2015年数学建模B题滴滴打车问题优秀论文
2015年数模国赛论文B题_3

赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):B我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):评阅人备注送全国评阅统一编号(由赛区组委会填写):全国评阅随机编号(由全国组委会填写):(此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。
注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。
)“互联网+”时代的出租车资源配置摘要:“互联网+”就是利用互联网平台、信息通信技术,将互联网及包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态。
2015年全国大学生数学建模竞赛B题国一优秀论文

2.1 概论 目前城市“打车难”的社会问题导致越来越多的打车软件出现在市场上。以
此为背景,我们需要首先分析影响出租车资源的“供求匹配”程度的因素,进而 分析现已出台的补贴政策是否能够通过调整“供求匹配”程度进而缓解“打车难” 的现象,并在最后提出了我们自己关于补贴方案的想法。 2.2 问题一分析
0.70
0.53
0.66
0.68
0.40
0.86
0.71
0.71
0.84
0.82
0.88
0.91
0.66
0.68
0.84
0.79
6
2.被抢单时间 t 被抢单时间 t 表示客户使用打车软件下单后被司机接单的时间,可在一定程 度上反映打车难易程度。在滴滴快的打车智能出行平台上,基于需要研究的三个
时间段,采集西安的被抢单时间 t,制作表格如下:
火车站 121.23 142.45 219.44 161.04 210.23 231.67 278.93 240.28 198.67 245.92 221.38 221.99
北大街 67.23 107.52 98.23 90.99 72.92 82.98 187.23 114.38 63.95 145.23 98.25 102.48
小寨 62.19 78.31 103.20 81.23 136.25 178.27 162.73 159.08 83.82 103.27 121.93 103.01
西安交大 子午大道
47.21
43.98
82.34
64.53
102.34 65.92
77.30
58.14
121.94 67.74
167.42 93.03
2015年全国数学建模竞赛B题全国一等奖论文6

pqt , y pqt ) (x
d qst
t 时刻第 q 类乘客类中心到第 s 类出租车类中心的距离
h qt ˆ h qst
tmn
[h L , hU ] t 时刻第 q 类乘客的人数, h qt qt qt
t 时刻离第 q 类乘客类中心最近的第 s 类出租车的数量
L U 乘客乘车从第 m 类出租车类到第 n 类出租车类的时间, tmn [tmn , tmn ]
) FQ (a
dQ( y ) p (a y (a P a L ))dy 0 dy
1
是一个闭区间且下界为正数, R + 是正实数区间, [a L , a P ] .
[a L , aU ] ,若 Q( y ) dy 为态度参数,则 定理 5.1.1 设 a
基于模糊多目标规划的出租车补贴模型 摘要
出租车“打车难”是当前社会的热点话题,乘客与出租车的供需不匹配也成 为实现他们信息互通的障碍,随着多家公司建立打车软件服务平台,推出多种出 租车补贴方案,出租车和乘客间的供需匹配问题逐渐成为“互联网+”时代的重 要课题之一。本文以上海市为例,通过出租车和乘客供求平衡指标,构建基于模 糊多目标规划和层次分析法的出租车资源供求匹配模型,并设计新的补贴方案, 从而有效缓解“打车难”问题。 针对问题一,首先从苍穹滴滴快的智能出行平台和数据堂网站搜集相关数 据, 分析反映出租车资源供需匹配程度的 5 个指标。 由于数据存在一定的模糊性, 本文利用连续区间有序加权平均(COWA)算子将相关指标转化为含参变量的实 指标,通过 K 均值聚类模型将上海的出租车分布和乘客需求量进行聚类,并构 建基于空车率、空车总代价、乘客总成本的模糊多目标规划模型,同时,利用基 于 COWA 算子的模糊层次分析法将模糊多目标规划模型转化为单目标规划模 型,结果表明,上海地区呈现供不应求的出租车资源分布状况,并且在上下班高 峰期时间段显得尤为突出。 针对问题二,通过在模糊多目标规划模型中增加补贴方案,重新求解模型, 并分析出租车等待时间、乘客等待时间、空车率的变动,结果表明,适当的补贴 能够在一定程度上提高供求匹配程度,缓解“打车难”的问题;然而一旦超过一 定补贴范围,出租车的供给与乘客的乘车需求匹配程度就会下降。 针对问题三,根据乘客与出租车的距离、单位出租车服务人数、乘车费用、 乘客人数等因素,构建新的补贴方案,并重新求解模糊多目标规划模型,结果表 明,新的补贴方案能有效地缓解“打车难”问题,模型结果也同时验证了补贴方 案的合理性。 最后,本文对所建模型进行了灵敏度分析,并对模型进行了优缺点分析。 关键词:多目标优化;层次分析法;供求匹配;补贴;COWA 算子.
2015年B题数学建模_滴滴打车模型分析

2015 数学建模B题(公选课)后打车时代究竟能走多远--基于数学分析的打车软件盈利模式的评估体系1.摘要打车软件作为新兴的交易平台,增加了交易机会。
且与街头扬招方式相比,打车软件优势也很明显,它可以让出租车司机迅速找到它的客户。
出租车正在寻找客人而“空跑”。
打车软件的出现则改变了这种信息不对称,大大降低了司机的“空载率”,减少了司机和乘客之间的交易成本——司机扫街和乘客扫街的时间成本。
其次,改变了支付方式。
传统现金交易有两个弊病,一是安全性。
另外,大量现金交易增加了司机的交易成本:时不时收到假钞,蒙受经济损失;每周几次到银行存钱也增加了时间成本。
这些优势就使得打车软件极具有盈利的可能,只有软件找到用户并增强对他们的粘性,就有许多渠道来针对他们来盈利。
随着近两年打车软件的兴起,从原先40多款打车软件的百花齐放演变成现在的嘀嘀、快的双雄争霸,市场竞争也趋于白热化。
2014年伊始,嘀嘀打车和快的打车进入史上空前的“烧钱大战”,在高峰期甚至达到2月17日乘客返现10—15元,新司机首单立奖50元,而且每单都有补贴十块。
目前两大打车软件纷纷将针对乘客的补贴降至3元/单,对司机端的补贴,嘀嘀是5元/单,快的4元/单。
部分城市的嘀嘀打车更已取消“立减优惠”,取而代之的是“用嘀嘀添新衣”的广告或改送购物网站现金券。
那么,在后打车时代,滴滴打车这类打车软件还能走多远了?我们通过对打车软件盈利模式的研究来探索这个问题。
关键词:空载率,支付方式,交易成本,后打车时代2.模型的假设①打车软件开拓的市场基本成熟,大公司的投资也不再,补贴也不再,利用生活服务来增强对用户的粘性。
②假设软件公司为用户提高的生活服务质量日趋完善,出租车司机的覆盖率每年增长,但增长速度每年递减,最后使用打车软件的人数稳定在一定数量(即达到饱和状态)。
③假设出租车司机的覆盖率与顾客的等待时间成反比,即t=k2/p2;k2为常系数。
假设顾客的满意度跟等待时间成负相关,且满足s=100-k1*t,其中t顾客等待打车的时间,k1为常系数,顾客的满意度跟的士的覆盖率成正相关,可以这么理解,使用打车软件的出租车越多,乘客越容易在短时间内打到车,即满意度越高。
2015年数学建模B题全国一等奖论文

基于供求匹配率的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
为分析不同时空出租车资源的供求匹配程度,引入出租车资源供求匹配率这一指标,指标的定义为城市中实际运行的出租车辆数与居民出行需要的出租车辆数之比,反映城市中实际运行的出租车辆数与居民出行需要的出租车辆数之间的差异。
计算得出2013年出租车供求匹配率为0.7766,表示供不应求。
居民出行需要的出租车辆数与居民人均日出行次数、城市总人口数量、居民出行选择乘坐出租车的比例有关,也与每辆出租车日均载客次数、每单载客人数和车辆满载率有关。
对于居民人均日出行次数,利用十五个国大中城市的数据,将十二个城市经济指标聚类分析选出每类指标中典型的经济指标,建立居民人均日出行次数与这些典型经济指标间的多元线性回归方程,而与居民出行需要的出租车辆数相关的其他指标可查阅文献或年鉴获得。
分析市每天6:00-8:30,11:00-12:30,13:30-14:30,17:00-18:30四个时间段得供求匹配率分别为0.4111,0.5678,0.6062,0.5631,结果显示供不应求。
得到、、、、、、、八座城市的出租车资源供求匹配率分别为1.0936、0.8827、0.9430、0.7040、0.7049、0.7666、0.6583、0.5252,表明只有的出租车资源是供大于求,而其余七座城市为供小于求。
为了分析各公司的出租车补贴方案对缓解打车难是否有帮助,定性分析出租车日均载客次数、出租车满载率随打车软件对出租车司机每单补贴金额的变化趋势,分别建立阻滞增长模型,进而分析打车软件对出租车司机每单补贴金额的变化对所建指标的影响。
得到的结论为:对于使用打车软件的乘客来说,出租车补贴方案能够缓解打车难的问题;而对于不使用打车软件的乘客来说,出租车补贴方案则不能缓解打车难的问题。
2015数学建模竞赛B题优秀论文介绍

一、问题重述
随着科技与经济的飞速发展,“互联网+”战略的影响已经深入各行各业。出 租车作为城市的交通工具之一,对人们的出行起着重要的影响,然而,“打车难” 一直是人们关注的一个社会热点问题。近几年来,“互联网+”战略与传统出租车 行业深度融合,打车软件作为其中典型的应用,已对传统出租车行业市场产生了 深远影响。依托移动互联网建立的打车软件服务平台,实现了乘客与出租车司机 之间的信息互通。同时,各家公司推出了多种出租车的补贴方案,进一步加强了 “互联网+”战略与传统出租车行业的融合,优化了出租车资源配置.
三、符号说明
符号 t ij k ij m ij n ij n ik Tij K ij M ij N ij
N ik
说明
2015.9.05-9.10 i 市6天每第 j 个 时间段抢单时间的均值
2015.9.05-9.10 i 市天每第 j 个时 间段的打车难度系数的均值
2015.9.05-9.10 i 市 7 天每第 j 个 时间段的乘客乘坐出租车总费用的 均值
基于“互联网+”对出租车资源配置影响的问题研究
摘要
本文通过对网络上收集的数据进行合理分析和处理,进一步研究发现,一段 时间内的出租车的车费(即所有司机此段时间内的收入之和),需求(此段时间 内通过打车软件呼叫车辆的人数),车辆分布(此段时间内的该市的处于运营的 出租车数量)相当于生产的环境因素,而打车难易度(网络资源综合实时数据提 供的衡量打车难度的数据),抢单时间(通过打车软件呼叫出租车到出租车司机 接 单 的 时 间 差 ) 可 以 看 做 产 出 的 “ 效 益 ”. 数 据 包 络 分 析 (Data Envelopment analysis, 简称 DEA 模型)的方法,用于评价相同部门间的 相对有效性(因此被称为 DEA 有效).DEA 模型是经济理论中估计具有多个输 入,特别是具有多个输出的“生产前沿函数”(也称生产前沿面)的有力工具.因此 本文将 DEA 模型合理应用于问题一的模型构建。本文通过在苍穹网抓取到北京, 上海,深圳三个城市24个小时段的上述五个信息,经过合理的处理,将 DEA 模型应用在数据上,再通过 MATLAB 编程,最后分析结果.问题二要求分析打 车软件的补贴政策是否有助于缓解“打车难”问题,这样就要求我们找到出现补 贴前后的情况.通过查找我们发现新华网报道中信银行旗下“中信打车付”将于 10 日启动新一轮立减补贴活动。本文将针对北京市的补贴政策前后的 EDA 值采 用多元线性回归分析法建立回归模型,在回归方程中加入 dummy 变量,没有补 助时,dummy 值为0,有补助时其值为1.利用 MATLAB 编程,得出相应结果.第 三问采用理论分析。
2015数学建模竞赛B题获奖论文

“互联网+”时代的出租车资源配置 摘要
利用互联网上软件打车方式越来越普遍,人们在享受互联网+时代带来的方便的同 时,也体会到了它带来的不便,现在出租车“打车难”已经成为当今时代人们关注的热 点问题,出租车资源的供应匹配不合理,相应的公司也推出各种补贴方案来缓解打车难 的问题。以下是针对三个问题求解分析。 针对问题一,通过 excel 软件对大量的数据进行分析与统计,筛选出本文用到的不 同城市的不同时间关于出租车的详细数据,建立了 4 个指标:通过城市道路中心线总长 度与城市用地面积之比求得道路网密度、通过出租车数量与人口规模比求得万人拥有 量、通过全市的客运量与每天客流量求得出租车公共交通分担率、通过空行驶里程与日 运营总里程的比求得里程空驾驶率。 利用主成份分析法把这四个指标转化为一个指标体 系,其中的参数——权重用灵敏度分析方法求出,利用 MATLAB 软件画出权重比例,权 重是在整体评价中相对重要的程度,这四个指标权重构成了一系列权重体系,方便后来 在进行定量分析过程的计算简化,简化后涉及的变量只有一个出租车保有量,可以直观 通过此指标体系分析出出租车资源的供求分配程度。 针对问题二,本文通过对各软件用户下载量的分析,选择快的打车和滴滴打车不同 打车软件的不同补贴政策进行类比,得出打车软件有无缓解打车难问题的大致趋势, 再 根据模型一的求解过程,建立一个同模型一的数学模型,求出打车软件实施补贴方案之 后的出租车保有量, 将模型一的无打车软件补贴方案出租车保有量与有打车软件补贴方 案出租车保有量进行比较,可得出有打车软件补贴方案对 “缓解打车难”没有帮助。 针对问题三, 首先分别分析等待时间、 出租车空载率和价格与出租车司机的满意度、 乘客的满意度、社会的满意度、政府的满意度的关系,从而建立多目标函数数学模型, 通过满意度反应了打车软件补贴方案的受欢迎度,最后根据所求数据建立最优规划模型 验证别方案的合理性。
2015年数模国赛论文B题-1

互联网时代的出租车资源配置摘要出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着互联网时代的到来,很多家出租车公司建立了自己的打车软件服务平台,打车软件服务平台也走进了人们的生活,增加了交易机会,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
我们通过建立合适的数学模型来分析如今的补贴方案是否能缓解打车难的问题。
针对问题一,为了将“供求匹配程度”这一抽象的概念进行定量研究,我们试图建立出租车万人拥有量、空驶率、乘客等车时间、里程利用率等四个指标结合经济学的角度来进行问题的分析,并基于层次分析模型进行模糊综合评价来分析不同时空出租车资源的“供求匹配”程度。
针对问题二,要求我们分析各公司的出租车补贴方案是否对缓解打车难问题有帮助,我们利用数学期望假设检验的方法,主要通过对使用打车软件前后乘客平均等车时间和出租车司机驾车空驶率两个因素的分析,验证出租车补贴方案是否对缓解打车难问题,并验证了这些打车软件服务平台和出台的相应的出租车及乘客补贴政策提高了打车双方的积极性,对缓解“打车难”的问题起到了一定的帮助。
针对问题三,建立一个新的打车软件服务平台首先应该考虑在缓解“打车难“这个难题基础上,增加其核心竞争力,再充分汲取现有打车软件服务平台的优点,寻找背后合作伙伴,在初期实施一些大型的优惠补贴政策,吸引客户,并抢占市场份额。
这就需要我们设计出自己的补贴方案,与在原来的补贴方案下相关数据进行比较,分析原来的补贴数目,做出相应的调整。
并进行试验,从而得出其合理性。
关键词:层次分析法,模糊综合评价法,经济学,数学期望假设检验一、问题重述随着人民生活水平的日益提高,出行乘坐出租汽车的人越来越多。
但是,在许多大城市中,打车已经变得越来越难,特别是在上下班高峰期和恶劣天气时更是“一车难求”。
出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于双层规划的出租车补贴方案研究摘要在我国庞大的人口压力下,“打车难”已成为许多城市共同面临的问题。
而随着“互联网+”时代的到来,第三方打车软件的异军突起同时便利了乘客和司机双方。
本文针对此背景下存在的出租车资源“供需匹配”问题,通过寻找数据,建立相应的指标评判“供需匹配”程度的高低,并分析可缓解“打车难”问题的现存及待建立的补贴方案。
问题一中,我们选取车辆满载率、万人拥有量和乘客等待时间三个指标来衡量各区域不同时间段的“供需匹配”程度,对深圳市2011年4月18日一天的出租车运营数据进行了研究。
我们首先对所得数据进行聚类得到热点区域,然后分析出租车到达某区域的时间间隔与乘客等待时间的关系,得到各区域乘客等候时间随时间的变化情况:中心城市等候时间较长的时间段为上午8:00-11:00,下午17:00-19:00;郊区等候时间较长的时间段为凌晨4:00-7:00,下午12:00-14:00;偏远地区等候时间较长的时间段为凌晨3:00-5:00,上午9:00-11:00。
问题二中,我们结合深圳市出租车运行数据,分析乘客24小时内等待时间的变化得到一日内的出租车需求高峰时段。
针对现有的补贴政策,计算其补贴的高峰时段与所求得的高峰时段重叠率,当其重叠率高于75%后,则认为其所进行补贴的时段选取准确,可在高峰时段进一步提高司机积极性以缓解“打车难”现状。
最终结果显示,两大打车软件公司的补贴政策的高峰时间段的重叠率均高于75%,即较好地覆盖所求解的高峰时段,故对缓解“打车难”问题有帮助。
问题三中,在满足尽可能多的乘客需求量的基础上,我们建立了使打车软件公司及出租车司机的利益双向最大化的双层规划模型。
通过Matlab编程求解,我们得到了在高峰时段对出租车司机每单补贴14.75元,乘客每单补贴费2.18元,并以乘客对司机的服务评价星级为参考的补贴方案。
为了简化计算量,提高模型求解精度,本题中首先对所得数据进行预处理,热点分区后降低数据维度后,尽可能全面地考虑不同时空的各指标的取值。
将结果与2011年《深圳市交通发展报告》进行比对,所求结果较为合理。
本文的优点在于选取了较合理的数据进行求解,对出租车运行情况的时空分布给出较为合理的求解,同时引入双目标规划模型对出租车软件公司和出租车司机双方进行利益博弈,使得补贴结果更具有实际价值。
关键词:乘客等待时间出租车补贴政策多方博弈双层规划模型1 问题重述1.1问题背景在当下的现实情况中,“打车难”是许多城市共同面临的问题,特别是我国得特大型及超大型城市,每逢上下班高峰,或一些高温、雷电、雨雪等天气,更是“一车难求”。
而与此现象共存的,则是出租车较高的平日空驶率。
基于这种出租车司机与乘客之间信息不对称的矛盾现象,第三方打车软件于2013年兴起后便迅速融入人们的生活。
随着“互联网+”时代的到来,乘客可以利用打车软件输入起始地和目的地,并且可以适当加价,而出租车司机则可决定是否接单,如此即可同时节省双方的时间和选择成本,大大便利了乘客和出租车司机双方。
而第三方软件公司也推出多种出租车的补贴方案,以提高司机的使用积极性。
在此现实背景下,存在以下一些问题需要解决。
1.2需解决的问题由以上的问题背景分析,我们需要建立相关的数学模型,解决如下三个具体问题:问题1:查找当下某区域不同时空出租车相关的运费、里程等数据,在所照数据的基础上,建立合理的指标,并分析不同时空出租车资源“供求匹配”程度。
问题2:联系当下打车软件公司所给出的补贴方案,研究其是否可以通过改变问题一中建立的指标从而对“缓解打车难”问题有所帮助。
问题3:分析当下打车软件服务平台所给出补贴方案的优缺点的基础上,如果要建立一个新的打车软件服务平台,通过分析相关指标,建立更合理的补贴方案,并论证方案的合理性。
2 问题分析当下Uber、滴滴出行等一批打车软件涌入出租车行业,冲击了传统路边搭车的方式,极大地影响了出租车行业。
打车软件为解决出租车供求平衡提供了新的方法,但打车软件同时也引发了各方的利益冲突。
基于此背景,我们对此问题的分析如下:问题一要求评价不同时空出租车资源的“供求匹配”程度,处理这个问题要综合时间与空间的影响。
查阅文献资料知到,针对空间因素,理论上应对整个地图空间进行分析才可得到较为完善的出租车资源不同时空分配情况,但如此进行模型求解较复杂,故我们找出乘客出租车需求量较大的热点区域进行研究;针对时间因素,合理的解决方案是分交通高峰期、交通低谷期、工作日与非工作日等不同时段分析。
就评价指标,目前主要有万人拥有量、里程利用率、车辆满载率、乘客平均等车时间、空载率等指标。
问题二分析各打车软件公司的出租车补贴方案是否对“缓解打车难”有所帮助。
查阅资料知道,Uber、滴滴出行等打车软件公司发行的补贴方案基本是根据交通拥挤情况分时段执行,高峰期多补和工作日多补,低峰期少补,并根据订单数量制定一些奖励政策。
为了评价补贴方案是否有效,查阅文献资料,目前主要的解决思路有以下三种:(1)利用最直接的思路,找到补贴执行前后某一区域的出租车运行的时空分布资料,简单对比各个衡量指标的值,从而对“供需匹配”程度进行评价。
此方法直观,但由于数据来源较少,难于实现;(2)针对补贴政策对出租车司机的心理和经济状况产生的效用,量化后建立数学模型。
然后就某一个具体区域,对实行补贴政策前后的情况进行仿真,得出评价结果。
本模型比较简单,但由于效用量化困难,可靠性不高;(3)针对“打车难”问题,分析造成此问题的各种因素,如时段、打车软件普及程度、天气等,考虑补贴政策的作用后,分层分析得出结果。
但这样做模型建立太过复杂,不便实现。
在分析当下解决方法的基础上,针对此问题,注意到补贴政策一般分时段来执行,且分析其可以找到的数据,对运费建模较复杂,故我们可以考虑某一个地区出租车出行数据,利用仿真思想,逆向找出交通热点区域的乘客出行高峰期,与各软件公司进行补贴的高峰期对比,以两者的时间重叠率衡量其政策的有效度。
问题三要求在构建一个新的打车软件平台时,给出一个补贴方案并进行验证。
分析此模型的建立将涉及到打车软件公司、出租车司机、乘客三方的综合利益关系,我们可以适当简化实际情况,考虑乘客和打车软件公司两方对出租车司机的补贴政策,以补贴金额为变化指标,联系三方利益,构建一个博弈模型,设计补贴政策。
3 模型假设考虑到问题的复杂性,我们对本问题进行如下合理假设,以简化模型的建立与求解:1、假设在所研究的时段内,深圳市的万人拥有量可以近似表示某个区域的万人拥有量,因为小区域的人口统计没有准确的数据来源,如此假设即可简化万人拥有量这一指标的计算复杂度;2、假设出租车到达某个热点区域时,此区域内的等候乘客即可立刻搭乘,不考虑乘客上下车的耽搁时间,如此即可将时间运算的复杂度降低,忽略乘客上下车用时的随机性;3、假设一周七天的出租车使用情况可以近似看成是相似的,不考虑因周末或节假日所造成的交通拥挤度提高,如此即可利用所得数据给出一天内乘客数和出租车数量的变化情况,同时简化对各公司补贴政策的分析步骤;4、假设深圳市范围内,地球表面可以近似看为平地,由此即可将所选区域按经纬度间隔分为多个正方形,由此即可简化数据提取与模型计算;5、假设司机通过打车软件接单后,不存在中途拒单的问题,如此即可忽略司机因各种个人因素拒单的情况,从而仅仅分析理想情况下打车软件公司及出租车公司的收益;6、假设打车软件公司的收益可以综合考虑为出租车接单收入的回扣资金,如此将打车软件公司给予的各种广告费用、保险费以及服务费等综合为一种资金,简化模型求解过程。
4 符号说明对于本文中建立模型的相关符号,再次对主要符号进行相关说明,其他局部符号在引用时给出了具体说明。
符号说明符号说明l里程利用率s运行里程ys行驶里程z车辆满载率n载客车辆数zn通行总车数t万人拥有量n出租车规模数tp人口规模λ车辆到达某区域的速率()f t乘客到达某区域的概率密度t乘客等待出租车到达的时间dγ高峰时段覆盖率P出租车出行一次的运价p出租车起步价β出租车里程价L出租车乘客平均乘车距离l出租车起步价固定里程B出租车司机的总利润R出租车司机的总收入C出租车司机的总成本Q出行需求η每单运价中打车软件公司所得的回扣率N接受打车软件信号后响应的出租车数目5 模型的建立与求解5.1搜索范围确立模型的建立与求解分析题目可知,问题一中需建立一定的指标,来反映不同时空出租车“供需匹配”的程度。
对于此问题我们首先应该结合某个区域不同时间、不同空间出租车运行轨迹的相关数据,以此建立评判出租车“供需匹配”程度的指标。
5.1.1供需匹配程度衡量模型的建立考虑到题目中并没有给出相关数据,故我们通过查阅资料,找到深圳市2011年6429辆出租车一段时间内不同时刻的位置(以经纬度表示)、状态(状态记录了出租车是否载客,载客为1,空载为0)、速度(Km/h)和行车方向(0=东;1=东南;2=南;3=西南;4=西;5=西北;6=北;7=东北)的数据。
因行车环境的影响,记录采集间隔时间周期不恒定。
每个车辆轨迹数据文件均以车牌号命名,数据文件采用csv 格式存储,数据文件由7个字段构成,以下为一辆车的相关数据表[1]。
表1 一辆出租车的轨迹数据name time jd wd status v angle粤B000H6 2011/04/18 00:36:03114.134666 22.579317 0 0 5 粤B000H6 2011/04/18 00:36:33114.134666 22.579300 0 0 5 粤B000H6 2011/04/18 00:37:03114.133934 22.579399 1 31 6 粤B000H6 2011/04/18 00:37:33114.131371 22.579617 1 43 5 粤B000H6 2011/04/18 00:38:03114.130432 22.578051 1 18 5 粤B000H6 2011/04/18 00:38:33114.126663 22.577551 1 69 5 粤B000H6 2011/04/18 00:39:33114.117134 22.576651 1 80 5 粤B000H6 2011/04/18 00:39:41114.115417 22.576633 1 86 5 粤B000H6 2011/04/18 00:40:38114.105453 22.573917 0 70 5如上表,即为车牌号为粤B000H6的出租车在九个时间点的经度、纬度、状态、速度、行车方向的数据,由上表可以看到在2011年04月18的00:37:03,该车辆由空车变为载客状态。