BA C 在平面α内,P A 是平面α的斜线,若∠P AB =∠P A C=∠BA C=600,P A =a .求点P 到坪面α的距离.解:过点P 作PO 平面α,∵∠P A C=∠P AB ,∴A O 平分∠BA C ,在平面α内,作OC ⊥A C于点C ,连PC ,由三垂线定理知PC ⊥A C .又∵∠P A C=600,P A =a ,∴A C=a 2∴A O=AC a cos30330= 在Rt △P A O 中,PO=PA AO a a a 22221363-=-= 故点P 到平面α的距离为63a . 例6.如图,AB CD 是边长为2a 的正方形,M 、N 分别是AB 、A D 的中点,PC ⊥平面AB CD ,PC=a .(1)求证:B D ∥平面PMN ;(2)求点B 到平面PMN 的距离.解:(1)∵M 、N 分别是正方形AB CD 的边AB 、A D 的中点,∴MN ∥B D ,MN ∈平面PMN ,∴B D ∥平面PMN .(2)∵AB CD 是正方形,∴B D ⊥A C ,MN ∥B D∴MN ⊥A C又∵PC ⊥平面AB CD ,MN ⊂平面AB CD ,∴MN ⊥PC .又PC ∩A C=点C .∴MN ⊥平面EPC .在平面EPC 内,作O H ⊥PE 于点H ,则MN ⊥O H ,∴O H ⊥平面PMN ,由于B D ∥平面PMN ,所以O H 的长就是点B 到平面PMN 的距离.在Rt △PCE 中,PC= a ,EC=()∴PE=222a ,又EO=22a ∵△E H O ∽△ECP ,∴O H :PC=EO :PE , ∴O H =PC EO PE a ⋅=1111. 故点B 到平面PMN 的距离为1111a . 例7.如图,A D 是△AB C 中B C 边上的高,在A D 上取一点E ,使A E=12ED ,过E作直线MN 平行于B C ,交AB 于M ,交A C 于N ,现将△A MN 沿MN 折过去,此时点A 到了A ′的位置,如果∠A ′ED=600,求证:E A ′⊥平面A ′B C .证明:连结A ′B 、A ′C 、A ′D ,∵A E=12ED ,A ′E=A E , ∴A ′E=12ED ,∠A ′ED=600, 在A ′ED 中,由余弦定理求得A ′D =32ED . ∴E A ′D=900,即E ′A ⊥A ′D .又A D ⊥B C ,MN ∥B C ,∴MN ⊥A D .即MN ⊥A ′E ,MN ⊥ED .因此MN ⊥平面E A ′D ,即B C ⊥平面E A ′D .E A ′⊂平面E A ′D∴E A ′⊥B C ,E A ′⊥A ′D ,A ′D ∩B C=点C∴E A ′⊥平面A ′B C评注:通常是知道位置关系,如平行,垂直等来进行计算,这里的关键在于利用A E=12ED 和∠A ED=600这两个数量关系来推断E A ′⊥A ′D ,这个位置关系,同学们应该学会.例8.已知平面α、β相交于直线PQ ,线段O A 、O B 分别垂直于平面α、β,其中A 、B 为垂足.求证:(1)PQ ⊥平面A O B(2)PQ ⊥AB .证明:(1)∵O A ⊥平面α⇒ O A ⊥PQPQ ⊥平面αO B ⊥平面β ⇒ PQ ⊥平面A O B⇒ O B PQPQ ⊂平面βO A ∩O B =点O(2)∵PQ ⊥平面A O BPQ ⊥ABAB ⊂平面A O B评注:同学们在推理论证的学习达到一定的熟练程度的时候,可以学习运用推出符号“⇒”来进行论证,这样的证明因果关系清晰,简洁明了.但是应注意两点,第一是条件必须具备齐全,然后直接运用定理便可推出;第二是必须按序一步一步地推得,不能把条件全部罗列,一个推出符号“⇒”就得到最后结论,这是不对的,请同学们学习时注意.例9.如图,地平面上有一竖直的旗杆OP ,为了测得它的高度h ,在地面上选一条基线AB ,AB =20米,在A 点处测得点P 的仰角为∠O A P=300,在B 点处测得点P 的仰角为∠O B P=450,又测得∠A O B =600.求旗杆的高(结果可以保留根号).解:设旗杆的高OP =h ,在Rt △P A O 中,∴∠P A O=300,∴A O=3h ,在Rt △P B O 中,∵∠P B O=450,∴B O=h ,在△A O B 中,∠A O B =600,由余弦定理知AB 2=A O 2+B O 2-2A O ·B O cos600,∴400=3h 2+h 2-23·h 212 ∴(4-3)h 2=400.H =2043-(米).答:旗杆的高度为h =2043-米.例10.在四面体AB CD 中,已知棱AB ⊥CD ,棱A C ⊥B D .求证棱A D ⊥B C .证明:设顶点A 在平面B CD 内的射影为O ,即 A O ⊥平面B CD 于点O ,则因为AB ⊥CD ,由三垂线逆定理知B O ⊥CD ,同理CO ⊥B D . 因此O 时△B CD 的垂心,连DO ,则DO ⊥B C ,由三垂线定理知A D ⊥B C .评注:应用三垂线定理时,正定理和逆定理不能搞错.已知平面内的直线与斜线在这个平面内的射影垂直,得到平面内的直线与斜线垂直是三垂线定理.反之,已知平面内的直线与平面的斜线垂直,推得这条直线和斜线在已知平面内的射影也垂直,是三垂线定理的逆定理.例11.已知Rt △AB C 的斜边AB 在平面α内,两直角边A C 、B C 与平面α分别成θ1和θ2角,若平面AB C 与平面α成二面角为.求证:sin 2θ1+sin 2θ2=sin 2φ证明:设直角顶点C 在平面α内的射影为O ,连结A O 、B O ,则∠C A O=θ1,∠C B O=θ2.设CO=h ,则sin θ1=h AC, sin θ2=h BC在平面AB C 中,作CD ⊥AB 于D ,连结OD ,由三垂线逆定理知OD ⊥AB 且∠CDO=φ就是平面AB C 与平面α所成二面角的平面角,而且sin φ=h CD∵sin 2θ1+sin 2θ2 =h AC h BC h AC BC AC BC 22222222+=⋅+⋅ =h AB AC BC 2222⋅⋅ 在Rt △AB C 中,∵CD ·AB =A C ·B C ,∴⋅⋅AB AC BC =1CD. ∴sin 2θ1+sin 2θ2=h AB AC BC 2222⋅⋅=h CD22=sin 2φ. 故有结论成立.例12.平面M 的一条斜线与平面M 所成的角为α,该平面内过斜足的一条直线与斜线在平面内的射影所成的角为β,与斜线所成的角为γ.求证:cos γ=cos α·cos β.证明:如图,PO 是平面M 的垂线,P A 是平面M 的斜线,O A 就是斜线P A 在平面M 内的射影,∠P A O=α就是斜线P A 与平面M 所成的角.AB 是平面M 内过斜足A 的直线,它与射影O A 所成的角为,即∠O AB=β,AB 与斜线P A 所成的角为γ,所以∠P AB =γ.在平面M 内,作O B ⊥AB 于点B .连结P B ,则由三垂线定理知P B ⊥AB ,因此,在Rt△P A O ,Rt △A O B 和Rt △P B O 中,有cos α=OA PA ,cos β=AB OA ,cos γ=AB PA因此有 cos γ=cos α·cos β.例13.已知三棱锥P —AB C 的三条侧棱P A 、P B 、PC 两两互相垂直.(1)求证点P 在平面AB C 内的射影G 是△AB C 的垂心;(2)求证△A P B 、△B PC 、△CP A 的面积平方和等于△AB C 面积的平方;(3)设二面角P —AB —C 、P —B C —A 、P —C A —B分别为α、β、γ,求证cos α·cos β·cos γ≤39 证明:(1)P A ⊥P BP A ⊥PC ⇒P A ⊥平面PB C⇒ P A ⊥B C ⇒A G ⊥B CP B ∩P B =点P PC ⊂平面P B C A G 是P A 的射影同理 B G ⊥A C ,CG ⊥AB 所以G 是△AB C 的垂心.(2)延长A G 交B C 于H ,连结P H ,∵P A ⊥平面P B C ,P H ∈平面P B C ,∴P A ⊥P H 即∠A P H =900.在Rt △P AH 中,P H 2=AH ·G H .∴(S △B PC )2=14B C 2·P H 2=14B C 2·AH ·G H =(12B C ·AH )(12B C ·G H )=S △AB C ·S △G B C . 同理(S △A P B )2=S △AB C ·S △GBC ,(S △CP A )2=S △AB C ·S △GC A ,将三式相加,便得(S △B PC )2+(S △CP A )2+(S △A P B )2=(S △AB C )2(3)∵cos=S S GAB PAB ∆∆,cos=S S GBC PBC ∆∆,cos=S S GCA PCA∆∆, ∴cos 2+cos 2+cos 2=1 ∵cos cos cos (cos cos cos )22232221313αβγαβγ⋅⋅≤++= ∴cos cos cos 222127αβγ⋅⋅≤ ∵α、β、γ为锐角.∴cos cos cos αβγ⋅⋅≤39【思维扩散】空间的直线与平面是立体几何第一章的重点.每种位置关系展开都有一系列判定定理和性质定理,学习过程中对定理的条件,定理应用的适用范围必须作周密的考虑和判定,不能一概而论,肓目应用.看下面的两个命题:命题1.已知平面α∩平面β=直线l ,直线b ∥平面α,直线b ∥平面β,则直线∥b .命题2.已知P A 是平面α的斜线,PO 是平面α的垂线,如果直线l 垂直于斜线P A ,那么直线l 一定垂直于其射影PO .命题1中的结论显然是正确的,可以这样来证明:过直线b 作平面γ,设γ∩β=直线a ,则因为直线b ∥平面β,所以直线b ∥直线a ,又因为直线b ∥平面α,直线a 在平面α外,所以,直线a ∥平面α,平面β是经过a 且与平面α相交于直线l 的平面,所以直线a ∥直线l ,由三线平行公理知直线b ∥直线l .命题2中的结论显然是错误的.平面α的垂线,斜线摆好以后,三垂线定理说的是“平面α内”的直线l ,这个条件省略以后,命题就可能是不正确的.因为垂直于斜线P A 的直线许多种不同的位置,只要在垂直于P A 的 平面内的直线都垂直于P A ,但显然不能都与射影O A 垂直.思想问题首先应该严格按照命题的条件,题目的已知,其次是在允许范围内多方位、多角度地思考问题,可以为我们创造性思维的培养奠定坚实的基础.三、智能显示【心中有数】本单元直线与平面的位置关系是立体几何第一章线面关系的重点,主要是空间直线与平面平行、空间直线与平面垂直及空间直线与平面斜交三种位置关系,每种位置关系都有定义、判定、性质等一整套理论,必须熟练地掌握,正确地使用.【动脑动手】解答下列一组题目,以检查学习效果:1.已知直线a 、b 和平面α,以下四个命题中,①a ∥b②a ⊥α ⇒b ⊥α⇒ a ∥b a ⊥αb ⊥α ③a ⊥α④a ∥α ⇒ b ∥α⇒ b ⊥α a ⊥ba ⊥b 其中正确命题是(A ) ①、②(B )①、②、③ (C) ②、③、④ (D )①、②、④2.已知直线m 、n 和平面,则α⊥β的一个充分条件是(A )m ⊥n ,m ∥α,n ∥β(B )m ⊥n ,α∩β=m ,n ⊂α(C )m ∥n ,m ⊂α,n ⊥β(D)m ∥n ,m ⊥α,n ⊥β3.如果直线l 是平面α的斜线,那么在平面内(A )不存在与l 平行的直线(B)不存在与l垂直的直线(C)与l垂直的直线只有一条(D)与l平行的直线无数多条4.在下列命题中,偶命题是()(A)若a、b是异面直线,则一定存在平面α,过a且与b垂直(B)若a、b是异面直线,则一定存在平面α,过a且与b垂直(C)若a、b是异面直线,则一定存在平面α,与a、b所成的角相等(D)若a、b是异面直线,则一定存在平面α,与a、b的距离相等5.如图,点P是三棱锥S—AB C的面S B C内一点.(1)过P作PQ∥平面AB C;(2)过(1)中得到的PQ作平面α∥平面AB C;(3)在面AB C内求一点R,使PR∥平面S AB,且R到A C和B C的距离相等.6.已知M、N是棱长为a的正方体AB CD—A1B1C1D1中棱A1B1和A1D1的中点.(1)求证B D∥平面A MN;(2)求点B到平面A MN的距离.【创新园地】正四棱柱AB CD—A1B1C1D1中,AB=a,AA1=b (b>a),A M⊥A1B,交B1B于点M.(1)求证:B D1⊥平面M A C;(2)求点B到平面M A C的距离.证明:(1)D1A1是平面AA1B1B的垂线,B D1是平面AA1B1B的斜线,A1B是斜线B D1在平面AA1B1B内的射影,A M是平面AA1B1B内的一条直线,因为A M⊥A1B,由三垂线定理知B D1⊥A M;又D1B⊥A C,A C∩A M=点A,所以B D1⊥平面M A C.(2)解法(一),作对角面BB1D1D,交A C于O,连OM,则OM就是对角面BB1D1D 与平面M A C的交线,∵A C⊥平面BB1D1D,∴平面A MC⊥平面BB1D1D,在平BB1D1D内,作BH⊥OM于点H则BH就是点B到平面M A C的距离.∵AB=a,AA1=b,Rt△AB M∽Rt△A1AB,∴BMABABAA=1,∴B M=ab2.又∵B O=22a,∴MO=BM BOaba b2222242+=+.因此BH=BM BOMOa a ba b⋅=++2222222.解法(二):∵AB=a, AA1=b,同理求得B M=ab2.因为AB C的面积为12a2,所以三棱锥M—AB C的体积是V SH a a b a b==⋅⋅=1313126224. 另一方面,因为B O=a 22a ,MO=2222b a b a +, 所以A MC 的面积为 S A MC=12A C ·MO=22222b a ba +. 设B 到平面A MC 的距离为x ,则三棱锥M —AB C 的体积又可以这样计算:x S V A M C ⋅=∆31 所以 ba b a b a x 622314222=+⋅ 即 x =2222222ba b a a ++ 因此点B 到平面A MC 的距离为2222222b a b a a ++. 评析:求点到平面的距离,方法很多,可能直接作出这个距离来求,一般要用到平面与平面的垂直.因为两个平面互相垂直,在一个平面内垂直于它们交线的直线,垂直于另一个平面.点到平面的距离就可以求出来了.另一种方法是不作出距离,而是利用体积法换法,直接求出点到平面的距离.(本单元完)【思维基础】答案:1.C ;2.C ; 3.A ; 4.B ; 5.7;6.1360; 7.A E=6.【动脑动手】答案:1.A ;2.C ; 3.A ; 4.B ; 5.略; 6.a 32.四、同 步 题 库A 组(一)选择题1.下面说法中,正确的是( )(A )若一条直线与一个平面不相交,则这条直线和这个面平行;(B )若一条直线与一个平面内任何一条直线都不相交,则此直线与这个平面平行; (A ) 若直线上有无数个点不在平面内,则这条直线与平面平行;(B ) 若直线与平面内无数条直线平行,则这条直线与这个平面平行.2.直线与平面垂直是指( )(A ) 直线与平面只有一个公共点;(B ) 直线与平面内的两条直线都垂直;(C )直线与平面内无数条直线都垂直; (D )直线与平面成90°角.3.和一个平面成等角的两条直线的位置关系( )(A )平行; (B )相交; (C )异面; (D )以上都可能 4.P 是△ABC 所在平面外一点,若PA=PB=PC ,则P 在平面ABC 内的射影是△ABC 的( )(A )外心; (B )内心; (C )垂心; (D )重心 5.下列命题中正确的是( ) (A )⎩⎨⎧⊥⇒⊥b a a b a α//; (B )⎩⎨⎧⇒⊥⊥b a a b a //α(C )⎩⎨⎧⇒⊥⊥αα//a b a a (D ) ⎩⎨⎧⊥⇒⊥ααb ba a //6.如图,AD 是Rt △ABC 斜边BC 上的高,PA ⊥D 面ABC ,图中共有直角三角形有( )7.直角三角形ABC 的斜边AB 在平面α内,直角项点C 在α上的射影为C′,△ABC′是( ) (A )直角三角形 (B )锐角三角形;(C )钝角三角形 (D )锐角或钝角三角形8.在矩形ABCD 中,AB=3,BC=4,PA ⊥平面ABCD ,且PA=1,则P 到对角线BD 的距离是( )(A )2921; (B )513; (C )517; (D )119519.长方体的一条对角线与各个面所成的角为α、β、γ,则下列等式正确的是( ) (A )sin2α+sin2β+sin2γ=32; (B)cos2α+cos2β+cos2γ=1 (C) sin2α+sin2β+sin2γ=2; (D)cos2α+cos2β+cos2γ=210.对两条异面直线在同一平面内的射影,下列说法中正确的是( )(A )不可能是两点; (B )不可能是一直线和一点(C )不可能是两平行线; (D )不可能是两相交直线 (二)填空题1.a ∥b,b ⊂a,则直线a 、b 的位置关系是 .2.已知点A 和直线l ,A ∉l,则过点A 与直线l 平行的直线有 条;过点A 与直线l 垂直的直线有 条;过点A 作与直线l 平行的平面有 个;过点A 作与直线l 垂直的平面有 个.3.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,点A 到C 1D 的距离为 ;点A 到B 1C 的距离为 ;点A 到平面BB 1D 1D 的距离为 ;AA 1到平面BB 1D 1D 的距离是 ,AA 1与BD 1的距离是 .4.若PO ⊥平面AOB ,∠AOB=90°,AB=a ,∠PAO=∠PBO=α,C 是AB 的中点,则PC= .5.l 是平面α内直线,A 是α外一点,设A 到α的距离为d 1,A 到l 的距离为d 2,则d 1 d 2.6.AB ∥平面α,AA′⊥α于A′,BB′是α的斜线,B′是斜足,若AA′=9,BB′=36,则BB′与α所成角为 .7. ∠XOY=60°在平面α内,OA=α是α的斜线,∠AOX=∠AOY=45°,则点A 到α的距离是 .8.如果平面外的一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是 .9.△ABC 的面积为S ,BC α,点A 到面平α的距离等于点A 到BC 的距离的53,则△ABC 在α上的射影的图形面积是 .10.点P 到平面α的垂线段PO=12cm ,斜线段PA 、PB 分别为13cm 和20cm ,则A ,B 两点的最大距离是 .最小距离是 .(三)解答题1.已知P 是□ABCD 所在平面外一点,M 是PD 的中点(如图),求证:PB ∥平面MAC.2.已知直线l ∥平面α,l ∥平面β,且α β=m ,(如图).求证:l ∥m.3.在空间四边形ABCD 中,AB ⊥CD ,AD ⊥BC ,求证:BD ⊥AC.4. 如图,线段AB=α,在平面α内,CA ⊥α,BD 与α所成角为30°,BD ⊥AB ,C 、D 在α同侧CA=BD=b ,求:(1)CD 的长; (2)直线CD 与α所成角的正切值.5.如图,三棱柱ABC-A 1B 1C 1中,AB=2,BC=CA=AA 1=1,A 1在底面ABC 上的射影是O 点.(1)O 与B 能否重合?试证明你的结论;(2)若O 在AC 上.求BB 1与侧面AC 1的距离.B 组(一)选择题1.下列四个命题中 (1)若a ∥α,b ∥α, 则a ∥b ;(2)若a ∥b, a ∥α,则b ∥α; (3)若a ∥α,则a 平行于α内的任意直线;(4)若a 平行于α内的无数条直线,则a ∥α.其中正确的命题个数是( )(A )0; (B )1; (C )2; (D )3 2.下列命题中正确的是( ) (A )若a ⊥α,b ⊥α,c ⊥α,则直线α平行于过直线b 、c 的平面;(B ) 若a ∥α,b ∥α,且a 、b 到平面α的距离不相等. 则a 、b 是异面直线; (C ) 若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则a 、b 相交或平行;(D )若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则与a 、b 都相交的直线在平面α外.3.在同一平面α的射影等长的两条线段是( ) (A )如果有一公共端点,则它们必等长;(B ) 如果等长,则它们必有公共点;(C )如果平行,则它们必等长; (D )如果等长,则它们必平行.4.与空间四边形ABCD 四个顶点距离相等的平面有( )(A )4个; (B )5个; (C )6个; (D )7个5.AB 是⊙O 的直径,SA 垂直于⊙O 所在的平面M ,平面M 内有一动点P ,使PB ⊥PS ,则P 的位置( ) (A )⊙O 外; (B )⊙O 上; (C )⊙O 内; (D )不能确定6.如图,正方形SG 1G 2G 3中,E ,F 分别是G 1G 2,G 2G 3的中点,D 是EF 中点. 现沿SE 、SF ,及EF 把这个正方形折成一个四面体,使G 1、G 2、G 3重合,记作G 则(A )SG ⊥FEG ; (B )SD ⊥面EFG ; (C )GF ⊥面SEF ; (D )GD ⊥面SEF7.直角△ABC 的两直角边BC=3,AC=4,PC ⊥面ABC ,且PC=59,则P 到斜边AB 的距离是( ) (A )3; (B )4; (C )15; (D )428.斜线AB 与平面M 成θ角,BC M ,AA′⊥M ,A′是垂足,若∠ABC=α,∠A ′BC=β,则( ) (A )sinα=sinθsinβ; (B) sinβ=sinθsinα(C) cosα=cosθcosβ; (D) cosβ=cosθcosα(二)填空题1.将矩形ABCD沿着平行于BC的线段EF折起,连结AB和CD(如图),则AB与EF 所成角等于,BC与AE所成角等于,点A到BC的距离等于线段的长,若AE=EB=4cm,∠AEB=120°,则AD与BC的距离等于. AD与平面BCFE的距离等于, EF到平面BD的距离等于.2.Rt△ABC,∠C=90°,CA=12,BC=5,BC 平面αA到α的距离是10,则△ABC的垂心、内心到α的距离分别为.3.过平面α外一点引两条斜线,它们与α所成角分别是30°,45°,且它们在α内的射影互相垂直,则这两条线夹角的余弦值为.4.P是等腰梯形ABCD外一点,且PA=PB=PC=PD,若P在面ABCD的射影P′在梯形ABCD 外,则应满足.5.AC是平面α内的一条射线,P为α外一点,PA=2,P到α的距离为1,设∠PAC=θ,m=tgθ,则m的取值范围是.(三)解答题1.如图,两个全等正方形ABCD和ABEF,所在平面相交于AB,M∈AC,N∈FB,求证:MN∥平面BCE.2.已知AB是异面直线a、b公垂线,AB=2cm,a、b所成角为30°,在直线a上取一点P 使PA=4cm,求P到直线b的距离.3.空间四边形ABCD中,△ ABC是正三角形,AD⊥面ABC,H是A在面BCD上的射影. 求证:H不可能是△BCD的垂心.4.如图,已知斜边为AB的Rt△ABC,过点A作AP⊥平面ABC,AE⊥PB于点E,AF⊥PC 于点F,(1)求证:PB⊥平面AEF.(2)若AP=AB=2,试用tgθ(θ是∠BPC)表示△AEF 的面积.当tgθ取何值时,△AEF 的面积最大?最大面积是多少?C 组(一)选择题1.在空间中,给出如下命题 (1)垂直于同一直线的两直线平行;(2) 平行于同一平面的两直线平行;(3)与同一平面成等角的两直线平行; (4) 与同一平面内的射影是两条平行线的两直线平行,其中真命题的个数是( )(A )0; (B )1; (C )2; (D )3.2.从平面外一点向平面引垂线和若干斜线,若斜线与平面所成的角相等,则( )(A )斜足一定是正多边形的顶点; (B )垂足是斜足为顶点的多边形的内心;(C )垂足是斜足为顶点的多边形的外心; (D )垂足是斜足为顶点的多边形的垂心.3.如图,PC ⊥面α,垂足为C ,AB α,CB ⊥AB ,垂足为B ,则线段PA 、PB 的大小关系是( )(A )PA<PC<PB; (B) PC>PB>PA;(C) PA<PB<PC; (D) PB>PA>PC.4.若a ∥α,且a 和α的距离为d ,则平面α内( )(A )有且只有一条直线与l 的距离为d ; (B )所有直线与l 的距离都等于d ;(C ) 有无数条直线与l 的距离都等于d ; (D )所有直线与l 的距离都不等于d.5.线段AB 两端点到平面α的距离分别是6cm 和10cm ,则它的中点到α的距离是( ) (A )6cm; (B)8cm; (C)2cm; (D)8cm 或2cm6.异面直线a 、b 互相垂直,它们与平面β都相交,若α与β所成角为38°,则b 与β所成角大小()(A)一定是52°;(B)最大是52°;(C)最小是52°;(D)可以是0°90°中的任意角度(二)填空题7.直线与平面所成的角α的取值范围.8.若P是△ABC所在平面外一点,且PA、PB、PC两两垂直,则P在△ABC内的射影是△ABC的.9.直线EF平行于平面α内的两直线AB、CD,EF与α的距离为15,与AB的距离是17,又AB与CD间的距离是28,则EF和CD的距离是.10.如图,在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,O是底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是.(第10题)(三)解答题11.如图,已知AB和CD是异面直线,AB⊥平面α于B,CD⊥平面β于D,且AC是AB 和CD的公垂线,α β=l.求证:AC∥l12.PA⊥矩形ABCD所在平面,M、N分别是AB和PC的中点. (1)求证:MN∥平面PAD.(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.(第11题) (第13题)13.如图,正方体,ABCD-A1B1C1D1的棱长为1,O、O1分别是ABCD与A1B1C1D1的中心;(1)求证:OD1∥平面A1C1B1.(2)求D1O与平面A1C1B的距离;(3)求BD 与平面A 1C 1B 所成角.答案与提示同步题库A 组(一)选择题1.B2.D3.D4.A5.B6.B7.C8.B9.D 10.A (二)填空题 1.异面成平行2.1; 无数; 无数;13.a; a; a a a 22;22;22. 4.α2212tg a+; 5.≤; 6.60° 7.a 338. 平行或相交 9.S 5410.21cm; 11cm (三)解答题 1.(略) 2.(略) 3.(略)4.(1)CD=22b a +; (2)2234ba b +5.(1)不垂直,(2)BB 1与侧面AC 1的距离即为BC 长即BC=1.B 组(一)选择题 1.A 2.D 3.C 4.D 5.B 6.A 7.A 8.C(二)填空题1. 90°; 90°; AB;43cm; 23cm; 2cm.2.310cm; 35cm 3.42 4.∠ABD>90°(或∠ACD=90°) 5.m≥33。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。

②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。

(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。

3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线、平面、简单多面体复习提纲(一)1、三个公理和三条推论:(1)公理1:一条直线的 在一个平面内,那么这条直线上的所有的点都在这个平面内,也就是说这条直线在这个平面内。

这是判断直线在平面内的常用方法。

(2)公理2、如果两个平面有一个公共点,这它们有无数个公共点,并且这无数个公共点都在同一条直线上。

用来找两个平面的交线。

也是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。

(3)公理3:经过 的 个点有且只有一个平面。

推论1:经过直线和直线外一点有且只有一个平面。

推论2:经过两条 直线有且只有一个平面。

推论3:经过两条 直线有且只有一个平面。

公理3和三个推论是确定平面的依据。

例(1)在空间四点中,三点共线是四点共面的___ __条件;(2)给出命题:①若A ∈l ,A ∈α,B ∈l ,B ∈α,则 l ⊂α;②若A ∈α,A ∈β,B ∈α,B ∈β,则α∩β=AB ;③若l ⊄α ,A ∈l ,则A ∉α ④若A 、B 、C ∈α,A 、B 、C ∈β,且A 、B 、C 不共线,则α与β重合。

上述命题中,真命题是__ ___;2、斜二侧画直观图法规则: 在画直观图时,要注意:(1)使︒=∠45'''y O x ,x o y '''所确定的平面表示水平平面。

(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持 和 不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的 。

例已知正ABC ∆的边长为a ,那么ABC ∆的平面直观图的面积为_____ 。

3、空间直线的位置关系:(1)相交直线――有且只有一个公共点。

(2)平行直线――在同一平面内,没有公共点。

(3)异面直线――不在同一平面内,没有公共点。

例(1)空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系_____;(2)给出下列四个命题:①异面直线是指空间既不平行又不相交的直线;②两异面直线b a ,,如果a 平行于平面α,那么b 不平行平面α;③两异面直线b a ,,如果⊥a 平面α,那么b 不垂直于平面α;④两异面直线在同一平面内的射影不可能是两条平行直线 。

其中正确的命题是_____。

4、异面直线的判定:反证法、异面直线的判定定理。

例(1)“a、b为异面直线”是指:①a∩b=Φ,且a不平行于b;②a⊂面α,b⊂面β且a ∩b =Φ;③a⊂面α,b⊂面β且α∩β=Φ;④a⊂面α,b ⊄面α ;⑤不存在平面α,能使a⊂面α且b⊂面α成立。

上述结论中,正确的是___ __;(2)在空间四边形ABCD 中,M 、N 分别是AB 、CD 的中点,设BC+AD=2a ,则MN 与a 的大小关系是___ __;(3)若E 、F 、G 、H 顺次为空间四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,且EG=3,FH=4,则AC 2+BD 2= _____;(4)如果a、b是异面直线,P 是不在a、b上的任意一点,下列四个结论:①过点P 一定可以作直线l 与a、b都相交; ②过点P 一定可以作直线l 与a、b都垂直;③过点P 一定可以作平面α与a、b都平行; ④过点P 一定可以作直线l 与a、b都平行。

其中正确的结论是__ ___;(5)如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为__ ___。

5、异面直线所成角θ的求法:(1)范围:(0,]2πθ∈;(2)求法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角。

或用向量的方法。

例(1)正四棱锥ABCD P -的所有棱长相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于__ __;(2)在正方体AC 1中,M 是侧棱DD 1的中点,O 是底面ABCD 的中心,P 是棱A 1B 1上的一点,则OP 与AM 所成的角的大小为__ __;(3)已知异面直线a 、b 所成的角为50°,P 为空间一点,则过P 且与a 、b 所成的角都是30°的直线有且仅有_ ___条;(4)若异面直线,a b 所成的角为3π,且直线c a ⊥,则异面直线,b c 所成角的范围是_ _。

6、异面直线的距离的概念(了解即可):和两条异面直线都垂直相交的直线叫异面直线的公垂线。

两条异面直线的公垂线有且只有一条。

而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交。

7、两直线平行的判定:(1)公理4:平行于同一直线的两直线互相平行;(2)线面平行的性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行;(3)面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行;(4)线面垂直的性质:如果两条直线都垂直于同一个平面,那么这两条直线平行。

8、两直线垂直的判定:(1)转化为证线面垂直;(2)三垂线定理及逆定理。

9、直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交。

其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直。

注意:无数条直线并不等同于任一条直线;(3)直线与平面平行。

其中直线与平面相交、直线与平面平行都叫作直线在平面外。

例(1)下列命题中,正确的是 。

A、若直线a 平行于平面α内的一条直线b , 则 a // αB、若直线a 垂直于平面α的斜线b 在平面α内的射影,则a ⊥bC、若直线a 垂直于平面α,直线b 是平面α的斜线,则a 与b 是异面直线 D、侧棱与底面所成的角都相等,且侧面与底面所成的角也相等的棱锥是正棱锥;(2)正方体ABCD-A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是___________。

10、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。

(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。

在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,即“过直线、作平面,得交线“,以便运用线面平行的性质或判定。

例(1)α、β表示平面,a 、b 表示直线,则a ∥α的一个充分不必要条件是 。

A 、α⊥β,a ⊥βB 、α∩β=b ,且a ∥bC 、a ∥b 且b ∥αD 、α∥β且a ⊂β11、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。

②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。

(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。

②如果两条直线都垂直于同一个平面,那么这两条直线平行。

例(1)如果命题“若y y x ,⊥∥z ,则z x ⊥”不成立,那么字母x 、y 、z 在空间所表示的几何图形可能是__ ___;(2)已知a ,b ,c 是直线,α、β是平面,下列条件中能得出a ⊥α的是 。

A 、a ⊥b ,a⊥c其中b⊂α,c⊂αB 、a ⊥b ,b∥αC 、α⊥β,a∥βD 、a∥b,b⊥α(3)已知AB 为⊙O 的直径,C 为⊙O 上的一点,且AD ⊥面ABC , AE ⊥BD 于E ,AF ⊥CD 于F ,求证:BD ⊥平面AEF 。

12、三垂线定理及逆定理(了解,小题中用):(1)定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(2)逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直。

其作用是证两直线异面垂直和作二面角的平面角。

13、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。

(2)范围:[0,90] ;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。

例(1)在正三棱柱ABC-A 1B 1C 1中,已知AB=1,D 在棱BB 1上,BD=1,则AD 与平面AA 1C 1C 所成的角的正弦值为______;(2)正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点,则棱 A 1B 1 与截面A 1ECF 所成的角的余弦值是______;(3)PC PB PA ,,是从点P 引出的三条射线,每两条的夹角都是︒60,则直线PC 与平面PAB 所成角的余弦值为______;(4)若一平面与正方体的十二条棱所在直线都成相等的角θ,则sin θ的值为______。

14、平面与平面的位置关系:(1)平行―没有公共点;(2)相交―有一条公共直线。

15、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。

(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

例(1)βα,是两个不重合的平面,在下列条件中,不能判定平面βα//的条件是 。

A 、n m ,是α内一个三角形的两条边,且ββ//,//n mB 、α内有不共线的三点到β的距离都相等C 、βα,都垂直于同一条直线aD 、n m ,是两条异面直线,βα⊂⊂n m ,,且αβ//,//n m(2)给出以下五个命题:①垂直于同一直线的两个平面平行;②平行于同一直线的两个平面平行;③平行于同一平面的两个平面平行;④与同一直线成等角的两个平面平行;⑤一个平面内的两条相交直线于另一个平面内的两条相交直线平行,则这两个平面平行;其中正确的序号是___________。

16、二面角:(1)平面角的三要素:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直。

(2)作平面角的主要方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②三垂线法:过其中一个面内一点作另一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;③垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角;(3)二面角的范围:[0,]π;(4)二面角的求法:①转化为求平面角;②面积射影法:利用面积射影公式cos S S θ⋅射原=,其中θ为平面角的大小。

相关文档
最新文档