函数的最值与导数教案
高二数学学案:函数的最值与导数

1.函数y=2x3-3x2-12x+5在[0,3]上的最小值是______的最大值为_____;最小值为_______.
【课后反思】
【达标检测】
1.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)为()
A.等于0B.大于0 C.小于0D.以上都有可能
2.函数y= ,在[-1,1]上的最小值为()
A.0B.-2C.-1D.
3.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?
课题
§3.3.3函数的最大小值与导数(第3课时)
【导学过程】
探究一:最值的概念(最大值与最小值)
观察下面函数 在区间 上的图象,回答:
(1)在哪一点处函数 有极大值和极小值?
(2)函数 在 上有最大值和最小值吗?如果有,
最大值和最小值分别是什么?
探究二:利用导数求函数的最值
求函数 在区间 内的最大值和最小值
函数的极值与导数教案

函数的极值与导数教案教案标题:函数的极值与导数教案目标:1. 了解函数的极值概念及其与导数的关系。
2. 掌握求函数极值的方法和应用。
3. 培养学生的分析和解决问题的能力。
教案步骤:引入(5分钟):1. 引导学生回顾函数的概念和图像表示。
2. 提问:你们对函数的极值有什么了解?导入(10分钟):1. 通过一个简单的例子引出函数的极值概念。
2. 解释函数的极大值和极小值的定义。
3. 引导学生思考函数极值与导数的关系。
讲解(15分钟):1. 解释导数的定义和作用。
2. 介绍函数极值与导数的关系,即函数在极值点处的导数为0。
3. 解释为什么导数为0的点可能是极值点。
示范(15分钟):1. 通过一个具体的例子演示如何求函数的极值。
2. 使用导数的方法计算极值点,并验证结果的正确性。
3. 强调求解极值时要注意区间的选择和边界条件。
练习(15分钟):1. 分发练习题,要求学生独立完成。
2. 鼓励学生尝试不同类型的函数和问题。
3. 提供适当的提示和指导。
总结(5分钟):1. 回顾本课所学的内容,强调函数极值与导数的关系。
2. 概括求解函数极值的方法和步骤。
3. 鼓励学生在实际问题中运用所学知识。
拓展(5分钟):1. 提供一些拓展问题,让学生思考更复杂的情况。
2. 引导学生探索其他与函数极值相关的概念和应用。
教学辅助工具:1. 教材或课件,用于讲解和示范。
2. 白板或黑板,用于演示计算过程和解题思路。
3. 练习题,用于巩固和拓展学生的知识。
教学评估:1. 在练习环节中观察学生的解题过程和答案。
2. 提供及时的反馈和指导,纠正学生的错误或不完整的理解。
3. 鼓励学生在课后继续思考和实践相关问题。
教案扩展:1. 可以引入更复杂的函数类型,如三角函数、指数函数等。
2. 可以探讨函数的凹凸性和拐点等相关概念。
3. 可以引导学生在实际问题中应用函数的极值概念,如最优化问题等。
〖2021年整理〗《导数与函数的极值、最值》优秀教案

导数与函数的极值、最值1.函数的极值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[做一做]1.设函数f(x)=x e x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点2.函数y=2x3-2x2在区间[-1,2]上的最大值是________.3.已知x=3是函数f(x)=a ln x+x2-10x的一个极值点,则实数a=________.1.辨明两个易误点(1)求函数极值时,误把导数为0的点作为极值点;(2)易混极值与最值,注意函数最值是个“整体”概念,而极值是个“局部”概念.2.明确两个条件一是f′(x)>0在(a,b)上成立,是f(x)在(a,b)上单调递增的充分不必要条件.二是对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.考点一__函数的极值问题(高频考点)____________函数f(x)的定义域为开区间(a,b),其导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a ,b )内的极大值点有( )A .1个B .2个C .3个D .4个[规律方法] 运用导数求可导函数y =f (x )的极值的步骤: (1)先求函数的定义域,再求函数y =f (x )的导数f ′(x ); (2)求方程f ′(x )=0的根;(3)检查f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值,如果左负右正,那么f (x )在这个根处取得极小值.如果左右符号相同,则此根处不是极值点.1.(1)已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.(2)已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点. ①求a 和b 的值;②设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点.考点二__函数的最值问题______________________已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0.(1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.[规律方法] 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值.方法思想——转化与化归思想求解曲线间交点问题已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. [解] (1)f ′(x )=3x 2-6x +a ,f ′(0)=a .曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a =-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4,则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)单调递减,在(2,+∞)单调递增,所以g (x )>h (x )≥h (2)=0. 所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.[名师点评] (1)本题求解利用了转化与化归思想,把证明曲线y =f (x )与直线y =kx -2只有一个交点问题转化为证明方程f (x )-kx +2=0只有一个根,分x ≤0和x >0两情况给予说明.(2)转化与化归原则:一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.设L 为曲线C :y =ln xx在点(1,0)处的切线.(1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解:(1)设f (x )=ln xx ,则f ′(x )=1-ln x x 2.所以f ′(1)=1,所以L 的方程为y =x -1.(2)证明:令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线L 的下方等价于g (x )>0(∀x >0,x ≠1). g (x )满足g (1)=0,且 g ′(x )=1-f ′(x )=x 2-1+ln xx 2.当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,故g (x )单调递减; 当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,故g (x )单调递增. 所以,g (x )>g (1)=0(∀x >0,x ≠1). 所以除切点之外,曲线C 在直线L 的下方.课后作业1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-6432.已知函数f (x )=13x 3-12x 2+cx +d 有极值,则c 的取值范围为( )A .c <14B .c ≤14C .c ≥14D .c >143. 已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件4.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .2或-235.函数y =2x -1x 2的极大值是________.6.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )7.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是__________.8.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,求a 的取值范围.课后作业答案1解析:选′(x )=x 2+2x -3, 令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.解析:选′(x )=x 2-x +c .因为函数f (x )=13x 3-12x 2+cx +d 有极值,则方程x 2-x +c =0有两个不同的实根,所以Δ=1-4c >0⇒c <14.3.解析:选C.因为y ′=-x 2+81,所以当x >9时,y ′<0;当0<x <9时,y ′>0.所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是该函数的极大值点,又该函数在(0,+∞)上只有一个极大值点,所以该函数在x =9处取得最大值.4.解析:选A.由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23.5.解析:y ′=2+2x 3,令y ′=0,得x =-1.当x <-1时,y ′>0;当-1<x <0时,y ′<0. ∴当x =-1时,y 取极大值-3. 答案:-36. 解析:选C.由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.7.解析:令f ′(x )=3x 2-3a =0,得x =±a ,则f (x ),f ′(x )随x 的变化情况如下表:从而⎩⎨⎧(-a )3-3a (-a )+b =6(a )3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1b =4,所以f (x )的单调递减区间是(-1,1). 答案:(-1,1)8.解:f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a .∴f ′(x )=1x -ax +a -1=-ax 2+1+ax -x x.①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a >1,解得-1<a <0.综合①②得a 的取值范围是a >-1.。
函数的极值与导数(教案)

函数的极值与导数(教案)第一章:极值的概念教学目标:1. 理解极值的概念;2. 能够找出函数的极值点;3. 能够判断函数的极值类型。
教学内容:1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例讲解如何找出函数的极值点;4. 讲解极大值和极小值的概念;5. 举例讲解如何判断函数的极大值和极小值。
教学活动:1. 引入极值的概念,引导学生思考什么是极值;2. 通过示例讲解如何找出函数的极值点,引导学生动手尝试;3. 讲解极大值和极小值的概念,引导学生理解极大值和极小值的区别;4. 通过示例讲解如何判断函数的极大值和极小值,引导学生进行判断。
作业布置:1. 练习找出给定函数的极值点;2. 练习判断给定函数的极大值和极小值。
第二章:导数的基本概念教学目标:1. 理解导数的概念;2. 能够计算常见函数的导数;3. 能够利用导数判断函数的单调性。
教学内容:1. 引入导数的概念;2. 讲解导数的计算方法;3. 举例讲解如何利用导数判断函数的单调性;4. 讲解导数的应用。
教学活动:1. 引入导数的概念,引导学生思考什么是导数;2. 通过示例讲解如何计算常见函数的导数,引导学生动手尝试;3. 讲解导数的应用,引导学生理解导数在实际问题中的应用;4. 通过示例讲解如何利用导数判断函数的单调性,引导学生进行判断。
作业布置:1. 练习计算给定函数的导数;2. 练习利用导数判断给定函数的单调性。
第三章:函数的单调性教学目标:1. 理解函数单调性的概念;2. 能够利用导数判断函数的单调性;3. 能够找出函数的单调区间。
教学内容:1. 引入函数单调性的概念;2. 讲解如何利用导数判断函数的单调性;3. 举例讲解如何找出函数的单调区间;4. 讲解函数单调性的应用。
教学活动:1. 引入函数单调性的概念,引导学生思考什么是函数单调性;2. 通过示例讲解如何利用导数判断函数的单调性,引导学生动手尝试;3. 讲解如何找出函数的单调区间,引导学生理解单调区间的概念;4. 通过示例讲解如何找出给定函数的单调区间,引导学生进行判断。
函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标1. 让学生理解函数的极值概念,掌握函数的极大值和极小值的求法。
2. 引导学生理解导数与函数单调性的关系,能够运用导数判断函数的单调性。
3. 培养学生运用导数解决实际问题的能力,提高学生的数学应用意识。
二、教学内容1. 函数的极值概念2. 函数的极大值和极小值的求法3. 导数与函数单调性的关系4. 运用导数解决实际问题三、教学重点与难点1. 教学重点:函数的极值概念,函数的极大值和极小值的求法,导数与函数单调性的关系。
2. 教学难点:运用导数解决实际问题。
四、教学方法与手段1. 教学方法:采用讲解、演示、练习、讨论相结合的方法。
2. 教学手段:利用多媒体课件辅助教学,结合板书进行讲解。
五、教学安排1课时教案一、导入新课通过复习导数的基本概念,引导学生回顾导数的计算公式,为新课的学习做好铺垫。
二、讲解函数的极值概念1. 定义:如果函数在某一区间内的任意一点的导数都小于(或大于)0,在这个区间内函数是单调递减(或单调递增)的。
2. 极值:在函数的单调区间内,如果函数在某一点取得局部最大值或最小值,这一点称为函数的极大值点或极小值点。
三、讲解函数的极大值和极小值的求法1. 求极值的方法:求出函数的导数,令导数为0,解方程得到可能的极值点。
2. 判断极值点的性质:根据导数的符号变化来判断极值点的性质。
如果导数从正变负,函数在这一点取得极大值;如果导数从负变正,函数在这一点取得极小值。
四、讲解导数与函数单调性的关系1. 单调性判断:如果函数的导数大于0,函数是单调递增的;如果函数的导数小于0,函数是单调递减的。
2. 单调区间:函数的单调递增区间为导数大于0的区间,单调递减区间为导数小于0的区间。
五、运用导数解决实际问题1. 问题提出:如何求解函数在实际问题中的最大值和最小值?2. 方法指导:建立函数模型,求出函数的导数,分析导数的符号变化,找出函数的极值点,根据实际意义选取合适的极值点作为最大值或最小值。
函数的极值与导数的教案

函数的极值与导数一、教学目标1. 理解导数的定义和几何意义2. 学会求函数的导数3. 理解函数的极值概念4. 学会利用导数研究函数的极值二、教学内容1. 导数的定义和几何意义2. 常见函数的导数3. 函数的极值概念4. 利用导数研究函数的单调性5. 利用导数求函数的极值三、教学重点与难点1. 重点:导数的定义和几何意义,常见函数的导数,函数的极值概念,利用导数求函数的极值2. 难点:导数的运算法则,利用导数研究函数的单调性,求函数的极值四、教学方法1. 采用讲授法讲解导数的定义、几何意义、常见函数的导数及函数的极值概念2. 利用例题解析法讲解利用导数研究函数的单调性和求函数的极值3. 组织学生进行小组讨论和互动,巩固所学知识五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考如何求函数的导数2. 新课:讲解常见函数的导数,引导学生掌握求导数的方法3. 案例分析:利用导数研究函数的单调性,求函数的极值,引导学生理解和应用所学知识4. 练习与讨论:布置练习题,组织学生进行小组讨论,解答练习题5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生思考如何利用导数研究更复杂的函数极值问题六、课后作业1. 复习导数的定义和几何意义,常见函数的导数2. 练习求函数的导数3. 利用导数研究函数的单调性,求函数的极值七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态2. 练习与讨论:评估学生在练习题和小组讨论中的表现,检验学生对知识的掌握程度3. 课后作业:检查课后作业的完成情况,评估学生对课堂所学知识的巩固程度六、教学策略的调整1. 根据学生的课堂反馈,适时调整教学节奏和难度,确保学生能够跟上教学进度。
2. 对于学生掌握不够扎实的知识点,可以通过举例、讲解、练习等多种方式加强巩固。
3. 鼓励学生提出问题,充分调动学生的主动学习积极性,提高课堂互动性。
七、教学案例分析1. 通过分析具体案例,让学生理解导数在实际问题中的应用,例如在物理学中的速度、加速度的计算。
数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案章节一:函数的导数与最大值1. 教学目标:让学生理解导数的定义和性质。
让学生学会使用导数来求函数的最大值。
2. 教学内容:导数的定义和性质。
利用导数求函数的最大值。
3. 教学步骤:引入导数的定义和性质,进行讲解和示例。
介绍利用导数求函数的最大值的方法,并进行讲解和示例。
章节二:函数的导数与最小值1. 教学目标:让学生理解导数的定义和性质。
让学生学会使用导数来求函数的最小值。
2. 教学内容:导数的定义和性质。
利用导数求函数的最小值。
3. 教学步骤:引入导数的定义和性质,进行讲解和示例。
介绍利用导数求函数的最小值的方法,并进行讲解和示例。
章节三:函数的单调性与最大值1. 教学目标:让学生理解函数的单调性。
让学生学会利用函数的单调性来求函数的最大值。
2. 教学内容:函数的单调性。
利用函数的单调性来求函数的最大值。
3. 教学步骤:引入函数的单调性,进行讲解和示例。
介绍利用函数的单调性来求函数的最大值的方法,并进行讲解和示例。
章节四:函数的单调性与最小值1. 教学目标:让学生理解函数的单调性。
让学生学会利用函数的单调性来求函数的最小值。
2. 教学内容:函数的单调性。
利用函数的单调性来求函数的最小值。
3. 教学步骤:引入函数的单调性,进行讲解和示例。
介绍利用函数的单调性来求函数的最小值的方法,并进行讲解和示例。
章节五:实际问题中的最大(小)值问题1. 教学目标:让学生学会将实际问题转化为函数的最大(小)值问题。
让学生学会利用导数和函数的单调性来解决实际问题中的最大(小)值问题。
2. 教学内容:实际问题转化为函数的最大(小)值问题的方法。
利用导数和函数的单调性来解决实际问题中的最大(小)值问题。
3. 教学步骤:介绍实际问题转化为函数的最大(小)值问题的方法,并进行讲解和示例。
介绍利用导数和函数的单调性来解决实际问题中的最大(小)值问题的方法,并进行讲解和示例。
章节六:利用导数求函数的最大值和最小值1. 教学目标:让学生能够熟练运用导数求解函数的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的最值与导数教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
课 题 §3.3.3函数的最大小值与导数(第3课时)
【导学过程】
探究一:最值的概念(最大值与最小值)
观察下面函数()y f x =在区间[],a b 上的图象, 回答:
(1) 在哪一点处函数()y f x =有极大值和极小值?
(2) 函数()y f x = 在[],a b 上有最大值和最小值吗?如果有,
最大值和最小值分别是什么?
探究二:利用导数求函数的最值
求函数2()46f x x x =-+在区间[]1,5内的最大值和最小值
【达标检测】
1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )为( )
A.等于0
B.大于0
C.小于0
D.以上都有可能
2.函数y =2342
13141x x x ++,在[-1,1]上的最小值为 ( ) A.0 B.-2 C.-1 D. 12
13 3.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?
[拓展提升]
1.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________.
2.函数f (x )=sin x -x 在[-2π,2
π]上的最大值为_____;最小值为_______.
【课后反思】。