求函数的导数
常见函数的导数公式表

常见函数的导数公式表
以下是一些常见函数的导数公式:
1. 常数函数 y=c 的导数为 y'=0
2. 幂函数y=x^μ 的导数为y'=μα^(μ-1)
3. 指数函数 y=a^x 的导数为 y'=a^x lna
4. 对数函数 y=logax 的导数为 y'=loga e/x
5. 三角函数 y=sinx 和 y=cosx 的导数分别为 y'=cosx 和 y'=-sinx
6. 反三角函数 y=arcsinx 和 y=arccosx 的导数分别为y'=1/√(1-x^2) 和
y'=-1/√(1-x^2)
7. 双曲函数 y=sh x 和 y=ch x 的导数分别为 y'=ch x 和 y'=sh x
8. 自然对数函数 y=lnx 的导数为 y'=1/x
9. 幂函数 f(x)=x^n 的导数为 f'(x)=nx^(n-1),当 n 为正整数时
10. 和差积的导数:(f+g)'=f'+g',(f-g)'=f'-g'
以上是基本初等函数的导数公式,对于其他复杂的函数,可以通过复合函数、幂函数、指数函数、对数函数、三角函数、反三角函数和双曲函数的导数进行推导。
函数求导公式大全

函数求导公式大全函数的导数是微积分中一个非常重要的概念,它描述了函数在某一点处的变化率。
求导公式是求函数导数的工具,通过掌握各种函数的求导公式,可以更快捷地求解导数,解决实际问题。
本文将介绍常见的函数求导公式,希望能够帮助大家更好地理解和掌握函数的导数计算。
1. 常数函数的求导公式。
常数函数的导数等于0,即对于常数c,其导数为f'(x)=0。
2. 幂函数的求导公式。
幂函数的求导公式为,若f(x)=x^n,则f'(x)=nx^(n-1),其中n为任意实数。
3. 指数函数的求导公式。
指数函数的求导公式为,若f(x)=a^x,则f'(x)=a^xlna,其中a为常数且a>0。
4. 对数函数的求导公式。
对数函数的求导公式为,若f(x)=lnx,则f'(x)=1/x。
5. 三角函数的求导公式。
(1)正弦函数的求导公式为,f'(x)=cosx。
(2)余弦函数的求导公式为,f'(x)=-sinx。
(3)正切函数的求导公式为,f'(x)=sec^2x。
(4)余切函数的求导公式为,f'(x)=-csc^2x。
6. 反三角函数的求导公式。
(1)反正弦函数的求导公式为,f'(x)=1/√(1-x^2)。
(2)反余弦函数的求导公式为,f'(x)=-1/√(1-x^2)。
(3)反正切函数的求导公式为,f'(x)=1/(1+x^2)。
(4)反余切函数的求导公式为,f'(x)=-1/(1+x^2)。
7. 复合函数的求导公式。
复合函数的求导使用链式法则,若y=f(u)和u=g(x),则y=f(g(x)),其导数为f'(u)g'(x)。
8. 高阶导数的求导公式。
高阶导数是指对函数的导数再求导数,常用的高阶导数求导公式包括幂函数、指数函数、对数函数和三角函数的高阶导数求导公式。
9. 隐函数的求导公式。
隐函数是指由x和y的关系式所确定的函数,其导数的求导公式需要使用隐函数求导法。
求函数的导数公式

求函数的导数公式函数的导数公式是描述函数在某一点处斜率的一种数学工具,对于一般的函数f(x),它的导数可以用下面的公式来表示:1.导数的定义公式f'(x) = lim(h->0) [f(x + h) - f(x)]/h在这个公式中,f(x + h)表示以点(x + h, f(x + h))为端点的割线斜率,f(x)是函数f(x)在点x处的函数值,h表示x + h与x之差,即点(x + h, f(x + h))与点(x, f(x))之间的距离。
这个公式是导数定义的最基本形式,通常用于求解复杂函数的导数。
2.基本求导公式f'(x) = k,k为常数[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)[f(g(x))]’ = f'(g(x))g'(x)f’(x)/g(x) = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2[f(x)]^n = nf'(x)[f(x)]^(n-1),n为正整数这里列举了一些常用的求导公式。
对于任何由基本函数组成的函数,都可以使用这些公式求其导数。
3.导数的运算法则导数具有很好的运算性质,常用的运算法则有:(1)线性性质:f(x) ±g(x)的导数为f'(x) ±g'(x),kf(x)的导数为kf'(x),k为常数。
(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。
(3)商数法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2。
(4)复合函数的求导法则:如果y = f(g(x)),那么y' = f'(g(x))g'(x)。
以上是函数导数的一些基本公式和运算法则。
函数求导公式大全

函数求导公式大全本文为大家详细介绍了函数求导的相关公式,包括常见的初等函数求导公式、复合函数求导公式、参数函数求导公式、隐函数求导公式以及高阶导数的求法等内容,共计超过1200字。
希望能够帮助大家更好地理解和掌握函数求导的知识。
一、常见初等函数求导公式1.常数函数求导公式:对于常数c,f(x)=c的导数为f'(x)=0。
2. 幂函数求导公式:对于f(x)=x^n(n为常数),f'(x)=nx^(n-1)。
3.指数函数求导公式:对于f(x)=e^x,f'(x)=e^x。
4. 对数函数求导公式:对于f(x)=ln(x),f'(x)=1/x。
5. 三角函数求导公式:(1)对于f(x)=sin(x),f'(x)=cos(x);(2)对于f(x)=cos(x),f'(x)=-sin(x);(3)对于f(x)=tan(x),f'(x)=sec^2(x);(4)对于f(x)=cot(x),f'(x)=-csc^2(x);(5)对于f(x)=sec(x),f'(x)=sec(x)tan(x);(6)对于f(x)=csc(x),f'(x)=-csc(x)cot(x)。
二、复合函数求导公式1.一阶复合函数求导公式:若y=f(g(x)),则y'=f'(g(x))·g'(x)。
2.高阶复合函数求导公式:若y=f(g(x)),则y''=f''(g(x))·[g'(x)]^2+f'(g(x))·g''(x)。
三、参数函数求导公式1. 参数函数导数:设x=f(t),y=g(t),则y对x求导等于y对t求导除以x对t求导的商,即dy/dx=(dy/dt)/(dx/dt)。
2. 参数方程的导数:设x=f(t),y=g(t),则dy/dx=dy/dt·dt/dx=dy/dt/(dx/dt)。
导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。
求函数导数的各种方法

求函数导数的各种方法
求函数导数的计算方法一般分为8种方法:
1.公式法
这个方法需要熟练掌握导数的基本公式。
2.导数四则运算公式
导数的乘法和除法公式要能熟练运用。
3.复合函数的链式法则—非常重要的求导方法
链式法则在应用时一般分成4步:分解—各自求导—相乘—回代
如果计算熟练,可以不设中间变量,直接求复合函数的导数.
4.反函数求导法
利用这种方法求导时,要注意:先取反函数,然后对反函数siny 求导,特别注意此时y是自变量,所以siny 的导数是cosy。
5.对数求导法
一般两种情况会使用对数求导法,这两种情况都是对等式两端同时取自然对数,利用对数的运算性质对函数进行变形。
(1)求幂指函数的导数
(2)求复杂根式的导数
6.隐函数求导法
隐函数是隐藏在一个方程中的函数,要用到链式法则。
7.参数方程求导法
注意参数方程求导公式
8.高阶导数
下面这个例子是一个求高阶导数的经典例题。
一般求二阶导数要多练习求隐函数和参数方程的二阶导数。
求导数的方法

求导数是数学分析中的一个重要概念,它的基本概念是函数的变化率,即函数在某一点处的斜率。
求导数是对函数进行微积分的一种操作,可以用来求出函数图形的切线斜率和函数的变化率。
求导数的基本方法有两种,一是极限法,二是微积分法。
极限法是一种比较常见的求导数方法,它的基本思想是把函数在某一点处的变化率抽象成函数在此点附近距离不断减小时的变化率,从而得到函数在此点处的导数。
而微积分法更复杂,是在研究函数的性质时,可以利用积分的概念以及初等函数的性质,来求出函数的导数。
求导数的方法可以分为几种:
(1) 求一元函数导数的常用方法:
a. 利用导数的定义求导数;
b. 利用导数的性质求导数;
c. 利用微积分求导数;
d. 利用极限法求导数;
e. 利用初等函数的性质求导数;
f. 利用泰勒公式求导数。
(2) 求多元函数导数的常用方法:
a. 利用偏导数的定义求偏导数;
b. 利用偏导数的性质求偏导数;
c. 利用多元函数的性质求偏导。
求导数的一般方法

求导数的一般方法导数是微积分中的一个重要概念,它描述了函数在其中一点的变化率。
在实际应用中,求导数可以帮助我们解决许多问题,如求函数的极值、确定切线、计算曲线的斜率等。
本文将介绍求导数的一般方法,包括基本的导数计算规则、复合函数求导、隐函数求导和参数方程求导等。
1.基本的导数计算规则:导数的定义是函数在其中一点处的极限值,可以表示为:$$f'(x) =\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$$根据导数的定义,我们可以得到一些基本的导数计算规则:(1)常数规则:如果$f(x)=C$,其中C是常数,则$f'(x)=0$。
(2) 幂函数规则:如果$f(x) = x^n$,其中n是常数,则$f'(x) =nx^{n-1}$。
(3) 指数函数规则:如果$f(x) = a^x$,其中a是常数,则$f'(x) = a^x\ln{a}$。
(4) 对数函数规则:如果$f(x) = \log_a{x}$,其中a是常数,则$f'(x) = \frac{1}{x\ln{a}}$。
(5) 三角函数规则:如果$f(x) = \sin{x}$,则$f'(x) = \cos{x}$;如果$f(x) = \cos{x}$,则$f'(x) = -\sin{x}$。
通过应用这些基本的导数计算规则,我们可以求得许多复杂函数的导数。
2.复合函数求导:复合函数是由一个函数和另一个函数复合而成的函数,求复合函数的导数需要使用链式法则。
假设有两个函数$y = f(u)$和$u = g(x)$,其中y是关于x的函数,则复合函数$y = f(g(x))$的导数可以计算为:$$\frac{dy}{dx} = \frac{dy}{du}\cdot \frac{du}{dx}$$其中$\frac{dy}{du}$和$\frac{du}{dx}$分别是函数f(u)和g(x)的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数的导数
例 求下列函数的导数. 1.4
3)12(x
x x y +
-=;2.2
211x
y -=
;
3.)3
2(sin 2π
+
=x y ;4.21x x y +=。
分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数. 解:1.解法一:设4
3
,12u y x
x x u =+
-=,则
).116()12(4)116(42
2
33
2
2
3
--
+-=--⋅='⋅'='x
x x
x x x
x u u y y x
u x
解法二:'⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛+-='⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-='x x x x x x x x x y 1212412333
43
.116124223⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝
⎛+
-=x x x x x 2.解法一:设2
2
121,x u u
y -=='-,则
()()()
()
.
21)21(2 212 4212
1 42
12
2
2
322
322
3
x
x x
x x x x x u u y y x u x ---=---
=-⋅⎪⎪⎭
⎫
⎝⎛-='⋅'='-
-
-=
解法二:()
'
⎥⎦
⎤⎢⎣⎡
-='⎪
⎪⎭
⎫ ⎝⎛-='-
2
1
2
2
21211x x
y
(
).
21)21(2)21(2)
4()
21(2
121)21(212
2
2
32
2
32
2
2
32
x
x x
x x x x x x --=
-=-⋅--
='
-⋅--=--
-
3.解法一:设3
2,sin ,2π
+===x v v u u y ,则
.
324sin 2 232cos 32sin 2 2cos 2⎪⎭⎫ ⎝
⎛
+=⋅⎪⎭⎫ ⎝⎛
+⋅⎪⎭⎫ ⎝⎛+=⋅⋅='⋅'⋅'='πππx x x v u v u y y x
v u x
解法二:'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+='⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛
+='32sin 32sin 232sin 2πππx x x y
.324s i n 2 2
32c o s 32s i n 2 3232c o s 32s i n 2 ⎪⎭⎫ ⎝
⎛
+=⋅⎪⎭⎫ ⎝
⎛
+⋅⎪⎭⎫ ⎝⎛+='
⎪
⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝
⎛
+⋅⎪⎭⎫ ⎝⎛+=ππππππx x x x x x
4.解法一:.1422
x x x x y +=
+=设4
221
,x x u u y +==,则
.
1211)21(2 )
42()
(2
1 )
42(2
12
22
2
4
2
33
2
14
2
3
2
1x
x x
x x x x
x x
x x x x x x x u
u y y x u x ++=++=
++=
+⋅+=+⋅='⋅'='-
-
解法二:)1(1)1(222'+++⋅'='+='x x x x x x y .12111 2
22
2
2
x
x x
x
x ++=
++
+=
说明:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量,
不可机械照搬某种固定的模式,否则会使确定的复合关系不准确,不能有效地进行求导运
算.学生易犯错误是混淆变量或忘记中间变量对自变量求导.。