函数的极值与导数说课
函数的极值与导数的教案

函数的极值与导数教案章节一:极值的概念与定义教学目标:1. 了解极值的概念;2. 掌握极值的定义;3. 能够判断函数的极值点。
教学内容:1. 引入极值的概念;2. 讲解极值的定义;3. 举例说明如何判断函数的极值点。
教学方法:1. 采用讲解法,讲解极值的概念和定义;2. 利用图形和实际例子,让学生直观地理解极值点;3. 进行课堂练习,巩固所学知识。
教学评估:1. 课堂练习;2. 学生能够准确判断函数的极值点。
教案章节二:导数与极值的关系教学目标:1. 了解导数与极值的关系;2. 掌握求函数极值的方法;3. 能够运用导数研究函数的极值问题。
教学内容:1. 讲解导数与极值的关系;2. 教授求函数极值的方法;3. 举例说明如何运用导数研究函数的极值问题。
教学方法:1. 采用讲解法,讲解导数与极值的关系;2. 通过例题,教授求函数极值的方法;3. 进行课堂练习,巩固所学知识。
教学评估:1. 课堂练习;2. 学生能够运用导数研究函数的极值问题。
教案章节三:一元函数的极值教学目标:1. 了解一元函数的极值;2. 掌握一元函数极值的判断方法;3. 能够求出一元函数的极值。
教学内容:1. 讲解一元函数的极值;2. 教授一元函数极值的判断方法;3. 举例说明如何求出一元函数的极值。
教学方法:1. 采用讲解法,讲解一元函数的极值;2. 通过例题,教授一元函数极值的判断方法;3. 进行课堂练习,巩固所学知识。
教学评估:1. 课堂练习;2. 学生能够准确判断一元函数的极值点;3. 学生能够求出一元函数的极值。
教案章节四:二元函数的极值教学目标:1. 了解二元函数的极值;2. 掌握二元函数极值的判断方法;3. 能够求出二元函数的极值。
教学内容:1. 讲解二元函数的极值;2. 教授二元函数极值的判断方法;3. 举例说明如何求出二元函数的极值。
教学方法:1. 采用讲解法,讲解二元函数的极值;2. 通过例题,教授二元函数极值的判断方法;3. 进行课堂练习,巩固所学知识。
高中数学教案函数的极值和导数

高中数学教案——函数的极值和导数一、教学目标:1. 理解导数的概念,掌握基本初等函数的导数公式。
2. 学会利用导数判断函数的单调性,理解函数的极值概念。
3. 能够运用导数解决实际问题,提高解决函数问题的能力。
二、教学内容:1. 导数的定义及几何意义2. 基本初等函数的导数公式3. 导数的计算法则4. 利用导数判断函数的单调性5. 函数的极值及其判定三、教学重点与难点:1. 重点:导数的定义、基本初等函数的导数公式、导数的计算法则、利用导数判断函数的单调性、函数的极值及其判定。
2. 难点:导数的应用,如何利用导数解决实际问题。
四、教学方法:1. 采用启发式教学,引导学生主动探究导数的定义及应用。
2. 利用多媒体课件,直观展示函数的导数与单调性、极值之间的关系。
3. 结合实际例子,让学生感受导数在解决实际问题中的重要性。
4. 开展小组讨论,培养学生合作学习的能力。
五、教学过程:1. 导入:回顾初中阶段学习的函数图像,引导学生思考如何判断函数的单调性、2. 讲解导数的定义:通过几何直观,解释导数的含义,引导学生理解导数表示函数在某点的瞬时变化率。
3. 学习基本初等函数的导数公式:讲解幂函数、指数函数、对数函数、三角函数的导数公式。
4. 导数的计算法则:讲解导数的四则运算法则,举例说明。
5. 利用导数判断函数的单调性:引导学生利用导数符号判断函数的单调性,讲解“增函数”和“减函数”的概念。
6. 函数的极值及其判定:讲解极值的概念,举例说明如何利用导数判断函数的极值。
7. 课堂练习:布置相关练习题,让学生巩固所学知识。
8. 总结:回顾本节课所学内容,强调导数在研究函数单调性、极值方面的应用。
9. 拓展:引导学生思考导数在其他领域的应用,如物理、经济学等。
10. 课后作业:布置课后作业,巩固所学知识,提高解题能力。
六、教学评价:1. 课后作业:通过布置相关的习题,检验学生对导数概念、基本初等函数的导数公式、导数计算法则、单调性和极值的理解和应用能力。
《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率
函数的极值与导数(教案)

函数的极值与导数(教案)第一章:极值的概念教学目标:1. 理解极值的概念;2. 能够找出函数的极值点;3. 能够判断函数的极值类型。
教学内容:1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例讲解如何找出函数的极值点;4. 讲解极大值和极小值的概念;5. 举例讲解如何判断函数的极大值和极小值。
教学活动:1. 引入极值的概念,引导学生思考什么是极值;2. 通过示例讲解如何找出函数的极值点,引导学生动手尝试;3. 讲解极大值和极小值的概念,引导学生理解极大值和极小值的区别;4. 通过示例讲解如何判断函数的极大值和极小值,引导学生进行判断。
作业布置:1. 练习找出给定函数的极值点;2. 练习判断给定函数的极大值和极小值。
第二章:导数的基本概念教学目标:1. 理解导数的概念;2. 能够计算常见函数的导数;3. 能够利用导数判断函数的单调性。
教学内容:1. 引入导数的概念;2. 讲解导数的计算方法;3. 举例讲解如何利用导数判断函数的单调性;4. 讲解导数的应用。
教学活动:1. 引入导数的概念,引导学生思考什么是导数;2. 通过示例讲解如何计算常见函数的导数,引导学生动手尝试;3. 讲解导数的应用,引导学生理解导数在实际问题中的应用;4. 通过示例讲解如何利用导数判断函数的单调性,引导学生进行判断。
作业布置:1. 练习计算给定函数的导数;2. 练习利用导数判断给定函数的单调性。
第三章:函数的单调性教学目标:1. 理解函数单调性的概念;2. 能够利用导数判断函数的单调性;3. 能够找出函数的单调区间。
教学内容:1. 引入函数单调性的概念;2. 讲解如何利用导数判断函数的单调性;3. 举例讲解如何找出函数的单调区间;4. 讲解函数单调性的应用。
教学活动:1. 引入函数单调性的概念,引导学生思考什么是函数单调性;2. 通过示例讲解如何利用导数判断函数的单调性,引导学生动手尝试;3. 讲解如何找出函数的单调区间,引导学生理解单调区间的概念;4. 通过示例讲解如何找出给定函数的单调区间,引导学生进行判断。
函数的极值与导数的教案

函数的极值与导数一、教学目标1. 理解导数的定义和几何意义2. 学会求函数的导数3. 理解函数的极值概念4. 学会利用导数研究函数的极值二、教学内容1. 导数的定义和几何意义2. 常见函数的导数3. 函数的极值概念4. 利用导数研究函数的单调性5. 利用导数求函数的极值三、教学重点与难点1. 重点:导数的定义和几何意义,常见函数的导数,函数的极值概念,利用导数求函数的极值2. 难点:导数的运算法则,利用导数研究函数的单调性,求函数的极值四、教学方法1. 采用讲授法讲解导数的定义、几何意义、常见函数的导数及函数的极值概念2. 利用例题解析法讲解利用导数研究函数的单调性和求函数的极值3. 组织学生进行小组讨论和互动,巩固所学知识五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考如何求函数的导数2. 新课:讲解常见函数的导数,引导学生掌握求导数的方法3. 案例分析:利用导数研究函数的单调性,求函数的极值,引导学生理解和应用所学知识4. 练习与讨论:布置练习题,组织学生进行小组讨论,解答练习题5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生思考如何利用导数研究更复杂的函数极值问题六、课后作业1. 复习导数的定义和几何意义,常见函数的导数2. 练习求函数的导数3. 利用导数研究函数的单调性,求函数的极值七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态2. 练习与讨论:评估学生在练习题和小组讨论中的表现,检验学生对知识的掌握程度3. 课后作业:检查课后作业的完成情况,评估学生对课堂所学知识的巩固程度六、教学策略的调整1. 根据学生的课堂反馈,适时调整教学节奏和难度,确保学生能够跟上教学进度。
2. 对于学生掌握不够扎实的知识点,可以通过举例、讲解、练习等多种方式加强巩固。
3. 鼓励学生提出问题,充分调动学生的主动学习积极性,提高课堂互动性。
七、教学案例分析1. 通过分析具体案例,让学生理解导数在实际问题中的应用,例如在物理学中的速度、加速度的计算。
《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。
通过图形和实例直观展示极值的存在。
1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。
分析导数为正和导数为负时函数的单调性,得出极值的判定条件。
1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。
证明极值的判定定理,并通过实例进行验证。
第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。
讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。
2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。
通过实例和图形展示导数与函数单调性的联系。
2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。
分析函数的单调区间和极值点,得出函数的单调性对极值的影响。
第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。
讲解极值点的判定方法,包括导数为零和导数不存在的条件。
3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。
讲解如何利用导数和图形求解函数的极值点。
3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。
举例说明如何利用极值点解决实际问题。
第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。
讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。
4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。
讲解如何利用导数和图形求解函数的拐点。
4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。
举例说明如何利用拐点解决实际问题。
第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。
函数的极值与导数课件公开课

x (–∞, –3)
f (x) +
f (x) 单调递增
–3 (–3, 3)
0
–
54 单调递减
3
( 3, +∞)
0
+
54 单调递增
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
思考
(1)导数为0的点一定是 函数的极值点吗?
y y=x3
当 x= 2时,f(x)有极小值 5-4 2.
(2)由(1)的分析知 y=f(x)的图象的 大致形状及走向如图所示.所以, 当 5-4 2<a<5+4 2时,直线 y =a 与 y=f(x)的图象有三个不同 交点,即方程 f(x)=a 有三个不同 的解.
【名师点评】 用求导的方法确定方程根的个数, 是一种很有效的方法.它通过函数的变化情况, 运用数形结合思想来确定函数图象与x轴的交点 个数,从而判断方程根的个数.
【解】 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x1=- 2,x2= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以 f(x)的单调递增区间为(-∞,- 2)和( 2, +∞);单调递减区间为(- 2, 2). 当 x=- 2时,f(x)有极大值 5+4 2;
若f ’(x0)左正右负,则f(x0)为极大值; 若 f ’(x0)左负右正,则f(x0)为极小值
求导—求极点—列表—求极值
练习:
求下列函数的极值:
(1) f (x) x3 27x; (2) f (x) 3x x3
解:
(3) f (x) ln x 1 ; x
(1) 令f (x) 3x2 27 0, 解得 x1 3, x2 3.列表:
数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学情分析
在前面的学习中,学生已经学习了导数,了解 了导数的一些用途,思想中也有了一点运用导数的基 本思想去分析和解决实际问题的意识,本节课利用导 数知识求可导函数的极值,将继续加强这方面的意识 和能力的培养。不过鉴于学生在导数的应用方面水平 普遍偏低,理解和应用知识的能力还是不足,所以在 教学中,有必要从基础入手,指导学生先做到对解题 方法和步骤的机械模仿,在此基础上,努力提升认识 水平,力争让尽可能多的学生达到知识的融会贯通。
教学目标
知识与技能
1.掌握函数极值的定义,会从几何图形直观理解函数的 极值与其导数的关系,增强学生的数形结合意识,提 升思维水平;
2.掌握利用导数求可导函数的极值的一般方法及步骤.
过程与方法
1.培养学生运用导数的基本思想去分析和解决实际问 题的能力; 2.培养学生观察、分析、探究、归纳得出数学概念和 规律的学习能力.
2.函数的极大值一定大于极小值吗? 3.在区间内可导函数的极大值和极小值是唯一的吗?
小组讨论,解疑合探
(一)小组合探
小组内讨论解决自探中未解决的问题.
(二)小组展示
教师选择一个小组的同学展示讨论结果.
(三)评价
1.学生评价; 2.教师评价.
Hale Waihona Puke 深入学习,质疑再探对于刚才的学习内容,谁还有什么问题或 不明白的地方,请提出来,大家一起来解决!
为了提高课堂教学效率,我采用多媒体辅助教学.本节课的 学习效果主要通过学生回答问题和展示探究结果来检验,还要 通过做相应的练习题进行巩固.
创设情境,设疑自探 小组讨论,解疑合探 深入学习,质疑再探 练习巩固,运用拓展 课堂小结,课后作业
教 学 过 程 与 设 计
创设情境,设疑自探
观察图象中,点a和点b处的函数值与它们 附近点的函数值有什么的大小关系?
情感、态度与价值观
1.培养学生层层深入、一丝不苟研究事物的科学精神;
2.体会数学中的局部与整体的辨证关系.
教学重难点
重点:理解极值的概念,掌握求可导函数的极值的 一般方法; 难点:求可导函数的极值及函数有极值的条件问题.
教学方法与手段
本节课主要采用“疑探教学法”,即通过疑问和探究相结合 的方式,促使学生主动提出问题,独立思考问题,合作探究问 题,有助于学生形成敢于质疑,善于表达,认真倾听,勇于评 价和不断反思的良好学习习惯.学习过程采用问题驱动的形式, 激发学生的求知欲望;学生通过探究发现问题,发展探索能力 和创造能力.
谢谢观赏
3
思考
(1)导数值为0的点一定是函数的极值点吗? (2)函数在一点的导数值为0是函数在这点 取极值的什么条件?
课堂练习
求下列函数的极值:
(1) f (x) x3 27x
(2)f(x)3xx3
(3)f (x) lnx1 x
课堂小结
哪位同学帮我们总结一下,本节课我们主要学习 了哪些内容?
一.极大值和极小值的定义.
本节课我 们将进一步研究 导数的符号与函 数图像变化的一 些规律.
y yfx
a ob x
(一)学生提问
关于本节课,你认为应该掌握哪些内容或者解 决哪些问题,请提出来 (根据课本93至94页内容提出你的问题).
(二)自探提示
老师将大家提出的问题归纳、整理、补充为下 面的自探提示:
1.什么是极小值,什么是极大值?各有什么特点?
二.求函数极值的步骤.
作业
1.作业本:课本96页练习1; 2.《优化方案》56页例1及跟踪训练.
板书设计
函数的极值与导数
一.极值的定义 二.求函数极值的步骤
例题与练习
以上是我对
谢
这节课的教学预 设,具体的教学
谢! 过程还要根据学
生在课堂中的具
体情况适当调整,
向生成性课堂进
行转变.不妥之处,
敬请批评指正.
求根
当 x 变化时, f (x)和f (x) 的变化情况如下表:
列表
x (–∞, –2) –2 (–2, 2)
2 ( 2, +∞)
f ( x) +
0
–
0
+
f (x) 单调递增 所以, 当 x = –2 时,
28 单调递减
4 单调递增
f
3
3
(x)有极大值,极大值为 f
2
结2论8
3
当 x = 2 时, f (x)有极小值,极小值为 f 2 4 .
函数的极值与导数(说课)
一.教材分析 二.学情分析 三.教学目标 四.教学重难点 五.教学方法与手段
六.教学过程与设计
教材分析
《函数的极值与导数》是高中数学人教A版选修11第三章第三节第2小节的内容.在此之前学生已经学习 了导数,并且学习了用导数解决曲线的切线问题和函 数的单调性问题,本节课将利用导数知识求可导函数 的极值。其后还有利用导数求函数的最值问题、不等 式恒成立问题、方程根的讨论和函数图像交点等问题, 因此本节课在学习中起到承上启下的作用。从高考角 度分析,本节课的知识考查以中高难度的题为主,所 以本节内容是非常重要的知识。
练习巩固,运用拓展
例1 求函数 f (x) 1 x3 4x 4的极值. 3
例1 求函数 f ( x) 1 x 3 4 x 4 的极值.
3
求导
解: 因为 f ( x) 1 x 3 4 x 4, 所以 f ( x ) x 2 4 .
3
令 f ( x ) 0 , 解得 x 2 , 或 x 2 .