聚明胶肽扩容对术中血糖、电解质和酸碱平衡的影响

合集下载

钠钾镁钙葡萄糖注射液扩容对术中血糖_电解质和酸碱平衡的影响

钠钾镁钙葡萄糖注射液扩容对术中血糖_电解质和酸碱平衡的影响
-1 -1 · 、 / ( 、 / 后以 1 的速度输注相应液体 。 分别于输液 前 ( 输液量为1 5m l k h T 0m l k T 2 0m l k g · g g 0) 1)
( / ( 和3 时检测患者血糖 、 血乳酸 、 电解质及 p T 0m l k T H 值等。结 果 输 液 后 研 究 组 血 糖 明 显 g 2) 3) , ; 血 乳 酸 无 明 显 变 化, 血p 对照组血乳酸明显升高( 升高 ( P <0 . 0 5) H 明显降低( P <0 . 0 5) P< ) ; 两组电解质水平均无明显变化 。 结论 钠钾镁钙葡萄糖注 射 液 在 扩 容 、 维持电解质及酸碱平 0 . 0 5 衡方面与复方乳酸钠注射液效果相当 , 可避 免 大 量 输 入 复 方 乳 酸 钠 注 射 液 所 致 的 乳 酸 升 高 , 但当大 量输注钠钾镁钙葡萄糖注射液时可导致一定程度的血糖升高 。 【 关键词 】 钠钾镁钙葡萄糖注射液 ; 血糖 ; 水 -电解质平衡 ; 酸碱平衡 复方乳酸钠注射液 ; E f f e c t s o f v o l u m e r e l a c e m e n t w i t h s o d i u m o t a s s i u m m a n e s i u m c a l c i u m a n d l u c o s e i n e c t i o n o n p p g g j , , i n t r a o e r a t i v e l u c o s e b l o o d e l e c t r o l t e s a n d a c i d b a s e b a l a n c e M i n l i, L I U C u n- m i n - ZHANG g- g, p g y

术中输注转化糖电解质注射液对电解质、酸碱平衡和血糖的影响

术中输注转化糖电解质注射液对电解质、酸碱平衡和血糖的影响

术中输注转化糖电解质注射液对电解质、酸碱平衡和血糖的影

姚飞;熊华平;沈明坤
【期刊名称】《实用临床医药杂志》
【年(卷),期】2014(000)017
【摘要】宫颈癌根治术是妇科较大的手术之一,由于手术时间较长,麻醉、术中失血、失液等均可使有效循环血量、水电解质及酸碱平衡等发生一系列改变。

静脉补液的酸碱度以及电解质含量对围术期电解质和酸碱平衡起着至关重要的作用[1]。

本研究采用转化糖电解质注射液用于择期手术患者的围术期补液,观察疗效并对比其与乳酸钠林格注射液对电解质、酸碱平衡和血糖的影响,现报告如下。

【总页数】2页(P184-185)
【作者】姚飞;熊华平;沈明坤
【作者单位】南京医科大学附属无锡妇幼保健院麻醉科,江苏无锡,214002;南京医科大学附属无锡妇幼保健院麻醉科,江苏无锡,214002;南京医科大学附属无锡妇幼保健院麻醉科,江苏无锡,214002
【正文语种】中文
【中图分类】R737.33
【相关文献】
1.钠钾镁钙葡萄糖注射液扩容对术中血糖、电解质和酸碱平衡的影响
2.聚明胶肽扩容对术中血糖、电解质和酸碱平衡的影响
3.转化糖电解质注射液对结直肠肿瘤患
者术中电解质及血糖的影响4.经皮肾镜取石术中静脉输注糖碱钾液对酸碱平衡、电解质和BNP水平的影响5.神经外科术中输注不同晶体液对患儿乳酸、葡萄糖、电解质及酸碱平衡指标的影响
因版权原因,仅展示原文概要,查看原文内容请购买。

手术后出现营养代谢紊乱的原因及处理

手术后出现营养代谢紊乱的原因及处理

手术后出现营养代谢紊乱的原因及处理手术对于患者的身体来说是一次重大的创伤,术后患者的身体需要消耗大量的能量和营养物质来进行修复和恢复。

然而,在这个过程中,部分患者可能会出现营养代谢紊乱的情况,这不仅会影响患者的康复速度,还可能导致一系列并发症的发生。

那么,手术后出现营养代谢紊乱的原因究竟有哪些?又该如何进行处理呢?一、手术后出现营养代谢紊乱的原因1、手术应激反应手术作为一种强烈的应激源,会导致患者体内的神经内分泌系统发生一系列变化。

例如,交感神经系统兴奋,使得肾上腺素、去甲肾上腺素等激素分泌增加,进而引起代谢率升高、蛋白质分解加速、糖原分解和糖异生增加等。

同时,应激反应还会导致胰岛素抵抗,使得细胞对葡萄糖的摄取和利用减少,进一步加重了能量代谢的紊乱。

2、消化吸收功能障碍手术后,患者的胃肠道功能可能会受到不同程度的影响。

例如,腹部手术可能会导致胃肠道蠕动减慢、麻痹,甚至出现肠梗阻等情况,从而影响食物的消化和吸收。

此外,手术引起的胃肠道黏膜损伤、炎症反应等也会导致消化酶分泌减少、吸收面积减小,进一步影响营养物质的吸收。

3、营养物质摄入不足手术后,患者往往会因为疼痛、恶心、呕吐、食欲不振等原因而减少饮食摄入。

尤其是在术后早期,患者可能需要禁食一段时间,这就导致了营养物质的供应不足。

此外,部分患者由于对术后饮食的认识不足,可能会选择不合理的饮食,导致营养不均衡,也容易引起营养代谢紊乱。

4、代谢需求增加手术创伤会导致机体处于高代谢状态,蛋白质、脂肪和碳水化合物的代谢都发生了改变。

蛋白质分解增加,用于合成急性期蛋白和修复受损组织;脂肪动员加速,以提供更多的能量;碳水化合物代谢紊乱,出现血糖升高或降低等情况。

如果营养供给不能满足这种高代谢的需求,就容易出现营养代谢紊乱。

5、基础疾病的影响一些患者在手术前就存在慢性疾病,如糖尿病、慢性肾病、肝病等,这些疾病本身就可能存在营养代谢的异常。

手术后,由于身体的应激反应和代谢改变,这些基础疾病可能会进一步加重,从而导致营养代谢紊乱更加复杂。

消化科补液

消化科补液

充足的热能
• 对于一个无应激状况,活动受到限制,没 有发热和高分解代谢情况的成年病人来说, 所需热能为每天每公斤体重30kcal ,氮(g):热 (kcal)为l:250-300。但在创伤、感染等应激 状态下的代谢就与单纯的饥饿(禁食)情况下 的代谢大不相同。
三大物质的比例
• 接受肠外营养支持的病人多数存在着不同 程度的创伤应激状况· 在这种状况下一则机 体对能量的需求量大、二则糖代谢又出现 严重的紊乱。因此大量补充的葡萄糖并不 能被机体很好利用· 反会造成严重的并发症。 • Wretlind建议提供热能为125. 5kJ/kg/日 (30kcaI/kg/日)的静脉营养液配方为:氨基 酸0.7g/kg,葡萄搪2g/kg、脂肪乳2g/kg。
肠外营养
• 肠外营养(PN)是经静脉途径供应病人所需 要的营养要素,包括热量(碳水化合物、脂 肪乳剂)、必需和非必需氨基酸、维生素、 电解质及微量元素。
肠外营养
• 包括能源性营养物质和非能源性营养物质。 • 能源性营养物质包括碳水化合物、脂肪和 蛋白质。 • 非能源性营养物质包括水、电解质、维生 素和微量元素。
具体补液方法
• 1、补液程序: 先扩容(先用晶体液后用胶体液),然后调 整电解质、酸碱平衡 • 2、补液速度:先快后慢,60滴/分,约 250ml/h,心、脑、肾功能障碍者补液应慢, 补钾慢,抢救休克时快,甘露醇脱水快
补充液体的顺序
• 总原则:先盐后糖,见尿补钾
安全补液的监护指标
• • • • • • 1、颈静脉充盈程度 2、脉搏 3、中心静脉压 4、尿量 5、血乳酸:>2mmol/L称高乳酸血症 >4mmol/L为乳酸酸中毒
脂肪乳
• • • • • 使用时应注意: 1.脂肪乳保存在30℃以下室温。 2.每天用量小于2g/kg。 3.输入速度缓慢,每分钟2ml恒速输入为宜。 4.定期监测血脂及肝功能。

剖宫产手术腰麻后常见并发症及预防

剖宫产手术腰麻后常见并发症及预防

剖宫产手术腰麻后常见并发症及预防郑玉艳【摘要】@@ 产科麻醉关系到母体和胎儿的安全,风险相对较大.作为麻醉医师,除了要掌握麻醉方面的专业知识和技能外,还应该掌握孕妇妊娠期的生理改变、病理产科以及麻醉方法和麻醉药物对母体和胎儿的影响等方面的知识,积极预防正确处理,尽最大可能保障母婴的安全.因此选择正确的麻醉方法非常关键,尤其是情况紧急的产科手术.腰麻起效时间快、阻滞效果好、肌松好,目前已被产科医师广泛接受[1].虽多家文献报道产科手术使用腰麻是较安全的麻醉方式,但术中及术后并发症也不容忽视.本文综合各种因素,就蛛网膜下腔麻醉下剖宫产术中、术后常见并发症及其预防和处理进行综述如下.【期刊名称】《医学理论与实践》【年(卷),期】2012(025)011【总页数】2页(P1309-1310)【关键词】剖宫产手术;腰麻后;并发症;预防【作者】郑玉艳【作者单位】天津市宝坻区妇幼保健院麻醉科,301800【正文语种】中文【中图分类】R614.4+2产科麻醉关系到母体和胎儿的安全,风险相对较大。

作为麻醉医师,除了要掌握麻醉方面的专业知识和技能外,还应该掌握孕妇妊娠期的生理改变、病理产科以及麻醉方法和麻醉药物对母体和胎儿的影响等方面的知识,积极预防正确处理,尽最大可能保障母婴的安全。

因此选择正确的麻醉方法非常关键,尤其是情况紧急的产科手术。

腰麻起效时间快、阻滞效果好、肌松好,目前已被产科医师广泛接受[1]。

虽多家文献报道产科手术使用腰麻是较安全的麻醉方式,但术中及术后并发症也不容忽视。

本文综合各种因素,就蛛网膜下腔麻醉下剖宫产术中、术后常见并发症及其预防和处理进行综述如下。

1 低血压1.1 原因当收缩压低于100mm Hg(1mm Hg=0.133k Pa)或低于基础值的20%时为低血压。

产科患者术中低血压主要与仰卧位综合征及麻醉平面过广有关[2]。

妊娠女性脑脊液中蛋白质浓度的减少使游离型局麻药分子增加,腰麻平面固定更慢,可能导致麻醉后意外麻醉平面升高,引起严重低血压[3]。

glp-1的原理 -回复

glp-1的原理 -回复

glp-1的原理-回复GLP-1的原理是什么?GLP-1,又称胰高血糖素样多肽一型(glucagon-like peptide-1),是一种胰岛素增敏剂,可以增加胰岛素分泌并降低胰高血糖素的分泌,从而帮助降低血糖水平。

GLP-1是由肠道生成的一种多肽激素,具有调节胰岛功能的作用。

该激素的发现和研究给糖尿病治疗带来了革命性的突破。

本文将一步一步回答关于GLP-1的原理的问题,并探讨其在治疗糖尿病和肥胖症方面的应用。

1. GLP-1的生成GLP-1由肠道L细胞产生,主要位于小肠末端,包括回肠、结肠和直肠。

食物进入肠道后,特别是葡萄糖和脂肪的摄入,会刺激L细胞分泌GLP-1。

GLP-1可以通过自分泌机制自行增加分泌量,形成正反馈环路。

2. GLP-1的作用机制GLP-1主要通过与GLP-1受体结合而发挥作用。

GLP-1受体广泛分布在胰岛细胞和神经系统等组织和器官上。

GLP-1通过结合受体,可以促进胰岛素的合成和分泌,抑制胃动力,抑制葡萄糖产生,抑制肝脏中的葡萄糖输出,并提高饱腹感。

此外,GLP-1还通过对神经系统的作用,改善胰岛细胞功能、降低脂肪组织炎症以及影响食欲和能量代谢等方面发挥作用。

3. GLP-1受体激动剂和抑制剂为了充分利用GLP-1的药理作用,科学家们研发出了两类药物:GLP-1受体激动剂和GLP-1受体抑制剂。

GLP-1受体激动剂模拟自然GLP-1对受体的作用,促进胰岛素的分泌和抑制胰高血糖素的分泌,达到降低血糖水平的效果。

GLP-1受体激动剂包括埃塞格列汀、利拉鲁肽等。

GLP-1受体抑制剂则通过阻断GLP-1受体,延缓GLP-1的降解,从而提高GLP-1的活性水平,达到相同的治疗效果。

GLP-1受体抑制剂有西格列汀和维格列汀等。

4. GLP-1在糖尿病治疗中的应用由于GLP-1对胰岛素和胰高血糖素的调节作用,GLP-1受体激动剂被广泛应用于2型糖尿病的治疗。

它们可以降低血糖、减少糖尿病并发症的风险,并可促进体重减轻。

1例聚明胶肽致顽固性低血压的救护体会

1例聚明胶肽致顽固性低血压的救护体会

1例聚明胶肽致顽固性低血压的救护体会
沈桂珍;雷燕
【期刊名称】《吉林医学》
【年(卷),期】2012(033)017
【摘要】@@ 聚明胶肽注射液,是由健康的牛骨或猪骨的明胶水解制成的新一代等渗明胶类代血浆,因其克分子浓度、粘滞度与人体血浆相似,pH值,电解质含量亦与人体血浆相似、又因其有较强的扩容、维持血浆渗透压、改善微循环、不干扰血型及凝血机制、半衰期短、不会在体内积蓄等优点,故被临床广泛用于失血性休克、感染性休克,并用于体外循环预充、扩容.我科在使用过程中,曾出现几例皮肤斑疹、血压下降的过敏病例,给予地塞米松处理后均很快恢复,过敏症状消失,只有上述1例发生顽固性低血压,属少见严重病例.
【总页数】1页(P3803)
【作者】沈桂珍;雷燕
【作者单位】甘肃省平凉市人民医院,甘肃,平凉,744000;甘肃省平凉市人民医院,甘肃,平凉,744000
【正文语种】中文
【相关文献】
1.左西孟旦致顽固性低血压一例 [J], 丁玲岩;孟立军;王文英;刘现亮
2.甲磺酸双氢麦角毒碱致顽固性低血压1例 [J], 李文澜;柯伟;葛林通
3.1例聚明胶肽致顽固性低血压的救护体会 [J], 沈桂珍;雷燕
4.继发性低钾血症致顽固性室颤1例急救护理体会 [J], 张小雪;曹雪琴
5.全髋关节置换术中骨水泥致顽固性低血压72h一例 [J], 张静;张兴华
因版权原因,仅展示原文概要,查看原文内容请购买。

tPA_溶栓引起的出血性转化机制及小分子化合物干预作用研究进展

tPA_溶栓引起的出血性转化机制及小分子化合物干预作用研究进展

㊀基金项目:江苏省自然科学基金(No.SBK20210432)作者简介:黄娟ꎬ女ꎬ硕士ꎬ研究方向:中药活性成分作用机理ꎬE-mail:572428740@qq.com通信作者:寇俊萍ꎬ女ꎬ博士ꎬ教授ꎬ博士生导师ꎬ研究方向:中药复方药效物质基础与作用机理ꎬTel:025-86185158ꎬE-mail:junpingkou@cpu.edu.cntPA溶栓引起的出血性转化机制及小分子化合物干预作用研究进展黄娟ꎬ张米玲ꎬ余俊河ꎬ宫帅帅ꎬ寇俊萍(中国药科大学中药学院中药药理与中医药系ꎬ江苏南京211198)摘要:组织型纤溶酶原激活剂(tissuetypeplasminactivatorꎬtPA)是美国食品药品监督管理局唯一批准的用于急性缺血性卒中治疗的药物ꎬ但由于治疗时间窗狭窄以及会导致严重的出血性转化(hemorrhagictransformationꎬHT)ꎬ其临床应用受到限制ꎮ本文拟从血脑屏障破坏㊁神经炎症㊁氧化应激以及亚硝酸应激等方面对HT发展的机制及近7年来发表在国内外期刊上的小分子化合物对HT保护的研究进展予以综述ꎬ为缺血性中风的新药开发和药物联用提供一定参考ꎮ关键词:组织型纤溶酶原激活剂ꎻ出血性转化ꎻ小分子化合物ꎻ研究进展中图分类号:R743.3㊀文献标志码:A㊀文章编号:2095-5375(2024)04-0384-08doi:10.13506/j.cnki.jpr.2024.04.013ResearchprogressonthemechanismofhemorrhagictransformationcausedbytPAthrombolysisandtheinterventioneffectofsmallmoleculecompoundsHUANGJuanꎬZHANGMilingꎬYUJunheꎬGONGShuaishuaiꎬKOUJunping(DepartmentofPharmacologyofChineseMateriaMedicaꎬSchoolofTraditionalChinesePharmacyꎬChinaPharmaceuticalUniversityꎬNanjing211198ꎬChina)Abstract:Tissuetypeplasminactivator(tPA)istheonlydrugapprovedbytheUSFoodandDrugAdministrationforthetreatmentofacuteischemicstroke.Howeverꎬitsclinicalapplicationislimitedduetothenarrowtreatmenttimewindowandseverehemorrhagictransformation(HT).InthispaperꎬthemechanismofHTdevelopmentwasreviewedfromtheper ̄spectivesofblood-brainbarrierdisruptionꎬneuroinflammationꎬoxidativestressꎬandnitritestressꎬaswellastheresearchprogressofsmallmoleculecompoundsonHTprotectionpublishedindomesticandforeignjournalsinthepastsevenyears.Thisinformationwouldprovidesomecluesandreferencesforthenewdrugdevelopmentanddrugcombinationfortheische ̄micstroke.Keywords:TissueplasminactivatorꎻHemorrhagictransformationꎻSmallmoleculecompoundsꎻResearchprogress㊀㊀中风是一种严重威胁人类健康的疾病ꎬ是全世界死亡和残疾的主要原因ꎬ可分为缺血性中风或出血性中风[1]ꎮ出血性转化(hemorrhagictransformationꎬHT)是缺血性中风(ischemicstrokeꎬIS)常见的严重并发症ꎬ是急性脑缺血后发生的脑内出血ꎬ一旦发生死亡率高达83%[2]ꎮ当流向大脑某一部分的血液暂时或永久受到限制时ꎬ就会发生ISꎬ这会对缺血核心和周围可能恢复的组织造成不可逆转的损害ꎬ恢复缺血区域的血液供应被广泛用于中风的治疗[3-4]ꎮ组织型纤溶酶原激活物(tissueplasminogenac ̄tivatorꎬtPA)是美国食品药品监督管理局唯一批准的用于IS临床溶栓药物ꎮ然而临床研究发现ꎬtPA的治疗时间窗在4.5hꎬ伴有脑出血发生率风险为6%~7%ꎬ超过治疗时间窗tPA引发出血的风险随着延迟时间增长而增加[2]ꎮ中风患者给予tPA溶栓还需要综合考虑疾病严重程度㊁血压㊁血糖㊁心脏功能以及年龄ꎬ不到5%的缺血性卒中患者可以从tPA治疗中受益[5]ꎮ近年来ꎬ大量学者对tPA的临床使用和出血机制进行研究ꎮ本文对tPA溶栓引起的HT机制以及近7年来发表在国内外期刊上的小分子化合物干预研究予以综述ꎬ为进一步阐释tPA病理机制及出血转化的防治提供线索及参考ꎮ1㊀tPA溶栓引起HT的机制tPA是一种由内皮细胞合成的平衡生物体内血液凝固和纤维蛋白溶解的丝氨酸蛋白ꎬ能催化无活性的纤溶酶原转化为有活性的纤溶酶ꎬ使血栓溶解[6]ꎮ从理论上讲ꎬ这种机制非常适合将tPA用作溶栓剂ꎮ然而ꎬ当中风患者静脉注射tPA时ꎬtPA的活性并不局限于纤维蛋白基质上的纤溶酶原激活ꎮ在治疗浓度下ꎬtPA与循环纤维蛋白原结合时可以驱动纤溶酶原激活ꎬ从而介导纤维蛋白原溶解ꎬ导致纤维蛋白原消耗并降低止血潜力[2]ꎬ增加出血的风险ꎮ大量研究表明ꎬHT的发生途径是复杂的ꎬ延迟tPA的使用可能会产生多种意外的病理后果ꎬ包括血脑屏障破坏㊁神经炎症㊁氧化应激和亚硝化应激等ꎮ本文主要从上述环节阐述tPA溶栓引起HT的作用机制ꎮ1.1㊀血脑屏障破坏㊀血脑屏障(blood-brainbarrierꎬBBB)是大脑实质和脑循环之间的一道生理屏障ꎬ通过严格监管的运输系统控制营养物质和代谢物向脑实质的运输ꎬ同时通过外排转胞吞作用和代谢机制限制潜在有害物质的进入ꎮBBB由内皮细胞㊁基底膜㊁周细胞和星形胶质细胞组成ꎬ统称为神经血管单元(neurovascularunitꎬNVU)ꎬ与循环外周血细胞相连[7-8]ꎮ在急性IS期间ꎬNVU受损严重ꎬ导致血管通透性增加和脑实质血液外渗ꎬ给予的tPA可能会穿过大脑并激活与HT相关的内源性tPA信号通路ꎬ引起HT[9-10]ꎮ因此ꎬBBB的早期破坏在HT形成中起着关键作用ꎮ临床研究表明ꎬ急性IS治疗患者的BBB渗漏会导致HT的风险增加两倍以上[11]ꎮ大量实验研究显示ꎬ延迟给予tPA对缺血再灌注小鼠的NVU中的细胞均具有毒性ꎬ且可以通过多种机制影响BBB的功能[12-14]ꎮClaudin和Occludin是BBB中的紧密连接蛋白(tight-junctionproteinsꎬTJPs)ꎬ研究表明ꎬtPA会加剧脑缺血后Claudin-5的降解ꎬClaudin-5可能是IS早期HT检测的潜在标志物[15]ꎮIS延迟给予tPA溶栓后ꎬtPA以蛋白激酶Cβ(ProteinkinaseCβꎬPKCβ)依赖性方式诱导Occludin磷酸化和血管通透性增加ꎬ发生HT[16]ꎮIS后延迟tPA治疗导致HT可能与神经血管基质内细胞外蛋白水解失调有关ꎬ研究表明金属蛋白酶(matrixmetalloproteinasesꎬMMPs)家族和tPA系统起着关键作用[17]ꎮMMP是一种锌和钙依赖的蛋白水解酶ꎬ通常作用于细胞外基质(extracellularmatrixꎬECM)的重塑ꎬ有助于血管重塑和新生血管ꎮ然而ꎬMMPs的不适当激活可诱导NVU整体内基质发生蛋白水解ꎮ研究表明ꎬ在缺血脑中MMP-2㊁MMP-3㊁MMP-9的表达会迅速增加ꎬ这些MMPs活性的增加与梗死扩大㊁神经功能缺损以及HT密切相关[17]ꎮ靶向MMP-2可以有效地防止胶原Occludin的丢失ꎬ并保护缺血和再灌注后的HT[18]ꎮ通过药物抑制和局部敲除小鼠体内的MMP3ꎬHT的发生率显著降低ꎬ神经功能得到改善[19]ꎮ研究表明ꎬMMP-9被认为是IS溶栓治疗中降低HT的关键靶点之一ꎮIS患者与健康对照者的MMP-9水平存在显著差异ꎬMMP-9是接受tPA治疗的患者出血的预测指标[20]ꎮ延迟tPA治疗会上调白细胞㊁内皮细胞和胶质细胞中MMP-9的表达和活性[21]ꎬ并破坏TJPsꎬ从而使MMP-9参与tPA诱导的脑出血[22]ꎮ1.2㊀神经炎症㊀HT中的神经炎症和免疫系统的激活是一个复杂的病理过程ꎬ其中涉及不同的免疫细胞和炎症介质在不同的炎症阶段发会不同的作用ꎮ早期炎症与病理损伤有关ꎬ后期炎症与组织修复有关[23-24]ꎮ神经炎症通常始于中风过程中受损和死亡神经元释放一些与凋亡相关的物质ꎬ然后是胶质细胞脑激活㊁外周炎性细胞浸润和炎性因子释放ꎮ小胶质细胞是脑内免疫反应的关键调节因子ꎬtPA通过蛋白水解诱导纤溶酶激活小胶质细胞ꎬ或者以非蛋白水解通过tPA与膜蛋白AnnexinⅡ结合触发小胶质细胞激活ꎬ释放MMP-9ꎬ促进HT的发生[23ꎬ25]ꎮ星形胶质细胞是调节脑稳态和促进脑卒中后神经胶质细胞再生的关键因素ꎮ星形胶质细胞分泌血管内皮生长因子(vascularendothelialgrowthfactorꎬVEGF)以诱导内皮屏障破坏ꎬ还可与小胶质细胞的相互作用促进了缺血脑组织中MMP-9的表达ꎬ增加了HT的风险[23]ꎮ在中风早期ꎬ激活的炎症反应导致黏附分子以及中性粒细胞㊁单核细胞和淋巴细胞在内的白细胞呈连续性浸润ꎬ严重影响中风的发病机制[26]ꎮ中风发生时ꎬtPA可以增强缺血事件后中性粒细胞的募集㊁积聚和激活ꎬ增加肿瘤坏死因子α(tumornecrosisfactorαꎬTNF-α)㊁白介素-1β(inter ̄leukin-1βꎬIL-1β)㊁MMPs等炎症介质导致BBB破坏ꎬ加剧HT[27]ꎮ研究表明ꎬ中性粒细胞胞外陷阱(neutrophilextracellulartrapsꎬNETs)显著促进了tPA诱导的缺血性BBB分解ꎬ并表明靶向NETs可能通过减少tPA相关出血改善IS的溶栓治疗[28]ꎻ抑制NOD样受体蛋白3(NOD-likereceptorprotein3ꎬNLRP3)可以减少中性粒细胞募集ꎬ从而改善缺血后4h延迟tPA溶栓导致的HT[29]ꎻ脑缺血后延迟tPA治疗会释放炎症因子和黏附分子诱导中性粒细胞浸润ꎬ抑制低氧诱导因子-1(hypoxiainduciblefactor-1ꎬHIF-1)可减少中性粒细胞浸润ꎬ从而减轻HT的严重程度[30]ꎮ在组织修复过程中ꎬ单核细胞与血管内皮细胞上的趋化因子C-C-基元受体2(recombinantchemokineC-C-motifreceptor2ꎬCCR2)结合ꎬ转移到大脑并分化为巨噬细胞ꎮ巨噬细胞促进SMAD蛋白(smallmothersagainstdecapen ̄taplegicprotein)㊁脑源性神经营养因子(brainderivedneurotrophicfactorꎬBDNF)和VEGF的表达ꎬ保护BBBꎬ抑制HT的发生[31]ꎮ1.3㊀氧化应激和亚硝化应激㊀氧化应激和亚硝化应激在HT中也发挥重要作用ꎮ氧化应激是由活性氧(reactiveoxygenspeciesꎬROS)的过量产生引起的ꎮROS的主要有害类型包括超氧阴离子(O2-)㊁羟基自由基(OH-)和过氧化氢(H2O2)[32]ꎮ低浓度的ROS作为氧化还原信号分子ꎬ在生理条件下维持生物功能ꎬ而脑缺血产生的高浓度ROS超过抗氧化防御系统时ꎬ可通过多种机制加剧损伤[33]ꎮ氧化应激可通过DNA损伤㊁脂质过氧化以及蛋白质结构和功能的变化导致细胞死亡ꎮ亚硝化应激主要由活性氮(reactivenitrogenspeciesꎬRNS)引起ꎮRNS有两个主要物种ꎬ一氧化氮(NO)和过氧亚硝酸盐(ONOO-)ꎮRNS介导的MMPs激活可以破坏ECMꎬ促进免疫细胞浸润ꎬ介导神经炎症和HTꎮtPA输注的再通作用为自由基包括ROS和RNS的生成提供了氧气作为底物ꎮ当IS发生后ꎬ延迟tPA处理的溶栓会产生大量ROS/RNSꎬ形成了紧张的微环境ꎬ并诱导一系列细胞信号级联反应ꎬ导致BBB的高渗透性ꎬ脑水肿出血㊁炎症和神经细胞死亡ꎮBBB中自由基的产生和氧化损伤被认为是短暂性局灶性脑缺血后HT的主要触发机制ꎬ使用自由基清除剂可显著降低tPA诱导的HT[17]ꎮ有研究表明ꎬ脑缺血后2htPA治疗显著抑制ONOO-生成ꎬ保护大脑免受缺血再灌注损伤ꎬ改善神经功能缺损评分ꎬ而延迟tPA4.5h治疗会加重大脑损伤和神经功能缺损得分ꎬ增加HT的发病率[32]ꎬ其机制可能与ONOO-诱导MMP-9激活ꎬ降解TJPsꎬ破坏BBB完整相关[34]ꎮ抑制由ROS和RNS诱导的DNA碱基修复酶-PARPꎬ可改善tPA诱导的HT并降低TJPs的表达[17]ꎮ1.4㊀其他㊀有研究证明ꎬtPA溶栓治疗可诱导大脑皮层和血清中多种内源性代谢产物的表达ꎬ包括能量代谢和氨基酸代谢ꎬ乳酸的代谢变化与HT的发生有良好的相关性ꎬ可能是预测HT的潜在生物标志物[35]ꎮ铁超载加剧了缺血诱导的血清基质MMP-9增加ꎬ并增强了基础血清脂质过氧化ꎬ加剧了早期tPA给药后HT的风险ꎮ临床结果表明ꎬ较高的铁水平与接受tPA的患者的不良结局和较高的HT风险相关[36]ꎮ2㊀小分子化合物干预tPA引起的HT近些年来ꎬ开发一种将HT的风险降至最低的小分子辅助剂ꎬ是现在中风药物研发的重点和热点ꎮ本文将从保护BBB㊁抗炎㊁抗氧化和亚硝化等方面对小分子化合物改善tPA溶栓诱导HT进行介绍ꎮ2.1㊀小分子化合物保护BBB改善tPA引起的HT㊀临床试验调查结果显示ꎬ丹参酮ⅡA磺酸钠治疗可以改善接受tPA溶栓治疗的急性IS患者的BBB损伤ꎬ并改善卒中患者的预后ꎬ其机制可能与抑制MMP-9相关[37]ꎮ实验研究表明ꎬ没食子儿茶素没食子酸酯通过上调纤溶酶原激活物抑制物-1和抑制MMPs表达减轻延迟tPA治疗的常见副作用ꎬ包括脑梗死㊁脑水肿和BBB破坏[38]ꎮ红景天苷下调了MMP-9的激活并逆转了tPA治疗组中Claudin-5和Occludin的减少ꎬ保护BBBꎬ减少延迟tPA治疗引起的并发症[39]ꎮ松果木素是一种天然黄酮类化合物可以通过调节内源性代谢产物保护BBBꎬ减轻IS大鼠延迟tPA治疗后的HT[35]ꎮ研究表明ꎬ经典Wnt通路的激活可通过调节BBB特异性机制来减弱BBB分解ꎬ从而延长tPA的治疗窗口[40]ꎮ6-溴代二脲-3ᶄ-肟能有效且特异地激活干细胞中典型的Wnt通路ꎬ通过促进TJ形成和独立于tPA蛋白水解活性抑制内皮基底层通透性来减轻BBB分解ꎬ从而降低与延迟tPA给药相关的HT的发生率[40]ꎮ糖原合成酶激酶3β(glycogensynthasekinase3βꎬGSK-3β)抑制剂TWS119㊁IM-12以及胰高血糖素样肽-1受体激动剂Exendin-4能够增加TJPs表达ꎬ激活Wnt/β-catenin信号通路ꎬ降低tPA诱导的HT并减弱BBB破坏[41-43]ꎮ肽5(Cx43模拟肽)通过调节Wnt/β-catenin信号通路维持了tPA治疗相关的细胞活性和通透性ꎬ可用于缺血性卒中期间tPA相关的内皮细胞损伤[44]ꎮ2-(2-苯并呋喃)-2-咪唑啉(2-BFI)是一种新发现的高亲和力突触后N-甲基-D-天冬氨酸受体拮抗剂ꎮ研究发现ꎬ2-BFI可增加水通道蛋白4(aquaporin4ꎬAQP4)㊁Occludin和ZO-1的表达以及下调细胞间黏附分子1(intercellularadhesionmolecule1ꎬICAM-1)㊁MMP2和MMP9ꎬ将大鼠中风发病后的tPA治疗窗口延长至6h[45]ꎮ在使用有丝分裂原活化蛋白激酶细胞外信号调节激酶激酶(mi ̄togen-activatedproteinkinasekinaseextracellularsignal-regulatedkinasekinaseꎬMEK)1/2抑制剂U0126可下调实验性卒中MMP-9ꎬ可以减少延迟tPA治疗对急性IS的有害影响[46]ꎮ米诺环素是一种四环素类抗生素ꎬ可降低tPA诱导的MMP-9表达和tPA延迟治疗后HT的风险[47]ꎮ另外ꎬ辛伐他汀可通过RhoA/ROCK通路改善tPA诱导的HT和MMP-9/金属蛋白酶组织抑制剂-1(tissueinhibitorofmetalloproteinase-1ꎬTIMP-1)失衡[48]ꎮ2.2㊀小分子化合物抑制炎症反应改善tPA引起的HT㊀研究发现ꎬ邻苯二甲酸衍生物CD21通过促进巨噬细胞清道夫受体1(macrophagescavengerreceptor1ꎬMSR1)诱导的过氧化物酶原1(peroxiredoxin1ꎬPrx1)和Toll样受体(Toll-likereceptor4ꎬTLR4)/NF-κB通路的抑制以及神经炎症ꎬ减轻了tPA诱导的急性缺血性卒中的HT[49]ꎮ罗格列酮是一种广泛使用的抗糖尿病药物ꎬ可激活PPAR-γ和有利于小胶质细胞极化向抗炎表型的方向ꎬ防止BBB损伤并改善延迟tPA治疗的中风小鼠的HT[50]ꎮ维拉帕米可显著降低了tPA诱导的BBB渗漏㊁MMP-9上调和TJPs失调ꎬ从而减少出血转化ꎮ重要的是ꎬ维拉帕米强烈逆转了tPA诱导的硫氧还蛋白相互作用蛋白(thiore ̄doxin-interactingproteinꎬTXNIP)/NOD样受体pyrin结构域内含物-3(NOD-likereceptorpyrindomain-containing-3ꎬNLRP3)炎症小体激活ꎬ并减少了梗死体积[51]ꎮ瑞舒伐他汀与tPA联合使用可防止星形胶质细胞和小胶质细胞的活化并减少炎症因子的释放ꎬ抑制NF-κB/丝裂原活化蛋白激酶(mitogen-activatedproteinkinaseꎬMAPK)通路从而减轻BBB破坏和HT严重程度[52]ꎮ2.3㊀小分子化合物抑制氧化应激和亚硝化应激改善tPA引起的HT㊀黄芩苷是从黄芩干燥根中分离得到天然黄酮类化合物ꎬ可抑制过氧亚硝酸盐介导的MMP-9激活ꎬ保护实验性IS大鼠模型的BBB完整性ꎬ减轻脑损伤ꎬ以延长tPA的治疗窗口ꎬ防止HT[34]ꎮ甘草甜素通过靶向过氧亚硝酸盐介导的HMGB1信号通路预防HT并改善IS延迟溶栓导致的神经功能损伤[53]ꎮ亚硝酸盐分解催化剂FeTMPyP可以通过抑制过氧亚硝酸盐介导的MMP活化ꎬ在延迟tPA治疗的脑缺血再灌注损伤期间预防HT并改善神经预后ꎮ靶向过氧亚硝酸盐的形成可能是一种潜在的辅助治疗策略ꎬ可以减少tPA介导的出血并发症ꎬ并可能延长当前狭窄的治疗时间窗口[21]ꎮ3㊀总结与展望本文整理归纳了tPA诱导HT发生的相关病理机制ꎬ脑微血管内皮细胞㊁星形胶质细胞㊁小胶质细胞㊁中性粒细胞㊁巨噬细胞及单核细胞等多效应细胞参与介导的BBB损伤㊁神经炎症和氧化/亚硝化应激相互作用在tPA诱导的HT级联反应发挥重要作用(见图1)ꎮ因此ꎬ针对上述细胞相关的病理通路进行干预有助于改善tPA诱导的HTꎮ目前报道MMP9与HT的发生密切相关ꎬ可能是HT的潜在生物标志物ꎬ但仍需要临床大样本的分析确证ꎬ并识别发现特异性更高的生物标志物群ꎮ基于HT涉及的病理机制ꎬ本文对近7年报道的小分子化合物改善tPA引起的HT作用按照化合物的类别进行了归纳总结ꎬ如表1所示ꎮ目前大多数小分子化合物对抑制MMPs表达㊁上调TJPs表达㊁保护BBB㊁改善出血水平及神经功能损伤等方面效果显著ꎮ天然小分子化合物如红景天苷主要通过调节PI3K/Akt等途径保护BBB以及抗氧化应激从而改善tPA引起的HTꎬ但其作用靶点及主要效应细胞多不明确ꎬ仍有待进一步发现证实ꎮ报道的合成小分子化合物多为一些信号通路抑制剂ꎬ主要通过调节Wnt/β-catenin及TLR4/NF-κB等途径保护BBB和抗亚硝酸应激来改善HTꎬ其成药性尤其是安全性有待进一步评价ꎮ上市的小分子药物包括中药活性成分丹参酮ⅡA及甘草酸可影响HMGB1/TLR2/MMP-9等途径保护BBBꎬ辛伐他汀等化学小分子上市药可调节RhoA/ROCK㊁PPAR-γ及NF-κB/MAPK等途径改善tPA引起的HTꎬ进一步拓展上市药物的适应证ꎬ用于改善tPA诱导的HT将具有较好的应用前景ꎮ图1㊀tPA溶栓引起HT的病理机制㊀注:BBB:血脑屏障ꎻBDNF:脑源性神经营养因子ꎻCCR2:趋化因子C-C-基元受体2ꎻHIF-1:低氧诱导因子-1ꎻIL-1β:白介素-1βꎻMMPs:金属基质蛋白酶ꎻNETs:中性粒细胞胞外陷阱ꎻNLRP3:NOD样受体蛋白3ꎻONOO-:过氧亚硝酸盐ꎻPKCβ:蛋白激酶CβꎻROS:活性氧ꎻtPA:组织型纤溶酶原激活剂ꎻTJPs:紧密连接蛋白ꎻTNF-α:肿瘤坏死因子αꎻVEGF:血管内皮生长因子ꎮ表1㊀小分子化合物干预tPA引起的HT的作用总结类别化合物名称作用环节调节指标改善症状文献天然小分子化合物没食子儿茶素没食子酸酯保护BBB抑制MMPs的表达ꎻ上调PAI-1表达改善梗死体积㊁脑水肿ꎻ改善神经功能损伤㊁出血水平[38]红景天苷保护BBB抑制MMP-9的表达ꎻ上调Claudin-5和Oc ̄cludinꎻ抑制PI3K/Akt途径改善梗死体积㊁BBB通透性ꎻ改善脑出血水平[39]松果木素保护BBB改善氨基酸代谢和能量代谢改善梗死体积ꎻ改善BBB通透性㊁出血水平[35]黄芩苷抗氧化应激清除ONOO-改善BBB及神经功能损伤ꎻ改善脑表1㊀(续)类别化合物名称作用环节调节指标改善症状文献上市小分子药物丹参酮ⅡA磺酸钠保护BBB抑制MMP-9的表达改善神经功能损伤㊁降低BBB通透性㊁脑出血水平[38]甘草酸抗氧化应激保护BBB清除ONOO-ꎻ上调Claudin-5的表达ꎻ抑制HMGB1/TLR2/MMP-9途径改善脑水肿㊁BBB及神经功能改善脑出血水平㊁抗神经凋亡[53]米诺环素保护BBB抑制MMP-9的表达改善BBB破坏[47]辛伐他汀保护BBB调节MMP-9/TIMP-1比例ꎻ抑制RhoA/ROCK途径改善神经功能缺损㊁出血水平[48]罗格列酮抑制炎症激活PPAR-γꎻ促进中风后小胶质细胞向有益的抗炎表型极化改善梗死体积㊁脑出血面积ꎻ改善BBB损伤[50]维拉帕米抑制炎症保护BBB抑制MMP-9和TJPS的表达ꎻ抑制TXNIP/NRRP3途径ꎻ抑制HMGB-1/NF-κB途径改善梗死体积㊁脑水肿ꎻ改善BBB通透性㊁出血水平[51]瑞舒伐他汀抑制炎症抑制星形胶质细胞和小胶质细胞的活化ꎻ减少炎症因子的释放ꎻ抑制NF-κB/MAPK途径改善梗死体积㊁出血水平ꎻ改善BBB损伤㊁抑制神经炎症[52]㊀㊀综上所述ꎬ尽管tPA溶栓引起的HT机制以及小分子化合物干预作用研究已取得一定进展ꎬ但其分子机制研究仍不够深入具体ꎬ仍缺乏明确的作用靶点ꎮ未来可应用单细胞测序㊁多组学技术联用等手段进一步解析tPA引起HT的作用机制并识别更特异的生物标志物ꎬ以期发现潜在更安全有效的新靶点和小分子先导化合物ꎬ从而为临床缺血性中风的防治提供更多线索和参考ꎮ参考文献:[1]㊀GBD2019StrokeCollaborators.Globalꎬregionalꎬandna ̄tionalburdenofstrokeanditsriskfactorsꎬ1990-2019:Asystematicanalysisfortheglobalburdenofdiseasestudy2019[J].LancetNeurolꎬ2021ꎬ20(10):795-820. [2]FLICKMJ.MechanismofICHwithtPAthrombolysis[J].Bloodꎬ2021ꎬ138(1):8-9.[3]KURIAKOSEDꎬXIAOZ.Pathophysiologyandtreatmentofstroke:presentstatusandfutureperspectives[J].IntJMolSciꎬ2020ꎬ21(20):7609.[4]TURCGꎬBHOGALPꎬFISCHERUꎬetal.EuropeanStrokeOrganisation(ESO)-europeansocietyforminimallyinva ̄siveneurologicaltherapy(ESMINT)guidelinesonme ̄chanicalthrombectomyinacuteischemicstroke[J].JNeurointervSurgꎬ2019ꎬ11(6):535-538.[5]FANXꎬJIANGYꎬYUZꎬetal.CombinationapproachestoattenuatehemorrhagictransformationaftertPAthrombolytictherapyinpatientswithpoststrokehypergly ̄cemia/diabetes[J].AdvPharmacolꎬ2014(71):391-410. [6]MAÏERBꎬDESILLESJPꎬMAZIGHIM.Intracranialhem ̄orrhageafterreperfusiontherapiesinacuteischemicstrokepatients[J].FrontNeurolꎬ2020(11):599908. [7]ARCHIESRꎬALSHOYAIBAꎬCUCULLOL.Blood-brainbarrierdysfunctioninCNSdisordersandputativetherapeutictargets:Anoverview[J].Pharmaceuticsꎬ2021ꎬ13(11):1779.[8]CAIWꎬZHANGKꎬLIPꎬetal.Dysfunctionoftheneuro ̄vascularunitinischemicstrokeandneurodegenerativediseases:Anagingeffect[J].AgeingResRevꎬ2017(34):77-87.[9]HONGJMꎬKIMDSꎬKIMM.Hemorrhagictransformationafterischemicstroke:Mechanismsandmanagement[J].FrontNeurolꎬ2021(12):703258.[10]LEIGHRꎬJENSSꎬHILLISAEꎬetal.Pretreatmentblood-brainbarrierdamageandpost-treatmentintracranialhemor ̄rhageinpatientsreceivingintravenoustissue-typeplasmino ̄genactivator[J].Strokeꎬ2014ꎬ45(7):2030-2035.[11]ARBAFꎬPICCARDIBꎬPALUMBOVꎬetal.Blood-brainbarrierleakageandhemorrhagictransformation:Thereperfusioninjuryinischemicstrokestudy[J].EurJNeu ̄rolꎬ2021ꎬ28(9):3147-3154.[12]YANGEꎬCAIYꎬYAOXꎬetal.Tissueplasminogenacti ̄vatordisruptstheblood-brainbarrierthroughincreasingtheinflammatoryresponsemediatedbypericytesaftercer ̄ebralischemia[J].Aging(AlbanyNY)ꎬ2019ꎬ11(22):10167-10182.[13]GUBERNCꎬCOMAJOANPꎬHUGUETGꎬetal.Evaluationoflong-termrt-PAeffectsonbEnd.3endo ̄thelialcellsunderischemicconditionsꎻchangesinZO-1expressionandglycosylationofthebradykininB2receptor[J].ThrombResꎬ2020(187):1-8.[14]QIULꎬCAIYꎬGENGYꎬetal.Mesenchymalstemcell-derivedextracellularvesiclesattenuatetPA-inducedblood-brainbarrierdisruptioninmurineischemicstrokemodels[J].ActaBiomaterꎬ2022(154):424-442.[15]LVJꎬHUWꎬYANGZꎬetal.Focusingonclaudin-5:ApromisingcandidateintheregulationofBBBtotreatis ̄chemicstroke[J].ProgNeurobiolꎬ2018(161):79-96.[16]GONCALVESAꎬSUEJꎬMUTHUSAMYAꎬetal.Throm ̄bolytictPA-inducedhemorrhagictransformationofischemicstrokeismediatedbyPKCβphosphorylationofoccludin[J].Bloodꎬ2022ꎬ140(4):388-400.[17]WANGWꎬLIMꎬCHENQꎬetal.Hemorrhagictransforma ̄tionaftertissueplasminogenactivatorreperfusiontherapyforischemicstroke:mechanismsꎬmodelsꎬandbiomarkers[J].MolNeurobiolꎬ2015ꎬ52(3):1572-1579.[18]SUOFUYꎬCLARKJFꎬBRODERICKJPꎬetal.Matrixmetalloproteinase-2or-9deletionsprotectagainsthemor ̄rhagictransformationduringearlystageofcerebralischemiaandreperfusion[J].Neuroscienceꎬ2012(212):180-189.[19]HAFEZSꎬABDELSAIDMꎬEL-SHAFEYSꎬetal.Matrixmetalloprotease3exacerbateshemorrhagictransformationandworsensfunctionaloutcomesinhyperglycemicstroke[J].Strokeꎬ2016ꎬ47(3):843-851.[20]RAMOS-FERNANDEZMꎬBELLOLIOMFꎬSTEADLG.Matrixmetalloproteinase-9asamarkerforacuteischemicstroke:Asystematicreview[J].JStrokeCerebrovascDisꎬ2011ꎬ20(1):47-54.[21]CHENHSꎬCHENXMꎬFENGJHꎬetal.Peroxynitritede ̄compositioncatalystreducesdelayedthrombolysis-inducedhemorrhagictransformationinischemia-reperfusedratbrains[J].CNSNeurosciTherꎬ2015ꎬ21(7):585-590.[22]ZHAOBQꎬWANGSꎬKIMHYꎬetal.Roleofmatrixmet ̄alloproteinasesindelayedcorticalresponsesafterstroke[J].NatMedꎬ2006ꎬ12(4):441-445.[23]MAGꎬPANZꎬKONGLꎬetal.Neuroinflammationinhem ̄orrhagictransformationaftertissueplasminogenactivatorthrombolysis:potentialmechanismsꎬtargetsꎬtherapeuticdrugsandbiomarkers[J].IntImmunopharmacolꎬ2021(90):107216.[24]SPRONKEꎬSYKESGꎬFALCIONESꎬetal.Hemorrhagictransformationinischemicstrokeandtheroleofinflam ̄mation[J].FrontNeurolꎬ2021(12):661955.[25]MEHRAAꎬALICꎬPARCQJꎬetal.Theplasminogenacti ̄vationsysteminneuroinflammation[J].BiochimBiophysActaꎬ2016ꎬ1862(3):395-402.[26]PETROVIC-DJERGOVICDꎬGOONEWARDENASNꎬPINSKYDJ.Inflammatorydisequilibriuminstroke[J].CircResꎬ2016ꎬ119(1):142-158.[27]ROSELLAꎬCUADRADOEꎬORTEGA-AZNARAꎬetal.MMP-9-positiveneutrophilinfiltrationisassociatedtoblood-brainbarrierbreakdownandbasallaminatypeIVcollagendegradationduringhemorrhagictransformationafterhumanischemicstroke[J].Strokeꎬ2008ꎬ39(4):1121-1126.[28]WANGRꎬZHUYꎬLIUZꎬetal.NeutrophilextracellulartrapspromotetPA-inducedbrainhemorrhageviacGASinmicewithstroke[J].Bloodꎬ2021ꎬ138(1):91-103. [29]GUOZꎬYUSꎬCHENXꎬetal.SuppressionofNLRP3at ̄tenuateshemorrhagictransformationafterdelayedrtPAtreatmentinthromboembolicstrokerats:Involvementofneutrophilrecruitment[J].BrainResBullꎬ2018(137):229-240.[30]KONGLꎬMAYꎬWANGZꎬetal.Inhibitionofhypoxiain ̄duciblefactor1byYC-1attenuatestissueplasminogenactivatorinducedhemorrhagictransformationbysuppressingHMGB1/TLR4/NF-κBmediatedneutrophilinfiltrationinthromboembolicstrokerats[J].IntImmuno ̄pharmacolꎬ2021(94):107507.[31]JICKLINGGCꎬLIUDꎬSTAMOVABꎬetal.Hemorrhagictransformationafterischemicstrokeinanimalsandhumans[J].JCerebBloodFlowMetabꎬ2014ꎬ34(2):185-199. [32]CHENHSꎬQISHꎬSHENJG.One-compound-multi-target:combinationprospectofnaturalcompoundswiththrombolytictherapyinacuteischemicstroke[J].CurrNeuropharmacolꎬ2017ꎬ15(1):134-156.[33]CHENHSꎬCHENXꎬLIWTꎬetal.TargetingRNS/caveolin-1/MMPsignalingcascadestoprotectagainstcerebralis ̄chemia-reperfusioninjuries:Potentialapplicationfordrugdiscovery[J].ActaPharmacolSinꎬ2018ꎬ39(5):669-682. [34]CHENHꎬGUANBꎬCHENXꎬetal.Baicalinattenuatesblood-brainbarrierdisruptionandhemorrhagictransfor ̄mationandimprovesneurologicaloutcomeinischemicstrokeratswithdelayedt-PAtreatment:InvolvementofONOO--MMP-9pathway[J].TranslStrokeResꎬ2018ꎬ9(5):515-529.[35]KONGLLꎬGAOLꎬWANGKXꎬetal.Pinocembrinatten ̄uateshemorrhagictransformationafterdelayedt-PAtreatmentinthromboembolicstrokeratsbyregulatingen ̄dogenousmetabolites[J].ActaPharmacolSinꎬ2021ꎬ42(8):1223-1234.[36]GARCÍA-YÉBENESIꎬGARCÍA-CULEBRASAꎬPEÑA-MARTÍNEZCꎬetal.IronoverloadexacerbatestheriskofhemorrhagictransformationaftertPA(tissue-typeplas ̄minogenactivator)administrationinthromboembolicstrokemice[J].Strokeꎬ2018ꎬ49(9):2163-2172.[37]JIBꎬZHOUFꎬHANLꎬetal.SodiumtanshinoneIIAsul ̄fonateenhanceseffectivenessrt-PAtreatmentinacuteis ̄chemicstrokepatientsassociatedwithamelioratingblood-brainbarrierdamage[J].TranslStrokeResꎬ2017ꎬ8(4):334-340.(下转第401页)Open-LabelꎬRandomizedꎬPhaseIIITAILORTrial[J].JClinOncolꎬ2018ꎬ36(30):3031-3039.[14]VERMORKENJBꎬMESIARꎬRIVERAFꎬetal.Platinum-basedchemotherapypluscetuximabinheadandneckcancer[J].NEnglJMedꎬ2008ꎬ359(11):1116-1127. [15]任炳楠ꎬ赵越ꎬ薛朝军ꎬ等.治疗转移性结直肠癌的抗血管生成单克隆抗体的药品遴选量化评估[J].中国新药与临床杂志ꎬ2022ꎬ41(6):367-373.[16]中国医师协会外科医师分会ꎬ中华医学会外科分会胃肠外科学组ꎬ中华医学会外科分会结直肠外科学组ꎬ等.中国结直肠癌肝转移诊断和综合治疗指南(V2020)[J].中华结直肠疾病电子杂志ꎬ2021ꎬ10(1):2-15.[17]国家卫生健康委员会医政医管局ꎬ中华医学会肿瘤学分会.中国结直肠癌诊疗规范(2020年版)[J].中国实用外科杂志ꎬ2020ꎬ40(6):601-625.[18]陈功ꎬ王屹.2017版欧洲肿瘤学会直肠癌指南解读[J].中华胃肠外科杂志ꎬ2017ꎬ20(11):1236-1242.[19]龙飞ꎬ胡桂ꎬ马敏ꎬ等.2021.V1版NCCN临床实践指南:结肠癌/直肠癌更新解读(外科部分)[J].临床外科杂志ꎬ2021ꎬ29(5):401-404.(收稿日期:2024-01-09)(上接第390页)[38]YOUYP.Epigallocatechingallateextendsthetherapeuticwindowofrecombinanttissueplasminogenactivatortreat ̄mentinischemicrats[J].JStrokeCerebrovascDisꎬ2016ꎬ25(4):990-997.[39]ZUOWꎬYANFꎬZHANGBꎬetal.SalidrosideimprovesbrainischemicinjurybyactivatingPI3K/AktpathwayandreducescomplicationsinducedbydelayedtPAtreatment[J].EurJPharmacolꎬ2018(830):128-138.[40]JEANLEBLANCNꎬMENETRꎬPICARDKꎬetal.CanonicalWntpathwaymaintainsblood-brainbarrierin ̄tegrityuponischemicstrokeanditsactivationamelioratestissueplasminogenactivatortherapy[J].MolNeurobiolꎬ2019ꎬ56(9):6521-6538.[41]WANGWꎬLIMꎬWANGYꎬetal.GSK-3βinhibitorTWS119attenuatesrtPA-inducedhemorrhagictransfor ̄mationandactivatestheWnt/β-cateninsignalingpathwayafteracuteischemicstrokeinrats[J].MolNeuro ̄biolꎬ2016ꎬ53(10):7028-7036.[42]WANGTꎬDUANYMꎬFUQꎬetal.IM-12activatestheWnt-β-cateninsignalingpathwayandattenuatesrtPA-inducedhemorrhagictransformationinratsafteracuteischemicstroke[J].BiochemCellBiolꎬ2019ꎬ97(6):702-708.[43]LIUCꎬSUNSꎬXIEJꎬetal.GLP-1RagonistExendin-4pro ̄tectsagainsthemorrhagictransformationinducedbyrtPAafterischemicstrokeviatheWnt/β-Cateninsignalingpath ̄way[J].MolNeurobiolꎬ2022ꎬ59(6):3649-3664.[44]RENWꎬHUANGCꎬCHUHꎬetal.Peptide5attenuatesrtPArelatedbrainmicrovascularendothelialcellsreperfu ̄sioninjuryviatheWnt/β-cateninsignallingpathway[J].CurrNeurovascResꎬ2021ꎬ18(2):219-226.[45]ZHANGLꎬXUSꎬWUXꎬetal.Combinedtreatmentwith2-(2-benzofu-ranyl)-2-imidazolineandrecombinanttis ̄sueplasminogenactivatorprotectsblood-brainbarrierin ̄tegrityinaratmodelofembolicmiddlecerebralarteryoc ̄clusion[J].FrontPharmacolꎬ2020(11):801.[46]ORSETCꎬARKELIUSKꎬANFRAYAꎬetal.CombinationtreatmentwithU0126andrt-PApreventsadverseeffectsofthedelayedrt-PAtreatmentafteracuteischemicstroke[J].SciRepꎬ2021ꎬ11(1):11993.[47]KNECHTTꎬSTORYJꎬLIUJꎬetal.Adjunctivetherapyap ̄proachesforischemicstroke:innovationstoexpandtimewindowoftreatment[J].IntJMolSciꎬ2017ꎬ18(12):2756.[48]YINBꎬLIDDꎬXUSYꎬetal.Simvastatinpretreatmenta ̄melioratest-PA-inducedhemorrhagetransformationandMMP-9/TIMP-1imbalanceinthromboemboliccerebralischemicrats[J].NeuropsychiatrDisTreatꎬ2019(15):1993-2002.[49]LIUDLꎬHONGZꎬLIJYꎬetal.PhthalidederivativeCD21attenuatestissueplasminogenactivator-inducedhemorrhagictransformationinischemicstrokebyenhancingmacrophagescavengerreceptor1-mediatedDAMP(peroxiredoxin1)clearance[J].JNeuroinflamma ̄tionꎬ2021ꎬ18(1):143.[50]LIYꎬZHUZYꎬLUBWꎬetal.Rosiglitazoneamelioratestissueplasminogenactivator-inducedbrainhemorrhageafterstroke[J].CNSNeurosciTherꎬ2019ꎬ25(12):1343-1352. [51]ISMAELSꎬNASOOHISꎬYOOAꎬetal.VerapamilasanadjuncttherapytoreducetPAtoxicityinhyperglycemicstroke:implicationofTXNIP/NLRP3inflammasome[J].MolNeurobiolꎬ2021ꎬ58(8):3792-3804.[52]LUDꎬLIUYꎬMAIHꎬetal.Rosuvastatinreducesneuroin ̄flammationinthehemorrhagictransformationafterrt-PAtreatmentinamousemodelofexperimentalstroke[J].FrontCellNeurosciꎬ2018(12):225.[53]CHENHꎬGUANBꎬWANGBꎬetal.Glycyrrhizinpreventshemorrhagictransformationandimprovesneurologicalout ̄comeinischemicstrokewithdelayedthrombolysisthroughtargetingteroxynitrite-mediatedHMGB1signaling[J].TranslStrokeResꎬ2020ꎬ11(5):967-982.(收稿日期:2023-04-26)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

维持麻醉 。术 中依据病人血压 ( b l o o d p r e s s u r e , B P ) 、 心率 ( h e a r t r a t e , H R) 来调整瑞 芬太尼的血浆浓度 以控制麻 醉深度 , 神经刺
激 仪 监 测 患 者 肌 肉松 弛 程 度 。 1 . 3 术 中监 测 方 法 术 中持续监 测患者 心 电图( e l e c t r o c a r d i o —
身体质量指数 ( b o d y m a s s i n d e x , B MI ) : 女性为 1 8— 2 2 , 男 性 为
2 0 ~2 4。
衡, 不引起组织脱水或 水肿 , 具 有维持 有效 循环 容量 和升压 的 作用 。聚明胶肽 注射 液 主要用 于手术 麻醉 中扩容 治疗 及补 充 血容量 一 。有报道说 明 , 将聚明胶肽应用于心脏手 术患 者体 外 循环 , 可明显降低患 者 的血粘度 , 增 加组织 氧供 , 改善微 循环 , 并 且能 纠正酸中毒和水电解质代谢 紊乱等 , 临床效 果较 好 。

8 4






2 0 1 5年第 3 1卷第 5期
V0 1 . 3 1 No . 5 2 0 1 5
J o u r n a l o f B a o t o u Me d i c a l C o l l e g e
聚 明胶 肽 扩 容 对术 中血 糖 、 电解 质 和 酸碱 平衡 的影 响
肽, 可 维 持 产 妇正 常 的 心 血 管 系 统 功 能 。但 是 , 聚 明 胶 肽 扩
容对病人内环境的影响如何 , 目前还没有 相关报道 。本研 究通 过测定手 术 患 者输 液 前 ( T 1 ) 、 输液量为 1 0 m L / k g时 ( T 2 ) 、
2 0 mI / k g 时( T 3 ) 、 3 0 mL / k g时 ( T 4 ) 各时 间点血糖 、 电解质和酸
1 . 2 麻 醉 方法
患者 入室ቤተ መጻሕፍቲ ባይዱ、 建立 静脉 注射 ( i n t r a v e n o u s i n j e c —
t i o n , I V) 通络 , 常规芬太尼 2 m g / k g 、 万可 松 0 . 1 mg / k g 、 异 丙酚
2 m g / k g注 入 , 诱 导插 管全 麻 , 吸 入异 氟醚 , 瑞 芬 太尼 4 m e , / k g
本 研 究 中, 患 者 在 聚明胶 肽输 液 前 ( T 1 ) 、 输 液 量 为 1 0 m L / k g 时( 1 2) 、 2 0 m L / k g时 ( ) 、 3 0 m L / k g时 ( T 4) 4个 时 间点 血 糖 、 电解 质 和 酸 碱 度 等 指 标 无 明 显 变 化 , 提 示 在 术 中 输 注 聚 明胶 肽 , 不会引起患者血糖 、 电 解 质 和 酸 碱 度 的 明显 变 化 。
血钾 、 血钾浓度和 p H 比较 ( x±s)
况的扩容治疗 … , 广泛 应用于临床麻醉手术 中。有报 道聚 明胶
肽 联 合 6% 羟 乙 基 淀 粉 可 缓 解 右 肺 上 叶 切 除 术 患 者 肺 脏 炎 性
反应及氧 化应激 反应 ; 而预 先输注 7 . 5% 氯化 钠与 聚明胶
g r a m, E C G) 、 血 氧 饱 和度 ( o x y h e mo g l o b i n s a t u r a t i o n , S p O 2 ) 。 应
碱 度的变化 , 来 观察 聚 明 胶 肽 对 患 者 内环 境 的 影 响 , 为 临 床 工 作提供实验依据 。
3 讨 论
聚明胶 肽注射液是 目前临床常用 的胶 体液 , 为人工胶体 类 产品, 是一种血浆代用 品 , 来 自于健康 牛骨 或猪骨 明胶 水解 制 成 的灭 菌水溶液 。平 均分子量为 2 7 5 0 0~ 3 9 5 0 0 , 其电解质 含 量、 渗透压 、 P H值等生理指标与血浆基 本相等 。尤 其是该胶 体
可 提供 与血 浆 相 等 的 渗 透 压 , 保 持 了血 管 内液 与组 织 问 液 的 平
1 对象 与方 法
1 . 1 研究对象 选 择 美 国麻 醉 协 会 A S A分 级 为 I ~ Ⅱ级 , 无 合 并 症 的 脊柱 或 关 节 择 期 手 术 的 3 0例 患 者 为 研 究 对 象 。患 者
关键词 聚明胶肽 ; 血糖 ; 电解 质 ; 酸碱 度
聚明胶肽是一种胶体液体 , 能预防或 纠正 由于血容 量下降
引起的循环障碍 , 用于低 血容量 性休 克 、 全 血 或 血 浆 丢 失 等 情
计 学 意 义 (P > 0 . 0 5 ) , 见表 1 。
表1 3 0例 患者 T 1 、 、 和T 4各 时 间 点 血 糖 、
高建刚 , 詹 丽春
( 包 头 市 第 四 医 院麻 醉科 , 内 蒙 古 包头 O l 4 0 3 0 )

要 目的 : 观察 聚明胶肽作为一种胶体扩容液体对麻醉病人内环境的影响。方法 : 选择美 国麻 醉协会 ( A S A ) 分级为 I~Ⅱ级 ,
无合 并症的脊 柱或关 节择期手术 的 3 0例患者为研究对象。应用 聚明胶肽 注射液输注 , 选取输液前 、 输 液量为 1 0 m L / k g时、 2 0 mL / k g时 和3 0 mL / k g 时为 4个 时间点 : T l 、 T 2 、 1 ’ 3和 T 4 , 分别测定患者各时 间点血糖 、 血钾 、 血钠浓度 和酸碱度 , 将 以上指标进 行各时 间点 的 自身 比较 。结果 : 患者的血糖 、 血钾 、 血钠浓度 和酸碱度 , 在各 时问点进行 比较 , 差异均无统计 学意义 (P >0 . 0 5 ) 。结论 : 在麻 醉手术 中输 注 聚明胶肽 , 对机体内环境无明显影 响 , 安全有效 , 可广泛应用于临床 。
相关文档
最新文档