化工仪表及自动化实验讲义

合集下载

化工自动化及仪表内容辅导课件

化工自动化及仪表内容辅导课件
汽包
LT Fd C
省煤器 给水
图1-2 开环液位控制系统
PAGE8OF144
3、自动控制系统组成及方框图
研究控制系统时,为了更清楚地表示控 制系统各环节的组成、特性和相互间的信号 联系,一般都采用方框图。每个方框表示组 成系统的一个环节,两个方框间用带箭头的 线段表示信号联系,进入方框表示信号为输 入,离开表示信号为输出,输入引起输出变 化,而输出不会引起输入变化,即环节具有 单向特性。
1、自动控制系统
图1-1 加热炉温度自动控制系统
PAGE5OF144
➢目标:控制加热炉火的出口温度 ➢实现方式(过程): (1)测量该温度 (2)将该温度与期望值(设定值)比较 (3)根据偏差调节燃料流量,目的是使得偏
差为0 ➢ 特点:
负反馈系统(设定值与测量值相减) 根据偏差调节 闭环控制
PAGE6OF144
过程特性:指当被控过程的输入变量(操纵 变量或扰动)发生变化时,其输出变量(被 控变量)随时间变化规律。 控制通道:操纵变量q(t)对被控变量c(t)的作 用途径, 干扰通道:扰动f(t)对被控变量得作用途径 研究过程特性时,两个通道都要考虑
PAGE40OF144
h(t)
h(t)
h(0) t
自衡的非振荡过程
q(t) 执行机构
扰动
f (t)
被控变量 c(t) 过程
y(t) 测量值
检测元件 变送器
图1-3 控制系统方框图
PAGE11OF144
4、分析控制系统时重要概念
➢信息概念 图1-3中的各个符号变量都是实际的物
理量,然而他们是作为信息来转换和使用的。 每个环节都有信息流入和流出。信息的流入 和流出与实际对象中物料的流入和流出不同。 从整个系统看,设定值和扰动是系统输入, 而被控变量和其他测量值是输出。

化工仪表及自动化实验讲义

化工仪表及自动化实验讲义

化工自动化及仪表实验讲义曾飞虎林继辉编2012.01目录实验须知实验一热电偶温度计的使用实验二电子电位计的校验实验三THKGK-1实验装置的基本操作与仪表调试实验四温度位式控制系统实验五单容水箱对象特性的测试实验须知1.必须自始自终以认真和科学态度进行实验。

2.实验课不能迟到,实验期间不得擅自离开岗位。

3.切实注意安全,不得穿背心和拖鞋进入实验室。

在连接线路时应先切断电源,不许带电操作。

4.为了顺利地进行实验和取得好的实验效果,必须认真预习,写出预习报告,若指导教师发现有同学尚未预习,则不准其参加实验。

5.实验中如发生异常现象或事故,必须立即切断电源,并保持现场,即及时报告教师,共同处理。

6.要爱护公物,不得擅自拆开仪器仪表,非本实验仪器设备不得随便动用。

7.实验完成后,应切断电源,整理好一切仪器设备,并把原始记录交教师签字,经允许后方可离开实验。

8.实验后,每人应独立完成实验报告,报告与原始记录均按教师规定的时间上交。

实验一热电偶温度计的使用一.实验目的:1.掌握热电偶与动圈仪的配套连接,测温方法及外阻影响。

2.掌握热电偶配手动电位计的测温方法。

3.掌握热电偶冷端温度影响及补偿方法。

二.实验仪器:1.管状电炉2.自耦变压器(带电流表)3.广口保温瓶4.动圈仪5.热电偶6.接线板(带调整电阻)7.手动电位差计8.30cm不锈钢直尺三.实验内容(一)热电偶配手动电位差计测温:1.按图1-1接线,注意极性是否接对,接点是否牢固等。

为保持热电偶冷端温度为零度,将热电偶冷端放置保温瓶中内冰水混合物中。

图1-1 热电偶温度计接线图2.把双向开关打向手动电位差计进行测温。

3.手动电位差计使用方法:首先调整检流计的机械零点,其次把手动电位差计的双向开关打向并按住在“校正”位置,调整“工作电流”电位器,使检流计电流为零,然后把双向开关打向“测量(或未知)”位置,即可进行测量。

注意:手动电位差计的双向开关在每一次测量完后,应置于中间位置,以减少干电池的耗电量。

化工仪表及自动化实验指导书

化工仪表及自动化实验指导书

《化工仪表及自动化》实验指导书实验装置简介《化工仪表及自动化》课程实验的试验装置是用《THKGK-1型过程控制实验装置》。

本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。

实验系统供电要求为单相交流220V±10%,10A。

实验装置包括被控对象、调节器、执行器模块和变送器模块。

被控对象包括上水箱、下水箱、复合加热水箱以及管道。

调节器主要有模拟调节器(含比例P调节、比例积分PI调节、比例微分PD调节、比例积分微分PID调节)、计算机控制等。

执行器模块主要有磁力驱动泵。

变送器模块主要有流量变送器(FT)、液位变送器(LT1,LT2)等。

变送器的零位、增益可调,并均以标准信号DC0-5V输出。

实验项目单回路控制系统的参数整定一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P、PI和PID调节器时的阶跃响应。

3、研究系统分别用P、PI和PID调节器时的抗扰动作用。

4、定性地分析P、PI和PID调节器的参数变化对系统性能的影响。

二、实验设备1、THKGK-1型过程控制实验装置:GK-02、GK-03、GK-04、GK-072、万用表一只3、计算机系统三、实验原理图为一个单容水箱单回路反馈液位控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。

单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。

因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

2024版化工仪表及自动化ppt课件教学教程

2024版化工仪表及自动化ppt课件教学教程

课件教学教程•化工仪表概述•自动化基础知识•化工仪表测量原理与技术•化工仪表选型与安装维护目•化工自动化控制系统设计与实践•化工仪表及自动化技术应用拓展录化工仪表概述定义作用分类特点化工仪表具有高精度、高可靠性、防爆防腐、适应性强等特点,能够满足化工生产过程中的各种特殊要求。

化工仪表发展趋势网络化智能化化工仪表正逐渐向着网络化的方向发展,实现远程监控和数据共享,提高生产效率和安全性。

集成化自动化基础知识自动化概念及原理自动化定义自动化原理自动化系统组成要素控制器传感器与变送器执行器被控对象石油化工自动化技术在石油化工行业应用广泛,包括炼油、化肥、乙烯等生产过程的自动化控制。

冶金工业冶金工业中的高炉、转炉、连铸等生产过程的自动化控制,以及轧钢过程的自动化电力工业机械制造自动化技术应用领域化工仪表测量原理与技术压力单位与测量方法介绍压力的国际单位制单位以及常用测量方法,如直接测量法和间接测量法。

压力仪表分类及特点阐述不同类型压力仪表的工作原理、结构特点以及适用场景,如弹性式压力计、电气式压力计等。

压力传感器技术介绍压力传感器的种类、工作原理及其在化工生产中的应用,如压阻式传感器、压电式传感器等。

压力测量系统组成及调试详细讲解压力测量系统的组成部分,包括传感器、变送器、显示仪表等,并介绍系统调试方法和注意事项。

温度单位与测量方法温度测量系统组成及调试温度仪表分类及特点温度传感器技术介绍温度的国际单位制单位以及常用测量方法,如接触式测量法和非接触式测量法。

介绍温度传感器的种类、工作原理及其在化工生产中的应用,如热敏电阻传感器、红外传感器等。

流量单位与测量方法流量测量系统组成及调试流量仪表分类及特点流量传感器技术物位单位与测量方法物位测量系统组成及调试物位仪表分类及特点物位传感器技术化工仪表选型与安装维护选型原则及注意事项选型原则注意事项安装前准备安装步骤调试方法030201安装调试方法与步骤维护保养策略及周期维护保养策略维护保养周期化工自动化控制系统设计与实践确保系统安全、稳定、可靠,满足生产工艺要求,提高生产效率和产品质量。

2024版《化工仪表及自动化》课件

2024版《化工仪表及自动化》课件

比例控制
控制器输出与输入偏 差成比例,用于快速 响应系统变化。
04
积分控制
控制器输出与输入偏 差的积分成比例,用 于消除系统稳态误差。
先进控制技术应用案例分享
模型预测控制(MPC)
基于系统动态模型预测未来输出,优化控制 策略以减小预测误差。
模糊控制
模拟人类模糊推理过程,处理不确定性和非 线性问题。
实验设备和操作方法
实验设备
包括化工仪表、传感器、执行器、控 制系统等。
操作方法
学生需了解实验设备的结构和工作原理, 熟悉实验操作流程,按照实验步骤进行 正确操作。同时,需要注意实验安全, 遵守实验室规章制度。
数据处理和结果分析
数据处理
学生需要对实验数据进行整理、计算和分析,得出实验结果。
结果分析
03
自动化技术在化工领域应用
Chapter
自动化技术发展历程及现状
01
02
03
自动化技术起源
介绍自动化技术的起源, 以及早期在化工领域的应 用情况。
发展历程
阐述自动化技术从简单控 制到复杂控制系统的发展 历程,包括重要技术突破 和里程碑事件。
现状分析
分析当前自动化技术在化 工领域的应用现状,包括 普及程度、技术水平和市 场需求等方面。
调、准确。
常见问题排查和解决方案
仪表无显示
检查电源、保险丝、连接线等是否正常,如有问 题及时修复或更换。
仪表漏液、漏气
检查密封件、连接管等是否松动或损坏,及时紧 固或更换。
ABCD
仪表误差大
检查传感器、转换器、放大器等部件是否损坏或 老化,如有需要可进行校准或更换。
控制系统失灵
检查控制系统硬件、软件是否正常,如有需要可 进行重启、复位或升级等操作。

化工仪表及自动化精PPT课件

化工仪表及自动化精PPT课件

完善维护计划
制定完善的维护计划,包括定期 检查、保养、校准、调试等内容, 确保系统的长期稳定运行。
建立应急预案
建立完善的应急预案,明确系统 故障时的应对措施和恢复流程, 以最大限度地减少故障对生产的
影响。
06
化工仪表及自动化技术的发展趋势与展望
智能化技术在化工仪表ຫໍສະໝຸດ 的应用智能化传感器01
采用先进的微处理器和人工智能技术,实现传感器信号的自适
执行器的类型与特点
电动执行器
以电动机为驱动元件,通过减速机构将电动机的旋转运动转换为输出轴的直线运动或角位移。具有动作快、精度高、体积 小等优点,但需要电源供电。
气动执行器
以压缩空气为动力源,通过气缸将气体的压力能转换为机械能。具有结构简单、动作可靠、维护方便等优点,但需要气源 和配套的气动元件。
验收标准
根据设计要求和相关标准,制定验收标准。对仪表的测量精度、稳定 性、可靠性等进行全面评估。
验收流程
组织专家和相关人员对仪表进行验收。按照验收标准,对仪表的各项 指标进行检查和评估。填写验收报告,提出改进意见和建议。
04
自动化控制系统在化工生产中的应用
温度控制系统
温度传感器
将温度转换为可测量的电信号,常用的有 热电偶、热电阻等。
经济性原则
在满足测量要求的前提下,尽可能选择价 格合理、维护方便的仪表。
先进性原则
在满足以上原则的基础上,优先选择具有 先进技术、高自动化程度的仪表。
化工仪表的安装要求与步骤
安装前准备
熟悉仪表安装图纸和技术要求, 准备安装工具和材料。
01
安装位置选择
02 根据工艺流程和测量要求,选择 合适的安装位置,确保测量准确、 维护方便。

化工仪表及自动化全套课件

作状态。
定期保养
按照厂家推荐的保养周期和方法, 对仪表进行全面的检查、调整和
维修,确保其性能稳定可靠。
故障处理
在仪表出现故障时,应及时进行 排查和维修,避免影响生产安全 和质量。同时,要做好故障记录 和原因分析,总结经验教训,提
高维护水平。
04
自动化控制系统的设计与实施
自动控制系统的设计原则与方法
故障诊断与预测
通过自动化技术对化工生产过程中的故障进行实时监测和诊 断,预测可能发生的故障并采取相应的措施,提高设备的运 行可靠性和维护效率。
03
化工仪表的选型与安装
化工仪表的选型原则与方法
选型原则
根据工艺要求、测量范围、测量精度、使用环境等条件,选择合适的仪表类型、规 格和型号。
选型方法
了解各种仪表的性能特点、使用范围、价格等因素,进行综合比较和评估,选择性 价比高的产品。
仪表的分类
根据测量原理、被测参数类型、使 用场合等,仪表可分为温度仪表、 压力仪表、流量仪表、物位仪表、 分析仪表等。
化工仪表的特点与要求
化工仪表的特点
高精度、高稳定性、高可靠性、防爆 防腐等。
化工仪Байду номын сангаас的要求
测量准确、显示清晰、操作简便、维护 方便等。
仪表的测量原理及误差分析
测量原理
根据物理、化学等原理,将被测参数转换为可测量的物理量,如温度、压力、流量等。
石油化工行业
在石油化工生产过程中,原料、产品和中间 体的流量都需要精确控制。通过流量测量仪 表和自动控制系统,可以实现流量的精确测
量和控制,提高生产效率和产品质量。
物位测量与控制技术应用案例
要点一
仓储行业
要点二

化工仪表及其自动化讲义控制课件第一章自动控制系统基本概念


3. 化工过程控制工程(第二版)
王骥程 祝和云 主编,化学工业出版社
4. 化工过程控制基础
化学工业出版社
第一章 自动控制 系统基本概念
化工自动化的主要内容 自动调节系统的组成及方块图 自动调节系统的分类 自动调节的过度过程和系统品 质指标 工艺管道及控制流程图
第一节 化工自动化的主要内容
❖ 自动检测系统 利用各种检测仪表对主要工艺参数进行测量、指示和记录的。
简称对象。 ❖ (2)被控变量 对象内要求保持一定数值(或按某一规律变化)的物
理量称为被控变量。 ❖ (3)控制变量(操纵变量) 受执行器控制,用以使被控变量保持一定
数值的物料或能量称为控制变量或操纵变量。 ❖ (4)干扰(扰动) 除控制变量(操纵变量)以外,作用于对象并引起
被控变量变化的一切因素称为干扰。 ❖ (5)设(给)定值 工艺规定被控变量所要保持的数值。 ❖ (6)偏差 偏差本应是设定值与被控变量的实际值之差。但能获取的信
❖ 自动信号和连锁保护系统 生产过程中的一种安全装置
❖ 自动操纵与自动开停车系统 可以根据预先规定的步骤自动地对生产设备进行某种周期性操作 可以按照预先规定好的步骤,将生产过程自动投入运行或自动特车
❖ 自动控制系统 使得某些关键性的控制参数在受到外界干扰的影响而偏离正常状态时, 能自动地控制而回到规定的数值范围内。
被控对象
测量变送装置
开环——系统的输出没有被反馈回输入端,执行器仅只根 据输入信号进行控制的系统称为开环系统,此时 系统的输出与设定值与测量值之间的偏差无关。
要实现自动控制,系统必须闭环。 闭环控制系统稳定运行的必要条件是负反馈。
第三节 自动控制系统的分类
(一)按设定值的特点区分 (即将控制系统按照工艺过程需要控制的被控变量数值是否变化和

化工仪表及自动化资料ppt课件

化工仪表及自动化资料ppt课件目录CATALOGUE•化工仪表概述•化工仪表的基本原理•化工仪表的选型与安装•化工自动化概述•化工仪表与自动化的关系•化工仪表及自动化的应用案例01CATALOGUE化工仪表概述用于测量、显示、记录和控制工业生产过程中各种工艺参数的装置或系统。

仪表的定义温度仪表、压力仪表、流量仪表、物位仪表等。

按测量对象分类机械式仪表、电子式仪表、智能式仪表等。

按工作原理分类实验室仪表、工业用仪表、过程控制仪表等。

按使用场合分类仪表的定义与分类高精度测量化工生产对工艺参数的精度要求较高,因此化工仪表需要具备高精度测量的能力。

宽测量范围化工生产过程中工艺参数的变化范围较大,要求化工仪表具有较宽的测量范围。

•高可靠性:化工生产环境恶劣,要求化工仪表能够在高温、高压、腐蚀等环境下稳定工作。

测量工艺参数实时测量并显示生产过程中的温度、压力、流量、物位等工艺参数。

控制生产过程根据工艺要求,通过控制阀等执行机构对生产过程进行自动控制。

保障生产安全及时发现并处理生产过程中的异常情况,保障生产安全。

化工仪表的发展历程早期阶段以机械式仪表为主,如弹簧管压力表、浮子流量计等。

这些仪表结构简单,但精度较低,功能单一。

电子化阶段随着电子技术的发展,电子式仪表逐渐取代机械式仪表。

电子式仪表具有更高的精度和更多的功能,如数字显示、远程传输等。

智能化阶段近年来,随着计算机技术和人工智能技术的发展,智能式仪表开始得到广泛应用。

智能式仪表具有自学习、自适应、自诊断等功能,能够进一步提高生产过程的自动化水平和生产效率。

02CATALOGUE化工仪表的基本原理利用弹性元件受压变形的原理,将压力转换为位移或应变进行测量。

压力测量温度测量流量测量物位测量基于热电偶、热电阻等测温元件,将温度转换为电信号进行测量。

通过测量流体流过管道截面的面积和流速,计算得到流量值。

利用浮力、静压等原理,检测容器内液体或固体的位置高度。

测量原理传输原理模拟信号传输将测量信号转换为标准模拟信号(如4-20mA),通过电缆进行传输。

化工仪表及自动化实验讲义

化工仪表及自动化实验讲义实验一热电偶温度计的使用一.实验目的:1.掌握热电偶与动圈仪的配套连接,测温方法及外阻影响。

2.掌握热电偶配手动电位计的测温方法。

3.掌握热电偶冷端温度影响及补偿方法。

二.实验仪器:1.管状电炉2.自耦变压器(带电流表)3.广口保温瓶4.动圈仪5.热电偶6.接线板(带调整电阻)7.手动电位差计8.30cm不锈钢直尺三.实验内容(一)热电偶配手动电位差计测温:1.按图1-1接线,注意极性是否接对,接点是否牢固等。

为保持热电偶冷端温度为零度,将热电偶冷端放置保温瓶中内冰水混合物中。

图1-1热电偶温度计接线图2.把双向开关打向手动电位差计进行测温。

3.手动电位差计使用方法:首先调整检流计的机械零点,其次把手动电位差计的双向开关打向并按住在“校正”位置,调整“工作电流”电位器,使检流计电流为零,然后把双向开关打向“测量(或未知)”位置,即可进行测量。

注意:手动电位差计的双向开关在每一次测量完后,应置于中间位置,以减少干电池的耗电量。

4.短接调整电阻,再测一次炉温,以考察外阻对手动电位差计测温的影响。

(二)热电偶配动圈仪测温:1.把双向开关打向动圈仪进行测温。

2.调整仪表零点为零度,由于本实验中热电偶的冷端温度也为零度,这样动圈仪指示的温度就是电炉温度。

3.短接调整电阻,再测一次炉温,以考察外阻对动圈仪测温的影响。

(三)在测温点相同的条件下,同时用手动电位差计和动圈仪对炉温进行测量,将两个测量结果进行比较。

(四)改变测温点,重复(三),将电炉内的温度分布得到。

测温点数不少于10个。

四.实验报告1.实验数据记录及处理动圈仪分度号Eu—2量程0—800℃精度1.0室温26.0℃测温点距离(cm)测温仪表手动电位差计138动圈仪外阻(Ω)150150读数mV25.1425.16℃6066272.画出热电偶配动圈仪和手动电位差计的接线图。

图1-1热电偶温度计接线图3.从实验结果讨论热电偶测量线路电阻的大小对于用动圈仪测量时如何影响,对于电位差计又是如何影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工自动化及仪表实验讲义程万里编过程装备与控制工程教学组2002.9目录实验须知实验一热电偶温度计的使用实验二电动温度变送器的调整和使用实验三电子电位计的校验实验四温度控制系统实验(一)实验五温度控制系统实验(二)实验须知1.必须自始自终以认真和科学态度进行实验。

2.实验课不能迟到,实验期间不得擅自离开岗位。

3.切实注意安全,不得穿背心和拖鞋进入实验室。

在连接线路时应先切断电源,不许带电操作。

4.为了顺利地进行实验和取得好的实验效果,必须认真预习,写出预习报告,若指导教师发现有同学尚未预习,则不准其参加实验。

5.实验中如发生异常现象或事故,必须立即切断电源,并保持现场,即及时报告教师,共同处理。

6.要爱护公物,不得擅自拆开仪器仪表,非本实验仪器设备不得随便动用。

7.实验完成后,应切断电源,整理好一切仪器设备,并把原始记录交教师签字,经允许后方可离开实验。

8.实验后,每人应独立完成实验报告,报告与原始记录均按教师规定的时间上交。

实验一热电偶温度计的使用一.实验目的:1.掌握热电偶与动圈仪的配套连接,测温方法及外阻影响。

2.掌握热电偶配手动电位计的测温方法。

3.掌握热电偶冷端温度影响及补偿方法。

二.实验仪器:1.管状电炉2.自耦变压器(带电流表)3.广口保温瓶4.动圈仪5.热电偶6.接线板(带调整电阻)7.手动电位差计8.30cm不锈钢直尺三.实验内容(一)热电偶配手动电位差计测温:1.按图1-1接线,注意极性是否接对,接点是否牢固等。

为保持热电偶冷端温度为零度,将热电偶冷端放置保温瓶中内冰水混合物中。

图1-1 热电偶温度计接线图2.把双向开关打向手动电位差计进行测温。

3.手动电位差计使用方法:首先调整检流计的机械零点,其次把手动电位差计的双向开关打向并按住在“校正”位置,调整“工作电流”电位器,使检流计电流为零,然后把双向开关打向“测量(或未知)”位置,即可进行测量。

注意:手动电位差计的双向开关在每一次测量完后,应置于中间位置,以减少干电池的耗电量。

4.短接调整电阻,再测一次炉温,以考察外阻对手动电位差计测温的影响。

(二)热电偶配动圈仪测温:1.把双向开关打向动圈仪进行测温。

2.调整仪表零点为零度,由于本实验中热电偶的冷端温度也为零度,这样动圈仪指示的温度就是电炉温度。

3.短接调整电阻,再测一次炉温,以考察外阻对动圈仪测温的影响。

(三)在测温点相同的条件下,同时用手动电位差计和动圈仪对炉温进行测量,将两个测量结果进行比较。

(四)改变测温点,重复(三),将电炉内的温度分布得到。

测温点数不少于10个。

四.实验报告1.实验数据记录及处理动圈仪分度号量程精度室温2.画出热电偶配动圈仪和手动电位差计的接线图。

3.从实验结果讨论热电偶测量线路电阻的大小对于用动圈仪测量时如何影响,对于电位差计又是如何影响。

4.利用电位差计测得的热电势列式计算电炉温度,并与动圈仪指示值进行比较,如有差别,哪一个测量结果更为准确?5.绘制电炉的温度分布曲线。

6.问题讨论:(1)热电偶和动圈仪、手动电位差计配套使用时应注意哪些问题?(2)热电偶的补偿导线极性接错时,测量时会发生何种现象?(3)试分析动圈仪、手动电位差计与热电偶配套使用时哪一个精度高。

实验二电动温度变送器的调整和使用一.实验目的:1.了解电动温度变送器的结构,2.学会电动温度变送器与不同检测元件的配套使用,3.掌握零点迁移和量程调整的方法。

二.实验仪器:1.DWB型电动温度变送器(DDZ―Ⅱ仪表)2.ZX32型电阻想箱3.0.5级直流毫安表4.手动电位差计5.冷端温度补偿电阻三.实验内容和步骤:(一).温度变送器配热电阻时的调整和使用要求:配用Cu50热电阻,按测温范围0~50℃调整1.接线(见图2-2):用电阻箱代替热电阻,注意三线制接法,即电阻箱图2-1 测量桥路要接出三根线,端子⑤⑥⑦的接法由迁移电阻Rx决定,在变送器的输出端子间串入一个1.5KΩ的电阻和一台毫安表。

(1)迁移电阻Rx的计算:因为当热电阻的阻值为量程下限值Rt min时,桥路输出电压e=0,从而可由下式计算迁移电阻Rxe=0.5(Rt min-Rx)=0Rx=Rt min(2)由上式计算的Rx值决定端子⑤⑥⑦的接法Rx=0~50Ω接⑤且⑥⑦短路Rx=50~100Ω接⑤Rx=100~200Ω接⑥图2-2 配热电阻时的接线图2.将“检查—工作”开关置于“检查”位置,此时仪表输出电流应在4~6mA 范围内,说明仪表工作正常,然后把开关放置“工作”位置,否则请指导老师处理。

3.由相应的热电阻分度表,查得相应于上、下限温度的阻值Rt min、Rt max,则热电阻上、下限阻值差ΔR max=Rt max-Rt min4.调整(1)调整零点迁移:使电阻箱的电阻值为Rt min+10%ΔR max,仪表应有1mA输出,如不在1mA,调整“零点迁移”电位器W2(W3不能调)。

(2)调量程:使电阻箱的电阻值为Rt min+90%ΔR max,仪表应有9mA输出,如不在9mA,调整“量程”电位器W1。

(3)反复步骤(1)、(2),直到同时满足两项要求为止。

5.读出当输出电流为5mA时的电阻箱的数值,并查出相应的温度值。

(二)温度变送器配热电偶时的调整和使用要求:配用K分度号的热电偶,按测温范围600~800℃调整1.接线(见图2-3)(1)端补偿电阻(K热电偶R Cu 20=20.16Ω),(2)手动电位差计代替热电偶输出毫伏信号,(3)子⑤⑥⑦的接法由迁移电阻Rx决定,按下式计算,端子的连接方式同(一),e=E(t min,20)+0.5(R Cu 20-Rx)=0Rx=0.50.5R,20)E(tCu20mint min—量程的下限温度图2-3 配热电偶时的接线图2.检查—工作”开关置于“检查”位置,此时仪表输出电流应在4~6mA范围内,说明变送器工作正常,然后把开关置回“工作”位置,否则请指导老师处理。

3.调整(1)调整零点迁移:用手动电位差计加入E(t min,t0)+ 10%E(t max,t min),调整“零点迁移”电位器W2使毫安表指示1mA输出(W3不能调)。

t max—量程的上限温度。

t 0—热电偶的冷端温度(可用实验室的室温)。

(2)调量程:用手动电位差计加入E(t min,t0)+ 90%E(t max,t min),调整“量程”电位器W1使毫安表指示9mA。

(3)反复步骤(1)、(2),直到同时满足两项要求为止。

4.读出当输出电流为5mA时的手动电位差计的读数,并计算相应的温度值。

四.实验报告1.零点迁移电阻Rx的计算和端子⑤⑥⑦接法的判定。

2.画出实验装置的接线原理图。

3.热电阻和热电偶温度变送器输出为5mA时相应的温度值,若测量值与实际值有误差,试分析原因。

实验三电子电位差计的校验一.实验目的:1.熟悉自动电子电位差计的结构和校验方法。

2.掌握自动电子电位差计的使用方法和冷端自动补偿的作用。

3.了解热电偶线路可能出现的故障和检查方法。

二.实验仪器:1.自动电子电位差计2.玻璃温度计3.手动电位差计三.实验内容与步骤:1.详细观察自动电子电位差计的结构,包括测量桥路、放大器、可逆电机和指示记录机构。

2.指示值的校验:首先应对仪表零点和满刻度点进行校验,待调整并达到规定要求(误差在刻度面板上所示精度范围内)后,再校验其它刻度。

零点不合格,可调起始微调电阻R G ’。

量程不合格,可调量程微调电阻R M ’。

(R G ’,R M ’本实验不调整) 指示误差的测定是用标准电位差计给被校表加入适当的电势(mV ),使指针与被校点刻度线重合,从标准电位差计读出加入的电势值(E 示),与被校点相对应的电势值(E 刻,由被校仪表配用的热电偶的分度表查得)相比较计算出校验点上的指示误差。

本实验线路见下图:其指示误差按下式计算: δ=100ΕΕe ΕΕ⨯---下限上限示刻%δ—指示误差e —补偿电阻处温度(即室温)相对应的电势值 E 上限—相对应的电势值 E 下限—相对应的电势值3.不灵敏区(即变差)的校验:仪表的不灵敏区指在输入信号增大(正向)和减小(反向)时在同一被校刻度线上输入信号实际值之差值,其数值可按下式计算:Δ=100E E E E ⨯--下限上限下行程上行程%仪表的变差不应超出仪表的允许误差,但过小也应避免。

因为此时会产生仪表指针抖动或摆动不休的现象,无法准确指示记录,而不灵敏区太大时,对小信号没有反应,误差增大。

为获得所需的仪表不灵敏区的大小,可旋转放大器的灵敏度调节旋钮,以改变放大器的增益,即灵敏度高,不灵敏区就小,反之亦然。

4.热电偶线路可能出现的故障分别将热电偶信号①短路、②断开、③反接,注意观察电子电位差计的指针变化情况,从而学会判断和排除热电偶温度计常见故障。

5.考察量程电阻R M 及起始电阻R G 对量程和起点的影响:用一电阻与R M 并联使量程电阻减小,观察仪表指针的变化,并判断量程的变化趋势;用同一方法也可考察R G 变化对起点的影响。

五. 实验报告1.数据处理热电偶分度号 仪表量程 精度室温t 0 E(t max ,t min )=2.结论⑴.计算被校电子电位差计的误差和变差,从而确定其精度是否合格。

⑵.故障现象分析与结论。

⑶.讨论R M与R G减小对量程与起点的影响。

⑷.校验装置中标准电位差计与被校电位差计的连线为何用普通导线?是否可用补偿导线?实验四温度控制系统(一)一.实验目的:1.了解温度控制系统的组成环节和各环节的作用。

2.观察比例、积分、微分控制规律的作用,并比较其余差及稳定性。

3.观察比例度δ、积分时间T I、微分时间T D对控制系统(闭环特性)控制品质的影响。

二.温度控制系统的组成:电动温度控制系统是过程控制系统中常见的一种,其作用是通过一套自动控制装置,见图4-1,使炉温自动维持在给定值。

图4-1 温度控制系统炉温的变化由热电偶测量,并通过电动温度变送器转化为DDZ-Ⅱ型表的标准信号0~10mA直流电流信号,传送到电子电位差计XWC进行记录,同时传送给电动控制器DTL,控制器按偏差的大小、方向,通过预定控制规律的运算后,输出0~10mA直流电流信号给可控硅电压调整器ZK-50,通过控制可控硅的导通角,以调节加到电炉(电烙铁)电热元件上的交流电压,消除由于干扰产生的炉温变化,稳定炉温,实现自动控制。

三.实验内容与步骤:(一)观察系统各环节的结构、型号、电路的连接,熟悉可控硅电压调整器和电动控制器上各开关、旋钮的作用。

(二)控制系统闭环特性的测定:在以下实验中使用的δ1 ,δ2,T I 1,T I 2 ,T D1的具体数值由各套实验装置具体提供。

1.观察比例与积分控制规律的作用(1)考察比例作用将δ置于某值δ1 ,记住δ旋钮在δ1的位置,积分时间置最大(T=max),微分开关切向0,将干扰开关从“短”切向“干扰”,I产生一个阶跃干扰(此时为反向干扰),同时在记录仪的记录线上作一记号,以记录阶跃干扰加入的时刻,观察并记录在纯比例作用下达到稳定的时间及余差大小。

相关文档
最新文档