用假设法解题

合集下载

假设法解题思路

假设法解题思路

假设法是一种常用的解题思路,尤其在数学和逻辑问题中。

这种方法的基本思想是:首先对问题进行一些基本的假设,然后根据这些假设推导出一些结论,最后通过比较这些结论与实际情况的差异来确定问题的解。

以下是使用假设法解题的一般步骤:1. 确定问题:首先,你需要明确你要解决的问题是什么。

这可能需要你对问题进行一些分析,以便更好地理解问题的本质。

2. 提出假设:接下来,你需要提出一些可能的假设。

这些假设应该是关于问题的某些方面的猜测或推测。

例如,如果你正在解决一个数学问题,你的假设可能是关于某个未知数的值的猜测。

3. 推导结论:然后,你需要根据你的假设推导出一些结论。

这些结论应该是可以通过逻辑推理得出的。

例如,如果你的假设是某个未知数等于某个值,那么你的结论可能是这个未知数的某个性质。

4. 比较结论与实际情况:最后,你需要将你的结论与实际情况进行比较。

如果它们一致,那么你的假设可能就是正确的,你可以使用它来解决问题。

如果它们不一致,那么你可能需要重新考虑你的假设,或者寻找其他的解决方案。

在使用假设法解题时,有几点需要注意:-你的假设应该是合理的。

这意味着它们应该基于你对问题的理解,而不是随意的猜测。

-你的推导过程应该是严谨的。

这意味着你应该使用正确的逻辑推理方法,避免出现错误。

-你的比较过程应该是公正的。

这意味着你应该公平地对待所有的假设,而不是只接受那些符合你预期的结果的假设。

总的来说,假设法是一种非常有用的解题思路,它可以帮助你更好地理解问题,找到问题的解。

然而,它也需要一定的逻辑思维能力和批判性思维能力,因此,如果你想有效地使用它,你需要不断地练习和提高这些能力。

第12讲 用假设法解题

第12讲 用假设法解题

第十二讲用假设法解题【专题解析】假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。

所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。

【例题精讲】例1:鸡、兔共30只,共有脚84只。

鸡、兔各有多少只?【思路导航】方法一:列表法鸡的只数兔的只数脚的总数15 15 15×2+15×4=9016 14 16×2+14×4=8817 13 17×2+13×4=8618 12 18×2+12×4=84所以,共有兔子12只,有鸡18只。

通过图表可以发现,把一只兔子变成鸡,总脚数会减少2只。

故可以用假设法:方法二:假设法假设全是鸡,共有脚:30×2=60(只);比实际少:84-60=24(只);这是因为把4只脚的兔子都按2只脚的鸡计算了。

每把一只兔子算作一只鸡,少算:4-2=2(只)脚,现在共少算了24只脚,说明把:24÷2=12(只)兔子按鸡算了。

所以,共有兔子12只,有鸡30-12=18(只)。

【练习】1、鸡兔同笼,共有头48个,脚132只,鸡和兔各有多少只?2、一个饲养组一共养鸡、兔共50只,共有脚160只。

饲养组养鸡、兔各几只?例2:小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?【思路导航】方法一:列表法方法二:假设法:假设35枚邮票全部是20分的,那么一共用了20×35=700(分)。

与实际用的钱数相差1000-700=300(分)。

将一枚50分的邮票看成20分的少算了50-20=30(分),故50分邮票有300÷30=10(枚),20分的邮票有35-10=25(枚)。

【练习】1、刘杰用13元6角钱正好买了50分和80分的邮票共计20枚,求两种邮票各买了多少枚?2、小红的储蓄罐里共有2分和5分的硬币70枚,小红算了一下,一共有194分,求两种硬币各有多少枚?例3:一次数学竞赛共有20道题。

用假设法解题

用假设法解题

鸡:35-12=23(只)
完成58页第1题
2、有一个饲养小组,养了若干只鸡 和兔,已知共有35个头和94只脚,问 这个饲养小组养了鸡和兔各多少只。
35个头表示有35只动物,鸡有2只脚,兔子有4只脚。 假设35只动物全是鸡,则有35 × 2=70只脚

35× 2=70只 4-2=2(只)
94-70=24(只)
兔子:24 ÷ 2=12(只) 答:
第12讲 用假设法解题
1、一条船从东港驶向西港,去时每小时 行15千米,返回时每小时行10千米,这条 船往返平均每小时行驶多少千米?
先假设一个距离 假设东港到西港的距离为30千米。 去时时间:30÷15=2(小时) 回来时间:30÷10=3 (小时) (30× 2) ÷(3+2)=12(千米) 答:这条船往返平均每小时行驶12千米

用假设法解题

用假设法解题

用假设法解题摘要:一、假设法解题的概念和原理1.假设法解题的定义2.假设法解题的基本原理二、假设法解题的具体步骤1.确定问题2.提出假设3.利用假设进行推理4.验证假设5.得出结论三、假设法解题的优点和局限性1.优点a.提高解题效率b.锻炼思维能力c.拓宽解题思路2.局限性a.适用范围有限b.结果可能受主观因素影响四、如何在日常学习中运用假设法解题1.熟悉假设法解题的基本原理2.多做练习,提高解题能力3.注意总结经验,避免盲目尝试正文:假设法解题是一种通过提出假设并进行推理,从而解决问题的方法。

它适用于各种领域的问题,尤其在一些需要创新思维和灵活解题技巧的场合,具有很高的实用价值。

要运用假设法解题,首先需要明确问题,了解问题的背景和已知条件。

接着,根据问题提出假设,这是解题的关键。

假设的提出需要根据已有的知识和经验,以及对问题的分析。

假设应该具有可验证性,即可以通过一定的实验或推理来验证其是否成立。

在提出假设后,利用假设进行推理,从而得到可能的结论。

这一步需要注意的是,推理过程要遵循逻辑规律,不能跳跃性地进行。

同时,要尽量保持假设的客观性,避免受到主观因素的影响。

在推理过程中,可能需要反复验证假设,以确保得出的结论是正确的。

验证假设的方法有多种,可以通过实验、举例子、反证法等。

在验证假设时,要保持严谨的态度,不能因为急于求成而忽视细节。

假设法解题的优点在于,它可以帮助我们提高解题效率,锻炼思维能力,拓宽解题思路。

然而,它也有一定的局限性,如适用范围有限,结果可能受主观因素影响等。

因此,在日常学习中,我们需要熟悉假设法解题的基本原理,多做练习,提高解题能力,并注意总结经验,避免盲目尝试。

总之,假设法解题是一种实用的解题方法,通过提出假设、进行推理和验证假设,我们可以解决各种问题。

数学假设法解题

数学假设法解题

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。

即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。

假设法解题

假设法解题

假设法(一)例题:1、一批零件,甲独做8天完成,乙独做10天完成,现在由两人合作这批零件,中途甲因事请假一天,完成这批零件共用多少天?2、学校阅览室有文艺书和科技书一共125本,如果文艺书借出1/7,比科技书还多5本。

原来文艺书和科技书各有多少本?3、某公司向银行申请A、B两种贷款共60万元,每年共需付利息5万元。

A种贷款年利率为8%,B种贷款年利率9%。

该公司申请了A贷款多少万元?4、甲、乙两数的和是300,甲数的2/5比乙数的1/4多55,甲、乙两数各是多少?5、育英小学上学期共有学生750人,本学期男同学增加1/6,女同学减少1/5,现一共有710人。

本学期男、女同学各有多少人?【课堂练习】1、一件工作,甲独做15天完成,乙独做10天完成,两队合作若干天后甲休息了几天,结果共用8天才完成任务。

甲休息了几天?2、一项工程甲、乙两人合作12天可以完成。

中途甲因事停工5天,因此用了15天完成。

甲独做这项工程要用多少天?3、姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只。

姐姐和妹妹各养了多少只兔?4、学校有篮球和足球共21个,篮球借出1/3后,比足球少一个。

原来篮球和足球各有多少个?5、二年级两个班共有学生90人,其中少先队员71人。

一班少先队员人数占本班人数的75%,二班少先队员人数占本班人数的5/6,一班少先队员比二班少先队员多几人?6、甲、乙两个容器共有药水2000克。

从甲容器里取出1/3的药水,从乙容器里取出1/4的药水,结果两个容器里共剩下1400克药水。

甲、乙两个容器里原来各有药水多少克?7、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的1/2多50只。

这个畜牧场有山羊、绵羊各多少只?8、师傅和徒弟共加工零件840个,师傅加工零件的5/8比徒弟加工零件的2/3多60个。

师傅和徒弟各加工零件多少个?9、袋子里原有红球和黄球共119个。

将红球增加3/8,黄球减少2/5后,红球与黄球的总数变为121个。

假设法解题公式

假设法解题公式

假设法解题公式摘要:一、假设法解题公式简介1.假设法解题公式的定义2.假设法解题公式的作用二、假设法解题公式推导1.假设的建立2.假设的验证3.假设的推翻与迭代三、假设法解题公式应用1.数学问题中的应用2.实际问题中的应用3.假设法解题公式的局限性四、假设法解题公式与传统解题方法的对比1.假设法解题公式与传统解题方法的区别2.假设法解题公式与传统解题方法的优势与劣势五、结论1.假设法解题公式的重要性2.假设法解题公式的发展前景正文:一、假设法解题公式简介假设法解题公式是一种数学解题方法,通过建立假设,验证假设,推翻或迭代假设来解决问题。

这种方法强调对问题本质的理解,鼓励思考者采用创造性、系统性的方法解决问题。

二、假设法解题公式推导假设法解题公式分为三个步骤:假设的建立、假设的验证、假设的推翻与迭代。

首先,根据问题的特点,提出一个或多个假设。

然后,通过逻辑推理、实验验证等方式,检验这些假设的正确性。

最后,根据验证结果,推翻原有假设或对其进行迭代,不断逼近问题的真实解。

三、假设法解题公式应用假设法解题公式广泛应用于数学问题,如证明、求解等。

同时,在实际问题中,如科学研究、技术创新等领域,假设法解题公式也发挥着重要作用。

然而,假设法解题公式并非万能,对于某些问题,它可能无法提供有效的解决方案。

四、假设法解题公式与传统解题方法的对比与传统解题方法相比,假设法解题公式更注重思考过程,强调对问题本质的理解。

在某些情况下,假设法解题公式可能比传统方法更高效、更具创造性。

然而,传统解题方法在某些领域有着丰富的经验和成熟的方法论,仍具有一定的优势。

五、结论总的来说,假设法解题公式是一种富有创造性和系统性的解题方法。

在数学和实际问题中,它都发挥着重要作用。

三年级知识点:用假设法解题练习30道附答案

三年级知识点:用假设法解题练习30道附答案

三年级知识点:用假设法解题练习30道(附答案)假设法解题1、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?兔:40 + 4=10只,鸡:50-10=40只2、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?60 + 2=30 45-30=15 兔:15+(2+1)=5 只鸡:15-5=40 只3、共有鸡兔的脚48只,如果将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有多少只?48 + 2=24兔(48-24) + 4=6互换鸡变6只兔:(48-6x2)+4=9只4、一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共25个轮子。

自行车(5)辆,三轮车(5)辆。

5、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。

每辆大车比小车多装4吨,这批水泥有多少吨?4x36=144 吨,45 —36=9 辆,144 + 9=16 吨,16x45=720 吨。

6、一批货物用大卡车装要16辆,如果用小卡车装要48辆。

已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4x16=64 吨,48-16=32 辆,64 + 32=2 吨,2x48=96 0吨7、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2 角,三种练习簿一共买了47本,付了21元2角。

买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7乂47=329 (角),329-212=117 (角),因为把3角和2角的练习簿都看成了7角,117+(7*33**2)=9 (本)1x9=9 (本),2x9=18 (本), 47-18-9=20 (本)8、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。

问两桶油原来各有多少千克?36+2=18千克,36+18=54千克,乙54 + 2=27千克,甲18 +27=45千克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用假设法解题姓名:运用假设方法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等,其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。

例1、今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只,问鸡、兔各有多少只?
练习1
1、鸡与兔共有30只,共有脚70只,鸡与兔各有多少只?
2、鸡与兔共有20只,共有脚50只,鸡与兔各多少只?
3、鸡与兔共有100只,鸡的脚比兔的脚多80只,鸡与兔各有多少只?
例2、面值是2元、5元的人民币共27张,合计99元,面值是2元、5元的人民币各有多少张?练习2
1、孙佳有2分、5分硬币共40枚,一共是1元7角,两种硬币各有多少枚?
2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人,问大船和小船各几只?
3、12张乒乓球台上同时有34人在进行乒乓球赛,正在进行单打的球台有多少张?
例3、一批水泥,用小车装载,要用45辆,用大车装载,只要36辆,每辆大车比小车多装4吨,这批水泥有多少吨?
练习3
1、一批货物用大卡车装要16辆,如果用小卡车装要48辆,已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?
2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次,每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?
3、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?
例4、某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元,结果运到目的地后结算时,玻璃杯厂共得运费920元,求打碎了几个玻璃杯?
练习4
1、搬运1000只玻璃瓶,规定安全运到一只可得搬运费3角。

但打碎一只,不仅不给搬运费,还要赔5角,如果运完后共得运费260元,那么,搬运中打碎了多少只?
2、某次数学竞赛共20道题,评分标准是每做对一道得5分,每做错或不做一题倒扣1分,刘亮参加了这次竞赛,得了64分,刘亮做对了多少道题?
3、某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一题或不做题倒扣4分,小华在这次竞赛中共得66分,问他做对了几道题?
例5、某场乒乓球比赛售出30元、40元、50元的门票共200张。

收入7800元,其中40元和50元的张数相等,每种票各售出多少张?
练习5
1、某场羽毛球比赛售出40元、30元、50元的门票共400张,收入15600元,其中40元和50元的张数相等。

每种票各售出多少张?
2、有甲、乙、丙三种练习本,价钱分别为7角,3角和2角,三种练习本一共买了47本,付了21元2角,买乙种练习本的本数是丙种练习本的2倍,三种练习本各买了多少本?
3、有8个谜语让60个人猜,猜对共338人次。

每人至少猜对3个,猜对3个的有6人,猜对4个的有10人,猜对5个和7个的人数同样多。

8个全猜对的有多少人?。

相关文档
最新文档