天然气放空管路水力计算

天然气放空管路水力计算
天然气放空管路水力计算

天然气管道放空设置方式探讨

天然气与石油 2014年2月 50 NATURAL GAS AND OIL 天然气管道放空设置方式探讨 蒲丽珠1 陈利琼1 杨文川2 1.西南石油大学石油工程学院,四川 成都 610500; 2.中国石油集团工程设计有限责任公司西南分公司,四川 成都 610041摘 要:天然气管道放空是管道进行维抢修及改扩建工程中必不可少的环节,但将处理合格的天然气放空将造成资源的浪费,同时也会造成一定的环境污染,因此有必要在天然气管道工程设计时根据放空管设置方式配套相应的天然气回收装置。通过研究国外天然气管道放空普遍的设置方式,对比国内天然气管道放空的设置情况,提出回收利用天然气的做法,供从事管道设计与管理的人员参考。 关键词:管道放空;天然气;设置方式DOI:10.3969/j.issn.1006-5539.2014.01.014 收稿日期:2013-11-07 基金项目:中国石油其础课题资助项目(JCF-2011-36-9) 作者简介:蒲丽珠(1988-),女,四川南充人,硕士研究生,主要从事油气长输管道风险评价及油田联合站节能减排的研究。 0 前言 天然气管道放空是管道进行维抢修及改扩建工程中必不可少的环节。但将处理合格的天然气放空将造成资源的浪费,同时也会造成一定的环境污染,所以回收放空天然气尤为重要。国外普遍采用移动压气站或移动式放空装置对管道进行放空;而国内则普遍采用在站场、阀室设置放空设备的方式。移动式放空设备能有效地减少征地面积,但在国内较难实施,如能选择性采纳国外放空技术,在保证放空安全性的同时缩小占地面积,将能有效地缓解征地难的现状。 1 国外管道放空设置方式 国外净化天然气输送管道线路截断阀室未设置放空竖管,仅留有排放接口并用法兰盖或类似管件封堵,站场设备区安全阀就地泄放,可见天然气放空操作是不经常进行的。这种做法在北美具有普遍性。1.1移动式压气站 基于节能环保、尽量减少放空的理念,国外公司开发了移动式压气站。在某段管道需要检修时,先将移动式压气站运输至现场进行安装、调试,然后关闭该管道上下游截断阀,将管道内的天然气增压后输往下游相邻 管段或并行管道。管内余下的少量无法用压缩机抽出的天然气通过线路截断阀处设置的排放口或设置于线路截断阀附近的永久性放空竖管放空。 俄罗斯于20世纪90年代推出了一款移动式压气站,对一段长30 km,管径1 422 mm,初始压力为7.5 MPa 的管道进行放空操作,经48 h 的抽气作业后,管道内剩余压力为0.97 MPa,余下的天然气需要就地放空。该移动式压气站为模块化设计,所有单元(包括:增压单元、气体冷却单元、辅助单元、自备发电站)分别装载在汽车半拖车上运输到现场,在现场组装,增压单元和冷却单元安装在液压支架上。移动式压气站通过挠性管与天然气干线连接。该移动式压气站设计参数见表1。 表1 俄罗斯移动式压气站设计参数

第十章 天然气管网稳定流水力计算

10 稳定流燃气管网计算方法与模型 10.1燃气管网水力计算数学模型与方法 10.1.1 燃气管网水力计算的数学模型 用计算机进行燃气管网水力计算,首先需要把管网的信息输入到计算机中去,这就必须用数学的语言描述管网的结构,这一任务可借助图论来完成,图10-1为一简单的管网示意图。 图10-1 管网示意图 图中 1,2,…10——接点编号; (1),(2),…(10)——管段编号; Ⅰ,Ⅱ,Ⅲ——环编号; Q 1,Q 2,…Q 10——节点流量; q 1,q 2,…q 10——管段流量。 由图论可知,任何环状管网在管段为p ,节点数数为m ,环数为n 的情况下,其管段数、节点数和环数存在下列关系: p=m+n-1 燃气管网供气时,在任何情况下均需满足管道压降计算公式,节点流量方程和环能量方程,其中后两个方程称为基本方程。 10.1.1.1管段压力降计算公式 αj j j q s p =? j=1,2,…p (10-1) 式中 j s ——管段的阻力系数; 8 7 Q 3 5

j p ?——管段的压力降; j q ——管段j 的流量; α——常数。 可列出p 个管段压降计算公式。 10.1.1.2节点流量连续方程 对燃气管网任一节点i 均满足流量平衡,可用下式表示: 01 =+∑=i p j j ij Q q a i=1,2,…m (10-2) 式中 ij a ——管段j 与节点i 的关联元素,1=ij a ,管段j 与节点i 关联,且是管段的起点,1-=ij a ,管段j 与节点i 关联,且是管段的终点,0=ij a ,管段j 与节点i 不关联。 可建立1-m 个独立的方程 10.1.1.3环能量方程 对于燃气管网中任一环路均应满足压降之和为零,可用下式表示: 01 =∑=p j j j ij q s b α i=1,2,…n (10-3) 式中 b ij ——管网环路与管段的关联元素,b ij =1管段j 在第i 个环中,且管段j 的方向与环的方向一致,b ij = -1,管段j 在第i 个环中,且管段的方向与环的方向相反,b ij =0,管段j 不在第i 个环中。 可建立n 个独立的环能量方程。 10.1.2三种计算方法 总之,对于一个管网,当管径已知时,每条管段有压降和流量两个未知数,共有2p 个未知数,可列出的方程数为: p n m p 21=+-+)( (10-4) 这样未知数与方程的个数相等,可以进行求解,方程组为非线性的,直接求解困难,一般可通过以下三种方法求解。 10.1.2.1 解环方程法 在满足连续方程组(10-2)的条件下,用求解各环校正流量的方法,来间接解出各管段流量的方法叫解环方程法,也就是Hardy Cross 法。 对第i 环列出能量方程,最初确定的管段设计流量一般不能满足能量方程,其能量可用下式表示: i p j j j ij p q s b ?=∑=1 α i=1,2,…n (10-5)

天然气放空立管的设计说明..

放空系统设计 1输气管道的放空 a) 线路截断阀上下游均宜设置放空管。放空管应能迅速放空两截断阀之间管段内的气体,放空阀直径与放空管直径应相等。放空立管应设在阀室围墙内。 b) 应根据下游用户最低用气压力要求确定管道放空压力,有压气站的管道应经压缩机抽气,将压力降至压缩机最低允许压力后再放空,放空时间宜满足12h 放完的要求。 c) 阀室放空立管不设点火设施。 d) 阀室旁通管线宜采用管卡固定。 e) 输气站放空过程:当站内设备超压时联锁关闭进出站阀门(ESD);安全阀放空量为站内管道及容器内气量,按15min内压力降至50%计算气体流量,且管内流速不超过0.2马赫数,安全阀背压不超过10%计算放空管径。 2放空立管的布置 2.1防火规范要求 “表4.0.4 放空立管距离人员聚集区、相邻厂矿企业、独立变电所60米,距铁路、高速路、架空电力线、一二级通信线40m,距其他公路、其他通信线30m。” “4.0.8 放空管放空量等于或小于 1.2×104m3/h时,距离站场不应小于10m;放空量大于1.2×104/h 且等于或小于4×104m3时,不应小于40m。” “5.2.5天然气密闭隔氧水罐和天然气放空管排放口与明火或散发火花地点的防火间距不应小于25m,与非防爆厂房之间的防火间距不应小于12m。” “6.1.1 进站场天然气管道上的截断阀前应设泄压放空阀。” “6.8.6 放空管道必须保持畅通,并应符合下列要求: 1)高压、低压放空管宜分别设置,并应直接与火炬或放空总管连接;(高压放空气量较小或高、低压放空的压差不大(例如其压差为 0.5~1.0MPa)时,可只设一个放空系统,以简化流程。)

天然气长输管道的知识

关于天然气长输管道知识普及 随着我国天然气勘探开发力度的加大以及人民群众日益提高的物质和环保需要,近年来天然气长输管道的发展十分迅速。随着管道的不断延伸,管道企业所担负的社会责任、政治责任和经济责任也越来越大。因此,对于天然气长输管道知识普及显得尤为重要。 一、线路工程 输气管道工程是指用管道输送天然气和煤气的工程,一般包括输气线路、输气站、管道穿(跨)越及辅助生产设施等工程内容。 线路工程分为输气干线与输气支线。输气干线是由输气首站到输气末站间的主运行管线;输气支线是向输气干线输入或由输气干线输出管输气体的管线。 线路截断阀室属于线路工程的一部分,主要设备包括清管三通、线路截断球阀、上下游放空旁通流程、放空立管等,功能是在极端工况或线路检修时,对线路进行分段截断。阀室设置依据线路所通过的地区等级不同,进行不同间距设置。 阀室系统包括手动阀室和RTU阀室两大类。 二、工艺站场 输气站是输气管道工程中各类工艺站场的总称。一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 输气站是输气管道系统的重要组成部分,主要功能包括调压、过滤、计量、清管、增压和冷却等。其中调压的目的是保证输入、输出

的气体具有所需的压力和流量;过滤的目的是为了脱除天然气中固体杂质,避免增大输气阻力、磨损仪表设备、污染环境等;计量是气体销售、业务交接必不可少的,同时它也是对整个管道进行自动控制的依据;清管的目的在于清除输气管道内的杂物、积污,提高管道输送效率,减少摩阻损失和管道内壁腐蚀,延长管道使用寿命;增压的目的是为天然气提供一定的压能;而冷却是使由于增压升高的气体温度降低下来,保证气体的输送效率。根据输气站所处的位置不同,各自的作用也有所差异。 1、首站 首站就是输气管道的起点站。输气首站一般在气田附近。 2、末站 末站就是输气管道的终点站。气体通过末站,供应给用户。因此末站具有调压、过滤、计量、清管器接受等功能。此外,为了解决管道输送和用户用气不平衡问题,还设有调峰设施,如地下储气库、储气罐等。 3、清管站 清管站是具有清管器收发、天然气分离设备设施及清管作业功能的工艺站场。 4、压气站 压气站是在输气管道沿线,用压缩机对管输气体增压而设置的站。 5、分输站

燃气管道水力计算

1.高压、中压燃气管道水力计算公式: Z T T d Q L P P 0 5 210 2 2 2 110 27.1ρ λ ?=- 式中:P 1 — 燃气管道起点的压力(绝对压力,kPa ); P 2 — 燃气管道终点的压力(绝对压力,kPa ); Q — 燃气管道的计算流量(m 3/h ); L — 燃气管道的计算长度(km ); d — 管道内径(mm ); ρ — 燃气的密度(kg/m 3);标准状态下天然气的密度一般取0.716 kg/m 3。 Z — 压缩因子,燃气压力小于1.2MPa (表压)时取1; T — 设计中所采用的燃气温度(K ); T0 — 273.15(K )。 λ— 燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: 25 .06811.0??? ? ??+ =e R d K λ K — 管道内表面的当量绝对粗糙度(mm );对于钢管,输送天然 气和液化石油气时取0.1mm ,输送人工煤气时取0.15mm 。 R e — 雷诺数(无量纲)。流体流动时的惯性力Fg 和粘性力(内摩擦 力)Fm 之比称为雷诺数。用符号Re 表示。层流状态,R e ≤ 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力1P ,燃气管道的计算长度L ,燃气密度ρ,燃气温度T ,压缩因子Z 为已知量,燃气管道终点的压力2P ,燃气管道的计算流量Q ,燃气管道内径d 为参量,知道其中任意两个,都可计算其中一个未知量。 如燃气管道终点的压力2P 的计算公式为: ZL T T d Q P P 0 5 210 2 1210 27.1ρ ?-= 某DN100中压输气管道长0.19km ,起点压力0.3MPa ,最大流量1060 m 3/h ,输气温度为20℃,应用此公式计算,管道末端压力2P =0.29MPa 。

天然气放空立管的设计说明

天然气放空立管的设计说 明 Prepared on 22 November 2020

放空系统设计 1输气管道的放空 a) 线路截断阀上下游均宜设置放空管。放空管应能迅速放空两截断阀之间管段内的气体,放空阀直径与放空管直径应相等。放空立管应设在阀室围墙内。 b) 应根据下游用户最低用气压力要求确定管道放空压力,有压气站的管道应经压缩机抽气,将压力降至压缩机最低允许压力后再放空,放空时间宜满足12h 放完的要求。 c) 阀室放空立管不设点火设施。 d) 阀室旁通管线宜采用管卡固定。 e) 输气站放空过程:当站内设备超压时联锁关闭进出站阀门(ESD);安全阀放空量为站内管道及容器内气量,按15min内压力降至50%计算气体流量,且管内流速不超过马赫数,安全阀背压不超过10%计算放空管径。 2放空立管的布置 2.1防火规范要求 “表放空立管距离人员聚集区、相邻厂矿企业、独立变电所60米,距铁路、高速路、架空电力线、一二级通信线40m,距其他公路、其他通信线 30m。” “放空管放空量等于或小于×104m3/h时,距离站场不应小于10m;放空量大于×104/h 且等于或小于4×104m3时,不应小于40m。” “天然气密闭隔氧水罐和天然气放空管排放口与明火或散发火花地点的防火间距不应小于25m,与非防爆厂房之间的防火间距不应小于12m。” “进站场天然气管道上的截断阀前应设泄压放空阀。” “放空管道必须保持畅通,并应符合下列要求: 1)高压、低压放空管宜分别设置,并应直接与火炬或放空总管连接;(高压放空气量较小或高、低压放空的压差不大(例如其压差为~)时,可只设一 个放空系统,以简化流程。) 2)不同排放压力的可燃气体放空管接入同一排放系统时,应确保不同压力的放空点能同时安全排放。” 注:放空管道不能设切断阀,对可能存在的积液,及由于高压气体放空时压力骤降或环境温度变化而形成冰堵,应采取消除措施。 高低压管道同时放空会对低压管道造成超压破坏。当高低压放空管道压差在(~)时可设一个放空系统,并计算同时泄放各放空点的背压。在确定放空管系尺寸时,应使可能同时泄放的各安全阀后的累积回压限制在该安全阀定压的10%左右。

天然气放空立管的设计说明

放空系统设计 1输气管道得放空 a) 线路截断阀上下游均宜设置放空管。放空管应能迅速放空两截断阀之间管段内得气体,放空阀直径与放空管直径应相等。放空立管应设在阀室围墙内。 b) 应根据下游用户最低用气压力要求确定管道放空压力,有压气站得管道应经压缩机抽气,将压力降至压缩机最低允许压力后再放空,放空时间宜满足12h 放完得要求。 c) 阀室放空立管不设点火设施。 d) 阀室旁通管线宜采用管卡固定。 e) 输气站放空过程:当站内设备超压时联锁关闭进出站阀门(ESD);安全阀放空量为站内管道及容器内气量,按15min内压力降至50%计算气体流量,且管内流速不超过0、2马赫数,安全阀背压不超过10%计算放空管径。 2放空立管得布置 2.1防火规范要求 “表4、0、4 放空立管距离人员聚集区、相邻厂矿企业、独立变电所60米,距铁路、高速路、架空电力线、一二级通信线40m,距其她公路、其她通信线30m。” “4、0、8 放空管放空量等于或小于1、2×104m3/h时,距离站场不应小于10m;放空量大于1、2×104/h 且等于或小于4×104m3时,不应小于40m。” “5、2、5天然气密闭隔氧水罐与天然气放空管排放口与明火或散发火花地点得防火间距不应小于25m,与非防爆厂房之间得防火间距不应小于12m。” “6、1、1 进站场天然气管道上得截断阀前应设泄压放空阀。” “6、8、6 放空管道必须保持畅通,并应符合下列要求: 1)高压、低压放空管宜分别设置,并应直接与火炬或放空总管连接;(高压放空气量较小或高、低压放空得压差不大(例如其压差为 0、5~1、0MPa)时,可只

设一个放空系统,以简化流程。) 2)不同排放压力得可燃气体放空管接入同一排放系统时,应确保不同压力得放空点能同时安全排放。” 注:放空管道不能设切断阀,对可能存在得积液,及由于高压气体放空时压力骤降或环境温度变化而形成冰堵,应采取消除措施。CK P。 高低压管道同时放空会对低压管道造成超压破坏。当高低压放空管道压差在(0、5~1、0MP A)时可设一个放空系统,并计算同时泄放各放空点得背压。在确定放空管系尺寸时,应使可能同时泄放得各安全阀后得累积回压限制在该安全阀定压得10%左右。QU PXD。 “6、8、7 火炬设置应符合下列要求: 1 火炬得高度,应经辐射热计算确定,确保火炬下部及周围人员与设备得安全。 2 进入火炬得可燃气体应经凝液分离罐分离出气体中直径大于300μm得液滴;分离出得凝液应密闭回收或送至焚烧坑焚烧。 3 应有防止回火得措施。 4 火炬应有可靠得点火设施。 5 距火炬筒30m范围内,严禁可燃气体放空。 6 液体、低热值可燃气体、空气与惰性气体,不得排入火炬系统。” “6、8、8 可燃气体放空应符合下列要求: 1 可能存在点火源得区域内不应形成爆炸性气体混合物。 2 有害物质得浓度及排放量应符合有关污染物排放标准得规定。 3 放空时形成得噪声应符合有关卫生标准。 4 连续排放得可燃气体排气筒顶或放空管口,应高出20m范围内得平台或建筑物顶2、0m以上。对位于20m以外得平台或建筑物顶,应满足图6、8、8得要求,并应高出所在地面5m。 5 间歇排放得可燃气体排气筒顶或放空管口,应高出10m范围内得平台或建筑物顶2、0m以上。对位于10m以外得平台或建筑物顶,应满足图6、8、8得要求,并应高出所在地面5m。” 火炬与与石油天然气站场得防火间距,应经辐射热计算确定,可能携带可燃

燃气管道水力计算

目录 目录 (1) 常用水力计算Excel程序使用说明 (1) 一、引言 (1) 二、水力计算的理论基础 (1) 1.枝状管网水力计算特点 (1) 2.枝状管网水力计算步骤 (2) 3.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2) 3.1摩擦阻力损失的计算方法 (2) 3.2局部阻力损失的计算方法 (3) 3.3附加压头的计算方法 (4) 三、水力计算Excel的使用方法 (4) 1.水力计算Excel的主要表示方法 (5) 2.低压民用内管水力计算表格的使用方法 (5) 2.1计算流程: (5) 2.2计算模式: (6) 2.3计算控制: (6) 3.低压民用和食堂外管水力计算表格的使用方法 (7) 3.1计算流程: (7) 3.2计算模式: (7) 3.3计算控制: (7) 4.低压食堂内管水力计算表格的使用方法 (8) 4.1计算流程: (8) 4.2计算模式: (8) 4.3计算控制: (9) 5.中压外管水力计算表格的使用方法 (9) 5.1计算流程: (9) 5.2计算模式: (9) 5.3计算控制: (10) 6.中压锅炉内管水力计算表格的使用方法 (10) 6.1计算流程: (10) 6.2计算模式: (10) 6.3计算控制: (11) 四、此水力计算的优缺点 (11) 1.此水力计算的优点 (11) 1.1.一个文件可以计算不同气源的水力计算 (11) 1.2.减少了查找同时工作系数,当量长度的繁琐工作 (12) 1.3.进行了计算公式的选择 (12) 1.4.对某些小细节进行了简单出错控制 (12) 2.此水力计算的缺点 (12) 2.1不能进行环状管网的计算 (12)

燃气管道水力计算

燃气管道水力计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

1.高压、中压燃气管道水力计算公式: 式中:P 1 —燃气管道起点的压力(绝对压力,kPa); P 2 —燃气管道终点的压力(绝对压力,kPa); Q —燃气管道的计算流量(m3/h); L —燃气管道的计算长度(km); d —管道内径(mm); ρ—燃气的密度(kg/m3);标准状态下天然气的密度一般取0.716 kg/m3。 Z—压缩因子,燃气压力小于1.2MPa(表压)时取1; T—设计中所采用的燃气温度(K); T — 273.15(K)。 λ—燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: K —管道内表面的当量绝对粗糙度(mm);对于钢管,输送天然气和液化石油气时取0.1mm,输送人工煤气时取0.15mm。 R e —雷诺数(无量纲)。流体流动时的惯性力Fg和粘性 力(内摩擦力)Fm之比称为雷诺数。用符号Re表示。层流状态,R e 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力 1 P,燃气管道的计算长度L,燃气密度ρ,燃气温度T,压缩因子Z为已知量,燃气管道终点的压力2 P,燃气管道的计算流量Q,燃气管道内径d为参量,知道其中任意两个,都可计算其中一个未知量。

如燃气管道终点的压力 P的计算公式为: 2 某DN100中压输气管道长0.19km,起点压力0.3MPa,最大流量1060 m3/h,输气温度为20℃,应用此公式计算,管道末端压力 P=0.29MPa。 2 2.低压燃气管道水力计算公式: 式中:P —燃气管道的摩擦阻力损失(Pa); Q —燃气管道的计算流量(m3/h); L —燃气管道的计算长度(km); λ—燃气管道的摩擦阻力系数; d —管道内径(mm); ρ—燃气的密度(kg/m3); Z—压缩因子,燃气压力小于1.2MPa(表压)时取1; T—设计中所采用的燃气温度(K); — 273.15(K)。 T

天然气放空操作规程

天然气放空操作规程 放空流程的设置主要包括设备放空和场站及场外放空。 设备放空。本站收发球筒、旋风分离器、过滤分离器、排污罐等设备上设有安全阀,当设备工作压力过高时安全阀起跳,实现紧急放散;同时还设有手动放空,能够在检修排污时实现放空。收发球筒及排污罐为不待压压力容器,旋风分离器及过滤分离器排污及检修时需放空。 场站及场外放空。通过SDV20201前(后)的放空阀可放空本站与上游阀室(场站)之间的天然气(本站的天然气),通过SDV20202和SDV20203后的放空阀可放空本站与下游阀室(场站)之间的天然气。 1.检查和准备 1.1检查放空管路系统及附属装置处于完好状态,放空系统 是否正常; 1.2站场各类设备手动放空阀运行操作灵活,密封性能好, 使用状态良好; 1.3检查各连接处紧固,无漏气; 1.4确认阀门的开关状态正确,需放空的设备各类仪表显示 是否正常; 1.5各类操作工具以及设备专用工具准备齐全、完好,人员 穿劳保服装、戴安全帽;消防器材准备齐全; 1.6注意观察风向;

1.7禁止雨、雪、雾和大风天气进行天然气放空; 1.8首先向调控中心请示,经某省天然气有限公司调控中心 批准后方可进行操作,并做好值班记录。 2.操作内容和步骤 2.1确认阀门状态,关闭需放空管段或设备前后的阀门。设 备放空时,应根据相关的设备切换或停运操作手册,切换流程,保证正常输气;场站放空时,应关闭进出站阀门,若要保证下游供气,应按全越站工艺流程操作要求,保证下游用气; 2.2阀门操作时,应缓开缓关,手轮向逆时针方向旋转开启 阀门,顺时针方向旋转关闭阀门; 2.3放空时全开放空球阀,再缓慢开启节流截止放空阀,控 制适当的放空流量,主要听气流声音; 2.4观察压力表基本为零后,放空完毕,先关闭节流截止放 空阀,再关闭放空球阀; 2.5根据要求恢复流程; 2.6操作完成后向调控中心汇,并做好值班记录。 3.操作后检查 3.1检查阀门各部件紧固,阀门无渗漏; 3.2检查阀门状态正确; 3.3不带压容器放空后计算放空量; 3.4根据放空时间长短,放空气量多少,确定放空火炬是否

水力计算教材

燃气工程庭院户内水力计算 重庆市川东燃气工程设计研究院 齐海鸥 2010.01

= 6.26 ?10λ 5ρ dv 0.25 Q 2 ) Q d 1 一、水力计算基础知识 水力计算的目的:树立“成本意识”,合理的确定管网的管径、流量、压力 (压力降)。 由于项目公司所做设计多为小区内的燃气管道,因此这里主要介绍小区庭 院燃气管道水力计算、户内燃气管道水力计算、商业用户燃气管道水力计算。 1、水力计算步骤 (1)选择一条最不利管路(离已知压力点最远的一条管路),标好节点及 管道长度; (2)确定节点流量; (3)初选管径,再进行校核并修改; (4)完善水力计算图(标管径,压力降,节点压力)。 2 、水力计算的基本公式 (1)总压力降=局部压力降+沿程压力降 (简化计算:总压力降=1.05~1.1 倍沿程压力降) (2)压力降计算公式: A 、低压管道计算公式 ?P l 7 Q 2 d T T 0 B 、中压管道计算公式 P 2 - P 22 L = 1.4 ?109 ( K d + 192.2 5 ρ T T 0 C 、速度控制 低压管道流速控制在 5m-8m (经济流速为 6m ),中压管道流速控制在 10- 16m 。 3、燃气小时计算流量的确定 燃气管道及设备的通过能力都应按燃气计算月的小时最大流量进行计算。 小时计算流量的确定,关系着燃气输配系统的经济性和可靠性。确定燃气小时 计算流量的方法有两种:不均匀系数法和同时工作系数法。

(1)不均匀系数法 适用于城镇燃气分配管道计算流量,对于整个城市管网的水力计算一般用此方法。计算公式如下: Q h=(1/n)·Q a 式中:Q h—燃气小时计算流量(m3/h); Q a—年燃气用量(m3/a); n—燃气最大负荷利用小时数(h);其值n=(365×24)/K m K d K h K m—月高峰系数。计算月的日平均用气量和年的日平均用气量之比; K d—日高峰系数。计算月中的日最大用气量和该月日平均用气量之比; K h—小时高峰系数。计算月中最大用气量日的小时最大用气量和该日小时平均用气量之比; 居民生活和商业用户用气的高峰系数,应根据该城镇各类用户燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料,经分析研究确定。当缺乏用气量的实际统计资料时,结合当地具体情况,可按下列范围选用。月高峰系数取1.1~1.3;日高峰系数取1.05~1.2;小时高峰系数取 2.2~ 3.2。 工业企业和燃气汽车用户燃气小时计算流量,宜按每个独立用户生产的特点和燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料确定。 采暖通风和空调所需燃气小时计算流量。可按国家现行的标准《城市热力网设计规范》CJJ34有关热负荷规定并考虑燃气采暖通风和空调的热效率折算 确定。 (2)同时工作系数法 在设计庭院燃气支管和室内燃气管道时,燃气的小时计算流量,应根据所有燃具的额定流量及其同时工作系数确定。计算公式如下: Q h=K t(∑KNQ n)(公式1)式中Q h—燃气管道的计算流量(m3/h);

高压天然气管道压力能的回收与利用

高压天然气管道压力能的回收与利用 摘要:本文通过利用数学模型对天然气的压力能的回收与利用进行了能量研究分析。对于高压天然气管道的压力能的回收和利用进行了可行性的方法,并介绍了压力能用于净化、制冷、发电等方面的经济作用,有效地提高的天然气管道的能源利用率。 关键词:高压天然气;管道压力能;回收与利用 随着我国西气东输工作的快速发展,对于天然气的需求也是节节攀高,必然加速了我国天然气管道行业的迅猛发展。当前我国天然气多数利用高压管道进行输送,在输送的过程中会造成大量的压力能源无形损失,假如科学合理的采取相应的措施对这些压力能进行回收利用,可以大大降低资源的浪费,使能源利用率得到提高,为天然气管道运营创造经济效益。 一、利用数学模型对高压天然气进行压力用分析 目前我国所使用的天然气主要由甲烷、乙烷、丙烷等成分构成,其中甲烷是主要的气体成份,高压天然气通过节气阀时会体积膨胀致使压力及温度降低,如果通过科学的方法将这个过程中的压力能的变化做出准确的分析,可以为合理利用高压天然气压力能做出科学的指导。 天然气在经过节流地膨胀中产生的能量用是在某种压力下因为热不平衡从而造成的温度用与某种温度条件下力无法平衡所造成的压力用的和,即: 天然气从正常温度降低到温度T的整个过程,温度用是:

通过以上公式分析得知天然气是多种气体的混合物,在膨胀中的压利用和组分及压力有着密不可分的必然联系,因而需要利用真实气体的实际状态方程式(3)来做计算。 二、高压天然气管道压力能的回收与利用的能量分析 假设甲烷是天然气的全部组成气体,正常温度是25摄氏度,简化公式(3)进行计算。输出压力设为p2=0.1MPa,在输气压力p1不同时,我们可以在图1看到天然气的比压力用。 输气压力P1在分别是8、5、4M Pa时,天然气通过管道进入用户的比压力

管道泄漏及放空计算(参考)

根据一元气体流动基本方程式,推导了孔口泄漏在绝热过程下泄漏流量计算的小孔模型和适合管道完全断裂的多变过程泄漏流量计算的管道模型,联合两种模型计算任何泄漏孔口直径下的泄漏流量,讨论了燃气最大泄漏流量的限制,进行了实例计算并对比了不同模型的计算结果。 关键词:泄漏流量计算;管道模型;小孔模型;管道小孔综合模型;流量限制 Calculation of Leakage Rate from Gas Pipeline HUANG Xiao-mei,PENG Shini,XU Hai-dong,YANG Mao-hua Abstract:According to the basic equations of one-dimensio n gas flow,a hole model for calculation of hole leakage r ate in adiabatic process and a pipeline model for calculat ion of leakage rate in variable process suited to full rup ture of pipeline are deducted. These two kinds of models a re combined to calculate the leakage rate from leakage hol es with different diameters. The limitation of the maximum gas leakage rate is discussed,the example calculation is carried out,and the calculation results of different mode ls are compared. Key words:calculation of leakage rate;pipeline model;ho le model;combined model of pipeline model and hole model:limitation of flow rate 1 概述 在燃气管道事故定量风险评价、事故抢险预案制定和漏气损失评估时,首先要计算泄漏流量。燃气管道在事故破损时,燃气可通

城镇燃气管道计算

城镇燃气管道计算 目录 低压燃气管道采用什么水力计算公式? 高、次高、中压燃气管道采用什么水力计算公式? 城镇燃气管道水力计算中摩擦阻力系数久如何计算? 城镇燃气管道的局部阻力如何计算? 城镇燃气管网与分配管道流量如何计算? 城镇燃气环状管网的计算步骤如何? 城镇燃气管网计算采用什么计算机软件? 城镇燃气高压管道的壁厚如何计算? 城镇燃气高压管道的强度设计系数F 应如何确定? 城镇燃气高压管道穿越铁路、公路和人员集中场所以及门站、储配站、调压站内管道强度设计系数F 应如何确定? 高压燃气管道焊接支管连接口的补强应符合哪些规定? 高压燃气管道附件的设计和选用应符合哪些规定?

低压燃气管道采用什么水力计算公式? 低压燃气管道单位长度的摩擦阻力损失按下式计算: 2750 6.2610v q P T L d T λρ?=? ( 4.1.36 ) 式中 △P - 燃气管道摩擦阻力损失,Pa ; λ― 燃气管道摩擦阻力系数; L ― 燃气管道的计算长度,m ; q v - 燃气管道的计算流量,m3/h ; d ― 管道内径,mm ; ρ― 燃气的密度,kg/m 3; T ― 设计中所采用的燃气温度,K ; T 0 -273.15 , K 。 高、次高、中压燃气管道采用什么水力计算公式? 高、次高、中压燃气管道水力计算公式如下: 222101250 1.2710v q P P T Z L d T λρ-=? ( 4.1.37 ) 式中 Pl ― 燃气管道起点压力,绝压KPa ; P2 ― 燃气管道终点压力,绝压KPa ; Z ― 压缩系数,当燃气压力<l.2MPa ( G )时z 取l ; L ― 燃气管道计算长度,km ; λ ― 燃气管道摩擦阻力系数。 城镇燃气管道水力计算中摩擦阻力系数久如何计算? 燃气管道的摩擦阻力系数λ可按柯列勃洛克(F.Colebrook )公式计算。 2lg 3.7K d ?= ? ( 4.1.38 ) 式中 lg ― 常用对数; K ― 管壁内表面的当量绝对粗糙度,其大小与管道材质、制管工艺、施工焊接情况、燃气质量、管材存放年限和条件等因素有关。一般采用旧钢管的K 值。当输送天然气与气态液化石油气时取0.1mm ,输送人工燃气时取0.15; Re ― 雷诺数。 城镇燃气管道的局部阻力如何计算? 由于管道摩擦阻力系数λ是反映燃气沿着管道长度方向流的阻力系数。在燃气管道压力损失计算中,尚需考虑流体在流经管道扩大、缩小、弯头、三通及阀门等配件的局部阻力损失。局部阻力可按下式计算:

低压燃气管道水力计算公式

燃气管道输送水力计算 一、适用公式 燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。 但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。 二、低压燃气管道水力计算公式: 1、层流状态R e≤2100 λ=64/R e R e=dv/γ ΔP/L=1.13×1010(Q0/d4)γρ0(T/T0) 2、临界状态R e=2100~3500 λ=0.03+(R e-2100)/(65 R e-1×105) ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q0-1×105dγ)](Q02/d5)ρ0(T/T0) 3、紊流状态R e≥3500 1)钢管λ=0.11[(Δ/d)+(68/ R e)]0.25 ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q02/d5)ρ0(T/T0)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q0)]0.284 ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa)L——管道计算长度(m)λ——燃气管道的摩阻系数Q0——燃气流量(Nm3/h) d——管道内径(mm)ρ0——燃气密度(kg/Nm3) γ——0℃和101.325kPa时的燃气运动粘度(m2/s) Δ——管壁内表面的绝对当量粗糙度(mm)R e——雷诺数 T——燃气绝对温度(K)T0——273K v——管内燃气流动的平均速度(m/s) (摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)

燃气管网水力计算方法

《现代燃气工程》结课论文 ------------------------------------------------------------------------ 题目:燃气管网水力计算 姓名:王朋飞 学号:S2******* 教师:范慧方

引言 随着能源结构的不断改变,燃气开发规模和应用规模的不断扩大。城市燃气管网是现代化城市人民生活和工业生产的一种主要能源配送方式,燃气输配管网的设计和运行要求对系统进行水力计算,获取必要的参数。 燃气输配管网系统由高度整体化的管网所组成,在系统内燃气压力和流量变化很大,需要通过水力计算来确定管网中每一管段的尺寸(如管径、管径)、材质等参数以及压缩机的台数功率以保证既向用户合理地供应天然气,又能降低操作管理费用。[1] 同时,考虑在满足用户用气量的前提下,当某一条或几条管道的使用有一定的压力要求时,水力计算数据可确定在这种最大承受压力下管道各个节点的压力,从而保证管网的正常运行。另外,水力计算也用于调整各个调压阀的出口压力来适应事故工况下输送压力的要求。 随着燃气事业的发展,燃气输配管网系统也日趋庞大和复杂,为了掌握燃气在管道内的运行规律,合理地确定管道系统的设计和改造方案,保证管道系统的优化运行,提高管道系统的调度管理水平,解决管网流动的动态特性,在一些比较大型的城市燃气管网的水力计算分析中,必须要依靠相关的计算分析软件进行,以减少手工量和人工误差。

1燃气管网水力计算 燃气是可压缩流体,一般情况下管道内燃气的流动是不稳定流,由压送机站开动压缩机不同台数的工况以及用户用气量变化的工况,这些因素都导致了燃气管道内燃气压力和流量的变化。管内燃气沿程压力下降会引起燃气密度的减小。但是在低压管道中燃气密度变化可以忽略不计。所以,除了单位时间内输气量波动大的超高压天然气长输管线要用不稳定流进行计算外,在大多数情况下,设计燃气管道时都将燃气流动按稳定流计算。此外,很多情况下,燃气管道内的流动可认为是等温的,其温度等于埋管周围土壤的温度。燃气管网按照敷设形式可分为两大类:枝状管网和环状管网。[2]下面就分别介绍两种形式的管网的水力计算特点和方法。 1.1枝状管网水力计算 1.1.1枝状管网水力计算特点 枝状管网是由输气管段和节点组成。任何形状的枝状管网,其管段数P 和节点数m 的关系均符合: 1P m =- 燃气在枝状管网中从气源至各节点只有一个固定流向,输送至某管段的燃气只能由一条管道供气,流量分配方案也是唯一 的,枝状管道的转输流量只有一个数值,任意 管段的流量等于该管段以后(顺气流方向)所 有节点流量之和,因此每一管段只有唯一的流 量值,如图1所示。 管段3-4的流量为: 10985443q q q q q Q ++++=- 管段4-8的流量为: 109884q q q Q ++=-

燃气用气量和计算流量、燃气管道水力计算及附录

12.3燃气用气量和计算流量 12.3.1燃气用气量 民用建筑燃气用气量包括:居民生活用气量、商业用气量、采暖及通风空调用气量。 1用户的燃气用气量,应考虑燃气规划发展量,根据当地的用气量指标确定。 2居民生活和商业的用气量指标,应根据当地居民生活和商业用气量的统计数据分析确定。当缺乏实际统计资料时,结合当地情况参考选用附录D中附表D.1-1、附表D.1-2、附表D.1-3、附表D.1-4数据。 3采暖用气量,可根据当地建筑物耗热量指标确定(方案和初步设计阶段也可按附录D中附表D.1-5中数据估算)。 4通风空调用气量,取冬季热负荷与夏季冷负荷中的大值确定(方案和初步设计阶段也可按附录D中附表D.1-6中数据估算)。 5居住小区集中供应热水用气量,参照《建筑给水排水设计规范》GB50015中的耗热量计算。 12.3.2燃气计算流量 1燃气管道的计算流量,应为小时最大用气量。 2居民生活和商业用户 1)已知各用气设备的额定流量和台数等资料时,小时计算流量按以下方法确定:

①居民生活用燃气计算流量: Q h=∑kNQ n(12.3.2-1) 式中Q h——居民用户燃气计算流量(m3/h); k——用气设备同时工作系数,可参照附录E中附表E.1-1、附表E.1-2的数据; N——同种设备数目; Q n——单台用气设备的额定流量(m3/h)。 ②商业用户(包括宾馆、饭店、餐馆、医院、食堂等)的燃气计算流量,一般按所有用气设备的额定流量并根据设备的实际使用情况确定。 2)当缺乏用气设备资料时,可按以下方法估算燃气小时计算流量(0℃,101325Pa,以下同): Q hl=(1/n)Q a (12.3.2-2) n=(365×24)/K m K d K h (12.3.2-3) 式中Q hl——燃气小时计算流量(m3/h); Q a——年燃气用量(m3/a); n ——年燃气最大负荷利用小时数(h); K m——月高峰系数,计算月的日平均用气量和年的日平均用气量之比; K d——日高峰系数,计算月中的日最大用气量和该月日平均用气量之比;

燃气管道水力计算

1. 高压、中压 燃气管 道水力 计算公式: Z T T d Q L P P 0 521022211027.1ρλ?=- 式中:P 1 — 燃气管道起点的压力(绝对压力,kPa ); P 2 — 燃气管道终点的压力(绝对压力,kPa ); Q — 燃气管道的计算流量(m 3/h ); L — 燃气管道的计算长度(km ); d — 管道内径(mm ); ρ — 燃气的密度(kg/m 3);标准状态下天然气的密度一般取0.716 kg/m 3。 Z — 压缩因子,燃气压力小于1.2MPa (表压)时取1; T — 设计中所采用的燃气温度(K ); T0 — 273.15(K )。 λ— 燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: 25.06811.0???? ??+=e R d K λ K — 管道内表面的当量绝对粗糙度(mm );对于钢管,输送天然 气和液化石油气时取0.1mm ,输送人工煤气时取0.15mm 。 R e — 雷诺数(无量纲)。流体流动时的惯性力Fg 和粘性力(内摩 擦力)Fm 之比称为雷诺数。用符号Re 表示。层流状态,R e ≤ 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力1P ,燃气管道的计算长度L ,燃气密度ρ,燃气温度T ,压缩因子Z 为已知量,燃气管道终点的压力2P ,燃气管道的计算流量Q ,燃气管道内径d 为参量,知道其中任意两个,都可计算其中一个未知量。 如燃气管道终点的压力2P 的计算公式为: ZL T T d Q P P 05210 2 121027.1ρ?-= 某DN100中压输气管道长0.19km ,起点压力0.3MPa ,最大流量1060 m 3/h ,输气温度为20℃,应用此公式计算,管道末端压力2P =0.29MPa 。

燃气水力计算

Excel 在燃气管道水力计算中的应用 摘要:利用Excel 的控件和函数功能,制作了枝状燃气管道的计算程序。 关键词:Excel 燃气管道 水力计算 0引言 在燃气管道设计中,水力计算是非常重要的一部分,它不仅能保证我们的设计安全合理,同时可使我们的设计更为经济。但手工计算必须需要经过预选管径、判别流动状态、选择计算公式和校核压力降这几步来反复试算,过程极其烦琐和复杂,效率低下,也容易出错。很多同行使用各种计算机语言编写了水力计算程序,大多采用VB 、VC 等高级语言。但以上程序制作过程复杂,需要懂得专业的计算机编程知识,而且定制和更改过程复杂,一般设计人员难以操作。本文介绍了一种利用公办软件Excel 制作水力计算程序的方法,过程简单,界面友好,定制和更改方便。 1制作思路 1.1水力计算依据 燃气管道水力计算的流程见图一: 图一 燃气管道水力计算流程 根据《城镇燃气设计规范》(GB50028-93)(以下简称“规范”),低压燃气管道的水力计算公式如下: 05271026.6T T d Q l p ρλ?=? (1) 由上式可以看出影响压降的参数有: L -燃气管道的计算长度,km ; Q -燃气管道的计算流量,m 3/h ; d -管道内径,mm ; ρ-燃气的密度,kg/m 3;

λ-燃气管道的摩擦阻力系数; T-设计中采用的温度(K);T0=273.15K。 其中λ按流动状态分为以下三种计算公式: a.当Re≤2100时,属层流状态:λ=64/Re; b.当Re=2100~3500时,属临界状态:λ=0.03+(Re-2100)/(65Re-100000) c.当Re>3500时,属湍流状态, 对于钢管和PE管λ=0.11(K/d+68/Re)0.25 对于铸铁管λ=0.102236(1/d+5158dv/Q)0.284 =0.102236(1/d+1824.9Re)0.284 可见λ又与以下参数有关 ν-标准状态下燃气的运动粘度,m2/s; K -管壁内表面的当量绝对粗糙度,mm。 在计算低压燃气管道阻力损失时,还应考虑因高程差而引起的燃气附加压力。规范中给出低压管道附加压力的计算公式为: ΔH=10×(ρk-ρ)×h 式中: △H-燃气的附加压力,Pa; 可见影响压降的参数还有 ρk -空气的密度,kg/m3;取1.29kg/m3 ρ-燃气的密度,kg/m3;h -管道的终、起点高程差,m。 综上所述,影响压降的参数有L、Q、d、ρk、ρ、ν、K。将这些参数分类,其中ρk、ρ、ν、K这些是与气体性质及管材不同而变化的物性参数;而L、Q、d 是跟管段相关的参数,不同管段有不同的L、Q、d值。那么由公式可以知道,当物性参数ρk、ρ、ν、K固定即选定气体及管材后,压降只与L、Q、d的值不同而不同;当管段的L、Q、d值不变时,换用不同气种或选用不同管材会得到不同压降。基于以上分析,我们的程序也应该做成参数驱动的参数化的程序,即计算结果随着参数的改变而自动改变。 1.2程序制作 1.2.1界面制作 图2为水力计算程序的界面:

相关文档
最新文档