函数与导数复习课用教案

合集下载

高中数学单元复习教案

高中数学单元复习教案

高中数学单元复习教案
主题:函数
目标:通过本次复习,学生能够掌握函数的基本概念、性质和解题方法。

一、函数的基本概念
1. 函数的定义和表示方法
2. 函数的定义域和值域
3. 函数的图像和性质
二、函数的性质
1. 奇函数和偶函数的性质
2. 函数的单调性和最值
3. 函数的周期性和奇偶性
三、函数的解题方法
1. 求函数的导数和导函数
2. 求函数的极值和拐点
3. 求函数的零点和不等式解法
四、综合练习
1. 完成选择题、填空题和解答题
2. 解答实际问题中的函数应用题
五、作业布置
1. 完成课堂上的习题
2. 预习下节课的内容
六、自主学习
1. 利用课外时间复习函数相关知识
2. 尝试解决一些较难的函数题目
备注:本次复习教案主要围绕函数这一重要概念展开,学生需要掌握函数的基本定义和性质,能够熟练运用函数的解题方法。

希望学生能够认真复习,做到知识点全面掌握,能够灵活运用。

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案马长琴

学校: 临清一中 学科:数学 编写人:马长琴 审稿人:张林§1.2.2基本初等函数的导数公式及导数的运算法则一.教学目标:1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.二.教学重点难点重点:基本初等函数的导数公式、导数的四则运算法则难点: 基本初等函数的导数公式和导数的四则运算法则的应用三.教学过程:(一).创设情景复习五种常见函数y c =、y x =、应用 1(1 (2)根据基本初等函数的导数公式,求下列函数的导数.(1)2y x =与2x y =(2)3x y =与3log y x =2.(1推论:['()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导,前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)sin y x x =⋅;(3)2(251)x y x x e =-+⋅;(4)4x x y =; 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.四.典例精讲例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。

解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:当05p =时,()5(15%)t p t =+,根据基本初等函数导数公式和求导法则,有'()5 1.05ln1.05t p t =⨯所以'10(10)5 1.05ln1.050.4p =⨯≈(元/年)因此,在第10个年头,这种商品的价格约为0.4元/年的速度上涨. 例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%解:净化费用的瞬时变化率就是净化费用函数的导数.(1) 因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.点评 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.五.课堂练习做导学案的当堂检测六.课堂小结(1)基本初等函数的导数公式表(2)导数的运算法则七.布置作业八.教学后记。

高三数学第二章函数导数高考一轮复习教案三次函数与四次函数

高三数学第二章函数导数高考一轮复习教案三次函数与四次函数

芯衣州星海市涌泉学校3三次函数与四次函数一、学习目的三次函数已经成为中学阶段一个重要的函数,在高考和一些重大考试中频繁出现有关它的单独命题。

近年高考中,在卷、卷、卷、卷、卷中都出现了这个函数的单独命题,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。

近年高考有多个份出现了四次函数高考题,更应该引起我们的重视。

单调性和对称性最能反映这个函数的特性。

下面我们就来讨论一下它的单调性、对称性以及图象变化规律。

二、知识要点:第一部分:三次函数的图象特征、以及与x轴的交点个数〔根的个数〕、极值情况三次函数图象说明a对图象的影响可以根据极限的思想去分析当a>0时,在x→+∞右向上伸展,x→-∞左向下伸展。

当a<0时,在x→+∞右向下伸展,x→-∞左向上伸展。

与x轴有三个交点假设032>-acb,且)()(21<⋅xfxf,既两个极值异号;图象与x轴有三个交点与x轴有二个交点假设032>-acb,且)()(21=⋅xfxf,既有一个极值为0,图象与x轴有两个交点与x 轴有一个交点1。

存在极值时即032>-ac b ,且0)()(21>⋅x f x f ,既两个极值同号,图象与x 轴有一个交点。

2。

不存在极值,函数是单调函数时图象也与x 轴有一个交点。

1.()0f x =根的个数三次函数d cx bx ax x f +++=23)(导函数为二次函数:)0(23)(2/≠++=a c bx ax x f ,二次函数的判别式化简为:△=___________, (1)假设_____________,那么0)(=x f 恰有一个实根;(2)假设032>-ac b ,且_________,那么0)(=x f 恰有一个实根; (3)假设032>-ac b ,且__________,那么0)(=x f 有两个不相等的实根; (4)假设032>-ac b,且____________,那么0)(=x f 有三个不相等的实根.说明(1)(2)0)(=x f 含有一个实根的充要条件是曲线)(x f y =与X 轴只相交一次,即)(x f 在R 上为单调函数〔或者者两极值同号〕,所以032≤-ac b 〔或者者032>-ac b ,且0)()(21>⋅x f x f 〕.(3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公一一共点且其中之一为切点,所以032>-ac b ,且0)()(21=⋅x f x f .(4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公一一共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032>-ac b 且0)()(21<⋅x f x f .2.极值情况:三次函数d cx bx ax x f +++=23)(〔a >0〕,导函数为二次函数)0(23)(2/>++=a c bx ax x f ,二次函数的判别式化简为:△=)3(412422ac b ac b -=-,(1)假设___________,那么)(x f 在),(+∞-∞上为增函数;(2)假设____________,那么)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中aacb b x a ac b b x 33,332221-+-=---=. 三次函数)0()(23>+++=a d cx bx ax x f ,(1)假设032≤-ac b ,那么)(x f 在R 上无极值;(2)假设032>-ac b,那么)(x f 在R 上有两个极值;且)(x f 在1x x =处获得极大值,在2x x =处获得极小值.由此三次函数的极值要么一个也没有,要么有两个。

函数的极值与导数(教案)

函数的极值与导数(教案)

函数的极值与导数(教案)第一章:极值的概念教学目标:1. 理解极值的概念;2. 能够找出函数的极值点;3. 能够判断函数的极值类型。

教学内容:1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例讲解如何找出函数的极值点;4. 讲解极大值和极小值的概念;5. 举例讲解如何判断函数的极大值和极小值。

教学活动:1. 引入极值的概念,引导学生思考什么是极值;2. 通过示例讲解如何找出函数的极值点,引导学生动手尝试;3. 讲解极大值和极小值的概念,引导学生理解极大值和极小值的区别;4. 通过示例讲解如何判断函数的极大值和极小值,引导学生进行判断。

作业布置:1. 练习找出给定函数的极值点;2. 练习判断给定函数的极大值和极小值。

第二章:导数的基本概念教学目标:1. 理解导数的概念;2. 能够计算常见函数的导数;3. 能够利用导数判断函数的单调性。

教学内容:1. 引入导数的概念;2. 讲解导数的计算方法;3. 举例讲解如何利用导数判断函数的单调性;4. 讲解导数的应用。

教学活动:1. 引入导数的概念,引导学生思考什么是导数;2. 通过示例讲解如何计算常见函数的导数,引导学生动手尝试;3. 讲解导数的应用,引导学生理解导数在实际问题中的应用;4. 通过示例讲解如何利用导数判断函数的单调性,引导学生进行判断。

作业布置:1. 练习计算给定函数的导数;2. 练习利用导数判断给定函数的单调性。

第三章:函数的单调性教学目标:1. 理解函数单调性的概念;2. 能够利用导数判断函数的单调性;3. 能够找出函数的单调区间。

教学内容:1. 引入函数单调性的概念;2. 讲解如何利用导数判断函数的单调性;3. 举例讲解如何找出函数的单调区间;4. 讲解函数单调性的应用。

教学活动:1. 引入函数单调性的概念,引导学生思考什么是函数单调性;2. 通过示例讲解如何利用导数判断函数的单调性,引导学生动手尝试;3. 讲解如何找出函数的单调区间,引导学生理解单调区间的概念;4. 通过示例讲解如何找出给定函数的单调区间,引导学生进行判断。

函数的极值与导数的教案

函数的极值与导数的教案

函数的极值与导数一、教学目标1. 理解导数的定义和几何意义2. 学会求函数的导数3. 理解函数的极值概念4. 学会利用导数研究函数的极值二、教学内容1. 导数的定义和几何意义2. 常见函数的导数3. 函数的极值概念4. 利用导数研究函数的单调性5. 利用导数求函数的极值三、教学重点与难点1. 重点:导数的定义和几何意义,常见函数的导数,函数的极值概念,利用导数求函数的极值2. 难点:导数的运算法则,利用导数研究函数的单调性,求函数的极值四、教学方法1. 采用讲授法讲解导数的定义、几何意义、常见函数的导数及函数的极值概念2. 利用例题解析法讲解利用导数研究函数的单调性和求函数的极值3. 组织学生进行小组讨论和互动,巩固所学知识五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考如何求函数的导数2. 新课:讲解常见函数的导数,引导学生掌握求导数的方法3. 案例分析:利用导数研究函数的单调性,求函数的极值,引导学生理解和应用所学知识4. 练习与讨论:布置练习题,组织学生进行小组讨论,解答练习题5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生思考如何利用导数研究更复杂的函数极值问题六、课后作业1. 复习导数的定义和几何意义,常见函数的导数2. 练习求函数的导数3. 利用导数研究函数的单调性,求函数的极值七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态2. 练习与讨论:评估学生在练习题和小组讨论中的表现,检验学生对知识的掌握程度3. 课后作业:检查课后作业的完成情况,评估学生对课堂所学知识的巩固程度六、教学策略的调整1. 根据学生的课堂反馈,适时调整教学节奏和难度,确保学生能够跟上教学进度。

2. 对于学生掌握不够扎实的知识点,可以通过举例、讲解、练习等多种方式加强巩固。

3. 鼓励学生提出问题,充分调动学生的主动学习积极性,提高课堂互动性。

七、教学案例分析1. 通过分析具体案例,让学生理解导数在实际问题中的应用,例如在物理学中的速度、加速度的计算。

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。

2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。

3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。

(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。

(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。

二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。

2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。

3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。

(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。

(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。

三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。

2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。

3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。

(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。

(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。

四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。

2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。

3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。

(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。

函数与导数复习教案

函数与导数复习教案

函数与导数1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。

即f (x 0)=0lim→∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(002.导数的几何意义1.函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜 率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

2、利用导数求切线:注意:所给点是切点吗?先求斜率k=)(0/x f ,再用)(00x x k y y -=-求出直线方程。

3.常见函数的导数公式: ①'C 0=;②1')(-=n n nx x ;特殊的,211()x x '=-,'=③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=; 特殊的,x x e e =')(; ⑥a x x a ln 1)(log '=;特殊的,xx 1)(ln '= 。

4.导数的四则运算法则:;)(;)(;)(2v v u v u vuv u v u uv v u v u '-'=''+'=''±'='±考点一:导数的定义例1.已知:x x f x x f a x ∆-∆+=→∆)()(lim000, xx f x x f b x ∆-∆-=→∆)()(lim 000,x x f x x f c x ∆-∆+=→∆)()2(lim000, xx x f x x f d x ∆∆--∆+=→∆2)()(lim 000,0)()(limx x x f x f e x x --=→。

基本初等函数的导数公式及导数的运算法则说课稿 教案

基本初等函数的导数公式及导数的运算法则说课稿 教案

基本初等函数的导数公式及导数的运算法则【教学目标】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.了解复合函数的概念,掌握复合函数的求导法则.4.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax +b)的导数).【教法指导】本节学习重点:函数的和、差、积、商的求导法则.本节学习难点:复合函数的求导法则.【教学过程】☆复习引入☆前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.对于由四则运算符号连接的两个或两个以上基本初等函数的导数如何求?正是本节要研究的问题.解析:请同学思考并回顾以前所学知识并积极回答之.☆探索新知☆探究点一导数的运算法则思考1 我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.思考2 应用导数的运算法则求导数有哪些注意点?“+”,而商的导数公式中分子上是“-”;(5)要注意区分参数与变量,例如[a·g(x)]′=a·g′(x),运用公式时要注意a′=0.例1 求下列函数的导数:(1)y=x3-2x+3;(2)y=(x2+1)(x-1);(3)y=3x-lg x.解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2.(2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出 f ′(x )=3x ln 3,g ′(x )=1x ln 10, 利用函数差的求导法则可得(3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10. 反思与感悟 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪训练1 求下列函数的导数:(1)y =x 5+x 7+x 9x ; (2)f (x )=2-2sin 2x2.例2 求下列函数的导数:(1)f (x )=x ·tan x ;(2)f (x )=x -1x +1. 解 (1)f ′(x )=(x ·tan x )′=(x sin x cos x )′ =x sin x ′cos x -x sin x cos x ′cos 2x =sin x +x cos x cos x +x sin 2x cos 2x =sin x cos x +x cos 2x . (2)∵f (x )=x -1x +1=x +1-2x +1=1-2x +1, ∴f ′(x )=(1-2x +1)′=(-2x +1)′=-2′x +1-2x +1′x +12=2x +12.探究点二 导数的应用 例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为________________.答案 3x -y +1=0解析 y ′=e x +x e x +2,则曲线在点(0,1)处的切线的斜率为k =e 0+0+2=3,所以所求切线方程为y -1=3x ,即3x -y +1=0. (2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________.答案 (-2,15)(3)已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度.解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t ,∴s ′(3)=-19+227+12=32327, 即物体在t =3 s 时的瞬时速度为32327m/s. 反思与感悟 本题应用导数的运算法则进一步强化导数的物理意义及几何意义:函数y =f (x )在点x 0处的导数就是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率,即k =y ′|x =x 0=f ′(x 0);瞬时速度是位移函数s (t )对时间t 的导数,即v =s ′|t =t 0.探究点三 复合函数的定义思考1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 答 y =2x cos x 是由u =2x 及v =cos x 相乘得到的;而y =ln(x +2)是由u =x +2与y =ln u (x >-2)经过“复合”得到的,即y 可以通过中间变量u 表示为自变量x 的函数.所以它们称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系?思考3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系?答 A ⊆B .小结 要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法.例3 指出下列函数是怎样复合而成的:(1)y =(3+5x )2;(2)y =log 3(x 2-2x +5);(3)y =cos 3x .解 (1)y =(3+5x )2是由函数y =u 2,u =3+5x 复合而成的;(2)y =log 3(x 2-2x +5)是由函数y =log 3u ,u =x 2-2x +5复合而成的;(3)y =cos 3x 是由函数y =cos u ,u =3x 复合而成的.小结 分析函数的复合过程主要是设出中间变量u ,分别找出y 和u 的函数关系,u 和x 的函数关系.例4 求下列函数的导数:(1)y =(2x -1)4;(2)y =11-2x ;(3)y =sin(-2x +π3);(4)y =102x +3. 解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3.(2)y =11-2x=(1-2x )-12可看作y =u -12,u =1-2x 的复合函数,则y x ′=y u ′·u x ′=(-12)u -32·(-2)=(1-2x )-32=11-2x1-2x ; (3)原函数可看作y =sin u ,u =-2x +π3的复合函数, 则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3)=-2cos(2x -π3). (4)原函数可看作y =10u ,u =2x +3的复合函数,则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.反思与感悟 分析复合函数的结构,找准中间变量是求导的关键,要善于把一部分量、式子暂时看作一个整体,并且它们必须是一些常见的基本函数.复合函数的求导熟练后,中间步骤可以省略,不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.探究点五 导数的应用例5 求曲线y =e 2x +1在点(-12,1)处的切线方程.反思与感悟求曲线切线的关键是正确求复合函数的导数,要注意“在某点处的切线”与“过某点的切线”两种不同的说法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数
诊断练习
1、曲线y =x e x +2x +1在点(0,1)处的切线方程为________.
2、函数2ln y x x =-的单调增区间为 ,减区间为 ;
3、已知点P 在曲线y =
4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是________.
4、函数2cos y x x =+在区间0,
2π⎡⎤⎢⎥⎣⎦上的最大值是 ,最小值是 . 5、曲线C :211ln 22
y x x =++的斜率最小的切线与圆221x y +=的位置关系为 典型例题 例1:(1)若函数3(3)y a x x =-在区间(1,1)-上为减函数,则实数a 的取值范围
是 ;
(2)若函数3211()(1)132
f x x ax a x =
-+-+在区间(14),内为减函数,在区间()6,+∞上是增函数,是求实数a 的取值范围.
(2)若函数32
4y x ax =-+在()0,2上单调递减,则实数a 的取值范围是 ;
例2:已知函数)ln()(m x e x f x +-=.
(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;
(Ⅱ)当2m ≤时,证明()0f x >.
变式:已知函数1()ln x f x x ax
-=+,0a R a ∈≠且. (1) 当2a =时,求函数()f x 在⎡⎤⎢
⎥⎣⎦1,e e 的最大值和最小值;
(2) 若函数()()g x af x =,求函数()g x 的单调递减区间;
课后练习:
1、曲线y =x (3ln x +1)在点)1,1(处的切线方程为________
2、设32
()31f x ax x x =+-+是R 上的减函数,则实数a 的取值范围为 ;
3、已知0a >,函数3()f x x ax =-在区间[)1,+∞上为增函数,则a 的取值范围是 ;
4、函数3()2f x x ax =-+在区间1(0,)3
上是减函数,在(1,)+∞上是增函数,则实数a 的取值范围是 ;
5、函数3()31f x ax x =-+对于[]1,1x ∈-总有()f x ≥0成立,求实数a 的值.
6、()f x 是定义在R 上的偶函数,当x <0时,()()0f x xf x '+<,且(4)0f -=,则不 等式()0xf x >的解集为 .
7、若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.
8、已知P,Q 为抛物线x 2
=2y 上两点,点P,Q 的横坐标分别为4,-2,过P,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为
9、设定义在(0,+∞)上的函数1()(0)f x ax b a ax =+
+> (Ⅰ)求()f x 的最小值;
(Ⅱ)若曲线()y f x =在点(1,(1))f 处的切线方程为32
y x =
,求,a b 的值。

10、已知函数ln ()x x k f x e
+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.
(Ⅰ)求k 的值;
(Ⅱ)求()f x 的单调区间;
(Ⅲ)设2()()()g x x x f x '=+,其中()f x '是()f x 的导函数.证明:对任意0x >,
2()1g x e -<+.。

相关文档
最新文档